/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include namespace ams::kern::arch::arm64 { namespace { class AlignedMemoryBlock { private: uintptr_t before_start; uintptr_t before_end; uintptr_t after_start; uintptr_t after_end; size_t current_alignment; public: constexpr AlignedMemoryBlock(uintptr_t start, size_t num_pages, size_t alignment) : before_start(0), before_end(0), after_start(0), after_end(0), current_alignment(0) { MESOSPHERE_ASSERT(util::IsAligned(start, PageSize)); MESOSPHERE_ASSERT(num_pages > 0); /* Find an alignment that allows us to divide into at least two regions.*/ uintptr_t start_page = start / PageSize; alignment /= PageSize; while (util::AlignUp(start_page, alignment) >= util::AlignDown(start_page + num_pages, alignment)) { alignment = KPageTable::GetSmallerAlignment(alignment * PageSize) / PageSize; } this->before_start = start_page; this->before_end = util::AlignUp(start_page, alignment); this->after_start = this->before_end; this->after_end = start_page + num_pages; this->current_alignment = alignment; MESOSPHERE_ASSERT(this->current_alignment > 0); } constexpr void SetAlignment(size_t alignment) { /* We can only ever decrease the granularity. */ MESOSPHERE_ASSERT(this->current_alignment >= alignment / PageSize); this->current_alignment = alignment / PageSize; } constexpr size_t GetAlignment() const { return this->current_alignment * PageSize; } constexpr void FindBlock(uintptr_t &out, size_t &num_pages) { if ((this->after_end - this->after_start) >= this->current_alignment) { /* Select aligned memory from after block. */ const size_t available_pages = util::AlignDown(this->after_end, this->current_alignment) - this->after_start; if (num_pages == 0 || available_pages < num_pages) { num_pages = available_pages; } out = this->after_start * PageSize; this->after_start += num_pages; } else if ((this->before_end - this->before_start) >= this->current_alignment) { /* Select aligned memory from before block. */ const size_t available_pages = this->before_end - util::AlignUp(this->before_start, this->current_alignment); if (num_pages == 0 || available_pages < num_pages) { num_pages = available_pages; } this->before_end -= num_pages; out = this->before_end * PageSize; } else { /* Neither after or before can get an aligned bit of memory. */ out = 0; num_pages = 0; } } }; constexpr u64 EncodeTtbr(KPhysicalAddress table, u8 asid) { return (static_cast(asid) << 48) | (static_cast(GetInteger(table))); } class KPageTableAsidManager { private: using WordType = u32; static constexpr u8 ReservedAsids[] = { 0 }; static constexpr size_t NumReservedAsids = util::size(ReservedAsids); static constexpr size_t BitsPerWord = BITSIZEOF(WordType); static constexpr size_t AsidCount = 0x100; static constexpr size_t NumWords = AsidCount / BitsPerWord; static constexpr WordType FullWord = ~WordType(0u); private: WordType state[NumWords]; KLightLock lock; u8 hint; private: constexpr bool TestImpl(u8 asid) const { return this->state[asid / BitsPerWord] & (1u << (asid % BitsPerWord)); } constexpr void ReserveImpl(u8 asid) { MESOSPHERE_ASSERT(!this->TestImpl(asid)); this->state[asid / BitsPerWord] |= (1u << (asid % BitsPerWord)); } constexpr void ReleaseImpl(u8 asid) { MESOSPHERE_ASSERT(this->TestImpl(asid)); this->state[asid / BitsPerWord] &= ~(1u << (asid % BitsPerWord)); } constexpr u8 FindAvailable() const { for (size_t i = 0; i < util::size(this->state); i++) { if (this->state[i] == FullWord) { continue; } const WordType clear_bit = (this->state[i] + 1) ^ (this->state[i]); return BitsPerWord * i + BitsPerWord - 1 - ClearLeadingZero(clear_bit); } if (this->state[util::size(this->state)-1] == FullWord) { MESOSPHERE_PANIC("Unable to reserve ASID"); } __builtin_unreachable(); } static constexpr ALWAYS_INLINE WordType ClearLeadingZero(WordType value) { return __builtin_clzll(value) - (BITSIZEOF(unsigned long long) - BITSIZEOF(WordType)); } public: constexpr KPageTableAsidManager() : state(), lock(), hint() { for (size_t i = 0; i < NumReservedAsids; i++) { this->ReserveImpl(ReservedAsids[i]); } } u8 Reserve() { KScopedLightLock lk(this->lock); if (this->TestImpl(this->hint)) { this->hint = this->FindAvailable(); } this->ReserveImpl(this->hint); return this->hint++; } void Release(u8 asid) { KScopedLightLock lk(this->lock); this->ReleaseImpl(asid); } }; KPageTableAsidManager g_asid_manager; } void KPageTable::Initialize(s32 core_id) { /* Nothing actually needed here. */ MESOSPHERE_UNUSED(core_id); } Result KPageTable::InitializeForKernel(void *table, KVirtualAddress start, KVirtualAddress end) { /* Initialize basic fields. */ this->asid = 0; this->manager = std::addressof(Kernel::GetPageTableManager()); /* Allocate a page for ttbr. */ const u64 asid_tag = (static_cast(this->asid) << 48ul); const KVirtualAddress page = this->manager->Allocate(); MESOSPHERE_ASSERT(page != Null); cpu::ClearPageToZero(GetVoidPointer(page)); this->ttbr = GetInteger(KPageTableBase::GetLinearMappedPhysicalAddress(page)) | asid_tag; /* Initialize the base page table. */ MESOSPHERE_R_ABORT_UNLESS(KPageTableBase::InitializeForKernel(true, table, start, end)); return ResultSuccess(); } Result KPageTable::InitializeForProcess(u32 id, ams::svc::CreateProcessFlag as_type, bool enable_aslr, bool from_back, KMemoryManager::Pool pool, KProcessAddress code_address, size_t code_size, KMemoryBlockSlabManager *mem_block_slab_manager, KBlockInfoManager *block_info_manager, KPageTableManager *pt_manager) { /* The input ID isn't actually used. */ MESOSPHERE_UNUSED(id); /* Get an ASID */ this->asid = g_asid_manager.Reserve(); auto asid_guard = SCOPE_GUARD { g_asid_manager.Release(this->asid); }; /* Set our manager. */ this->manager = pt_manager; /* Allocate a new table, and set our ttbr value. */ const KVirtualAddress new_table = this->manager->Allocate(); R_UNLESS(new_table != Null, svc::ResultOutOfResource()); this->ttbr = EncodeTtbr(GetPageTablePhysicalAddress(new_table), asid); auto table_guard = SCOPE_GUARD { this->manager->Free(new_table); }; /* Initialize our base table. */ const size_t as_width = GetAddressSpaceWidth(as_type); const KProcessAddress as_start = 0; const KProcessAddress as_end = (1ul << as_width); R_TRY(KPageTableBase::InitializeForProcess(as_type, enable_aslr, from_back, pool, GetVoidPointer(new_table), as_start, as_end, code_address, code_size, mem_block_slab_manager, block_info_manager)); /* We succeeded! */ table_guard.Cancel(); asid_guard.Cancel(); /* Note that we've updated the table (since we created it). */ this->NoteUpdated(); return ResultSuccess(); } Result KPageTable::Finalize() { /* Only process tables should be finalized. */ MESOSPHERE_ASSERT(!this->IsKernel()); /* Note that we've updated (to ensure we're synchronized). */ this->NoteUpdated(); /* Free all pages in the table. */ { /* Get implementation objects. */ auto &impl = this->GetImpl(); auto &mm = Kernel::GetMemoryManager(); /* Traverse, freeing all pages. */ { /* Get the address space size. */ const size_t as_size = this->GetAddressSpaceSize(); /* Begin the traversal. */ TraversalContext context; TraversalEntry cur_entry = {}; bool cur_valid = false; TraversalEntry next_entry; bool next_valid; size_t tot_size = 0; next_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), this->GetAddressSpaceStart()); /* Iterate over entries. */ while (true) { if ((!next_valid && !cur_valid) || (next_valid && cur_valid && next_entry.phys_addr == cur_entry.phys_addr + cur_entry.block_size)) { cur_entry.block_size += next_entry.block_size; } else { if (cur_valid && IsHeapPhysicalAddressForFinalize(cur_entry.phys_addr)) { mm.Close(GetHeapVirtualAddress(cur_entry.phys_addr), cur_entry.block_size / PageSize); } /* Update tracking variables. */ tot_size += cur_entry.block_size; cur_entry = next_entry; cur_valid = next_valid; } if (cur_entry.block_size + tot_size >= as_size) { break; } next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)); } /* Handle the last block. */ if (cur_valid && IsHeapPhysicalAddressForFinalize(cur_entry.phys_addr)) { mm.Close(GetHeapVirtualAddress(cur_entry.phys_addr), cur_entry.block_size / PageSize); } } /* Cache address space extents for convenience. */ const KProcessAddress as_start = this->GetAddressSpaceStart(); const KProcessAddress as_last = as_start + this->GetAddressSpaceSize() - 1; /* Free all L3 tables. */ for (KProcessAddress cur_address = as_start; cur_address <= as_last; cur_address += L2BlockSize) { L1PageTableEntry *l1_entry = impl.GetL1Entry(cur_address); if (l1_entry->IsTable()) { L2PageTableEntry *l2_entry = impl.GetL2Entry(l1_entry, cur_address); if (l2_entry->IsTable()) { KVirtualAddress l3_table = GetPageTableVirtualAddress(l2_entry->GetTable()); if (this->GetPageTableManager().IsInPageTableHeap(l3_table)) { while (!this->GetPageTableManager().Close(l3_table, 1)) { /* ... */ } this->GetPageTableManager().Free(l3_table); } } } } /* Free all L2 tables. */ for (KProcessAddress cur_address = as_start; cur_address <= as_last; cur_address += L1BlockSize) { L1PageTableEntry *l1_entry = impl.GetL1Entry(cur_address); if (l1_entry->IsTable()) { KVirtualAddress l2_table = GetPageTableVirtualAddress(l1_entry->GetTable()); if (this->GetPageTableManager().IsInPageTableHeap(l2_table)) { while (!this->GetPageTableManager().Close(l2_table, 1)) { /* ... */ } this->GetPageTableManager().Free(l2_table); } } } /* Free the L1 table. */ this->GetPageTableManager().Free(reinterpret_cast(impl.Finalize())); /* Perform inherited finalization. */ KPageTableBase::Finalize(); } /* Release our asid. */ g_asid_manager.Release(this->asid); return ResultSuccess(); } Result KPageTable::Operate(PageLinkedList *page_list, KProcessAddress virt_addr, size_t num_pages, KPhysicalAddress phys_addr, bool is_pa_valid, const KPageProperties properties, OperationType operation, bool reuse_ll) { /* Check validity of parameters. */ MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); MESOSPHERE_ASSERT(num_pages > 0); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize)); MESOSPHERE_ASSERT(this->ContainsPages(virt_addr, num_pages)); if (operation == OperationType_Map) { MESOSPHERE_ABORT_UNLESS(is_pa_valid); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize)); } else { MESOSPHERE_ABORT_UNLESS(!is_pa_valid); } if (operation == OperationType_Unmap) { return this->Unmap(virt_addr, num_pages, page_list, false, reuse_ll); } else { auto entry_template = this->GetEntryTemplate(properties); switch (operation) { case OperationType_Map: return this->MapContiguous(virt_addr, phys_addr, num_pages, entry_template, properties.disable_merge_attributes == DisableMergeAttribute_DisableHead, page_list, reuse_ll); case OperationType_ChangePermissions: return this->ChangePermissions(virt_addr, num_pages, entry_template, properties.disable_merge_attributes, false, page_list, reuse_ll); case OperationType_ChangePermissionsAndRefresh: return this->ChangePermissions(virt_addr, num_pages, entry_template, properties.disable_merge_attributes, true, page_list, reuse_ll); MESOSPHERE_UNREACHABLE_DEFAULT_CASE(); } } } Result KPageTable::Operate(PageLinkedList *page_list, KProcessAddress virt_addr, size_t num_pages, const KPageGroup &page_group, const KPageProperties properties, OperationType operation, bool reuse_ll) { /* Check validity of parameters. */ MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize)); MESOSPHERE_ASSERT(num_pages > 0); MESOSPHERE_ASSERT(num_pages == page_group.GetNumPages()); /* Map the page group. */ auto entry_template = this->GetEntryTemplate(properties); switch (operation) { case OperationType_MapGroup: return this->MapGroup(virt_addr, page_group, num_pages, entry_template, properties.disable_merge_attributes == DisableMergeAttribute_DisableHead, page_list, reuse_ll); MESOSPHERE_UNREACHABLE_DEFAULT_CASE(); } } Result KPageTable::MapL1Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), L1BlockSize)); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), L1BlockSize)); MESOSPHERE_ASSERT(util::IsAligned(num_pages * PageSize, L1BlockSize)); /* Allocation is never needed for L1 block mapping. */ MESOSPHERE_UNUSED(page_list, reuse_ll); auto &impl = this->GetImpl(); u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false); /* Iterate, mapping each block. */ for (size_t i = 0; i < num_pages; i += L1BlockSize / PageSize) { /* Map the block. */ *impl.GetL1Entry(virt_addr) = L1PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false); sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead); virt_addr += L1BlockSize; phys_addr += L1BlockSize; } return ResultSuccess(); } Result KPageTable::MapL2Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), L2BlockSize)); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), L2BlockSize)); MESOSPHERE_ASSERT(util::IsAligned(num_pages * PageSize, L2BlockSize)); auto &impl = this->GetImpl(); KVirtualAddress l2_virt = Null; int l2_open_count = 0; u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false); /* Iterate, mapping each block. */ for (size_t i = 0; i < num_pages; i += L2BlockSize / PageSize) { KPhysicalAddress l2_phys = Null; /* If we have no L2 table, we should get or allocate one. */ if (l2_virt == Null) { if (L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr); !l1_entry->GetTable(l2_phys)) { /* Allocate table. */ l2_virt = AllocatePageTable(page_list, reuse_ll); R_UNLESS(l2_virt != Null, svc::ResultOutOfResource()); /* Set the entry. */ l2_phys = GetPageTablePhysicalAddress(l2_virt); PteDataSynchronizationBarrier(); *l1_entry = L1PageTableEntry(PageTableEntry::TableTag{}, l2_phys, this->IsKernel(), true); PteDataSynchronizationBarrier(); } else { l2_virt = GetPageTableVirtualAddress(l2_phys); } } MESOSPHERE_ASSERT(l2_virt != Null); /* Map the block. */ *impl.GetL2EntryFromTable(l2_virt, virt_addr) = L2PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false); sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead); l2_open_count++; virt_addr += L2BlockSize; phys_addr += L2BlockSize; /* Account for hitting end of table. */ if (util::IsAligned(GetInteger(virt_addr), L1BlockSize)) { if (this->GetPageTableManager().IsInPageTableHeap(l2_virt)) { this->GetPageTableManager().Open(l2_virt, l2_open_count); } l2_virt = Null; l2_open_count = 0; } } /* Perform any remaining opens. */ if (l2_open_count > 0 && this->GetPageTableManager().IsInPageTableHeap(l2_virt)) { this->GetPageTableManager().Open(l2_virt, l2_open_count); } return ResultSuccess(); } Result KPageTable::MapL3Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize)); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize)); auto &impl = this->GetImpl(); KVirtualAddress l2_virt = Null; KVirtualAddress l3_virt = Null; int l2_open_count = 0; int l3_open_count = 0; u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false); /* Iterate, mapping each page. */ for (size_t i = 0; i < num_pages; i++) { KPhysicalAddress l3_phys = Null; bool l2_allocated = false; /* If we have no L3 table, we should get or allocate one. */ if (l3_virt == Null) { KPhysicalAddress l2_phys = Null; /* If we have no L2 table, we should get or allocate one. */ if (l2_virt == Null) { if (L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr); !l1_entry->GetTable(l2_phys)) { /* Allocate table. */ l2_virt = AllocatePageTable(page_list, reuse_ll); R_UNLESS(l2_virt != Null, svc::ResultOutOfResource()); /* Set the entry. */ l2_phys = GetPageTablePhysicalAddress(l2_virt); PteDataSynchronizationBarrier(); *l1_entry = L1PageTableEntry(PageTableEntry::TableTag{}, l2_phys, this->IsKernel(), true); PteDataSynchronizationBarrier(); l2_allocated = true; } else { l2_virt = GetPageTableVirtualAddress(l2_phys); } } MESOSPHERE_ASSERT(l2_virt != Null); if (L2PageTableEntry *l2_entry = impl.GetL2EntryFromTable(l2_virt, virt_addr); !l2_entry->GetTable(l3_phys)) { /* Allocate table. */ l3_virt = AllocatePageTable(page_list, reuse_ll); if (l3_virt == Null) { /* Cleanup the L2 entry. */ if (l2_allocated) { *impl.GetL1Entry(virt_addr) = InvalidL1PageTableEntry; this->NoteUpdated(); FreePageTable(page_list, l2_virt); } else if (this->GetPageTableManager().IsInPageTableHeap(l2_virt) && l2_open_count > 0) { this->GetPageTableManager().Open(l2_virt, l2_open_count); } return svc::ResultOutOfResource(); } /* Set the entry. */ l3_phys = GetPageTablePhysicalAddress(l3_virt); PteDataSynchronizationBarrier(); *l2_entry = L2PageTableEntry(PageTableEntry::TableTag{}, l3_phys, this->IsKernel(), true); PteDataSynchronizationBarrier(); l2_open_count++; } else { l3_virt = GetPageTableVirtualAddress(l3_phys); } } MESOSPHERE_ASSERT(l3_virt != Null); /* Map the page. */ *impl.GetL3EntryFromTable(l3_virt, virt_addr) = L3PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false); sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead); l3_open_count++; virt_addr += PageSize; phys_addr += PageSize; /* Account for hitting end of table. */ if (util::IsAligned(GetInteger(virt_addr), L2BlockSize)) { if (this->GetPageTableManager().IsInPageTableHeap(l3_virt)) { this->GetPageTableManager().Open(l3_virt, l3_open_count); } l3_virt = Null; l3_open_count = 0; if (util::IsAligned(GetInteger(virt_addr), L1BlockSize)) { if (this->GetPageTableManager().IsInPageTableHeap(l2_virt) && l2_open_count > 0) { this->GetPageTableManager().Open(l2_virt, l2_open_count); } l2_virt = Null; l2_open_count = 0; } } } /* Perform any remaining opens. */ if (l2_open_count > 0 && this->GetPageTableManager().IsInPageTableHeap(l2_virt)) { this->GetPageTableManager().Open(l2_virt, l2_open_count); } if (l3_open_count > 0 && this->GetPageTableManager().IsInPageTableHeap(l3_virt)) { this->GetPageTableManager().Open(l3_virt, l3_open_count); } return ResultSuccess(); } Result KPageTable::Unmap(KProcessAddress virt_addr, size_t num_pages, PageLinkedList *page_list, bool force, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); auto &impl = this->GetImpl(); /* If we're not forcing an unmap, separate pages immediately. */ if (!force) { const size_t size = num_pages * PageSize; R_TRY(this->SeparatePages(virt_addr, std::min(GetInteger(virt_addr) & -GetInteger(virt_addr), size), page_list, reuse_ll)); if (num_pages > 1) { const auto end_page = virt_addr + size; const auto last_page = end_page - PageSize; auto merge_guard = SCOPE_GUARD { this->MergePages(virt_addr, page_list); }; R_TRY(this->SeparatePages(last_page, std::min(GetInteger(end_page) & -GetInteger(end_page), size), page_list, reuse_ll)); merge_guard.Cancel(); } } /* Cache initial addresses for use on cleanup. */ const KProcessAddress orig_virt_addr = virt_addr; size_t remaining_pages = num_pages; /* Ensure that any pages we track close on exit. */ KPageGroup pages_to_close(this->GetBlockInfoManager()); KScopedPageGroup spg(pages_to_close); /* Begin traversal. */ TraversalContext context; TraversalEntry next_entry; bool next_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), virt_addr); while (remaining_pages > 0) { /* Handle the case where we're not valid. */ if (!next_valid) { MESOSPHERE_ABORT_UNLESS(force); const size_t cur_size = std::min(next_entry.block_size - (GetInteger(virt_addr) & (next_entry.block_size - 1)), remaining_pages * PageSize); remaining_pages -= cur_size / PageSize; virt_addr += cur_size; next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)); continue; } /* Handle the case where the block is bigger than it should be. */ if (next_entry.block_size > remaining_pages * PageSize) { MESOSPHERE_ABORT_UNLESS(force); MESOSPHERE_R_ABORT_UNLESS(this->SeparatePages(virt_addr, remaining_pages * PageSize, page_list, reuse_ll)); next_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), virt_addr); MESOSPHERE_ASSERT(next_valid); } /* Check that our state is coherent. */ MESOSPHERE_ASSERT((next_entry.block_size / PageSize) <= remaining_pages); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(next_entry.phys_addr), next_entry.block_size)); /* Unmap the block. */ L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr); switch (next_entry.block_size) { case L1BlockSize: { /* Clear the entry. */ *l1_entry = InvalidL1PageTableEntry; } break; case L2ContiguousBlockSize: case L2BlockSize: { /* Get the number of L2 blocks. */ const size_t num_l2_blocks = next_entry.block_size / L2BlockSize; /* Get the L2 entry. */ KPhysicalAddress l2_phys = Null; MESOSPHERE_ABORT_UNLESS(l1_entry->GetTable(l2_phys)); const KVirtualAddress l2_virt = GetPageTableVirtualAddress(l2_phys); /* Clear the entry. */ for (size_t i = 0; i < num_l2_blocks; i++) { *impl.GetL2EntryFromTable(l2_virt, virt_addr + L2BlockSize * i) = InvalidL2PageTableEntry; } PteDataSynchronizationBarrier(); /* Close references to the L2 table. */ if (this->GetPageTableManager().IsInPageTableHeap(l2_virt)) { if (this->GetPageTableManager().Close(l2_virt, num_l2_blocks)) { *l1_entry = InvalidL1PageTableEntry; this->NoteUpdated(); this->FreePageTable(page_list, l2_virt); } } } break; case L3ContiguousBlockSize: case L3BlockSize: { /* Get the number of L3 blocks. */ const size_t num_l3_blocks = next_entry.block_size / L3BlockSize; /* Get the L2 entry. */ KPhysicalAddress l2_phys = Null; MESOSPHERE_ABORT_UNLESS(l1_entry->GetTable(l2_phys)); const KVirtualAddress l2_virt = GetPageTableVirtualAddress(l2_phys); L2PageTableEntry *l2_entry = impl.GetL2EntryFromTable(l2_virt, virt_addr); /* Get the L3 entry. */ KPhysicalAddress l3_phys = Null; MESOSPHERE_ABORT_UNLESS(l2_entry->GetTable(l3_phys)); const KVirtualAddress l3_virt = GetPageTableVirtualAddress(l3_phys); /* Clear the entry. */ for (size_t i = 0; i < num_l3_blocks; i++) { *impl.GetL3EntryFromTable(l3_virt, virt_addr + L3BlockSize * i) = InvalidL3PageTableEntry; } PteDataSynchronizationBarrier(); /* Close references to the L3 table. */ if (this->GetPageTableManager().IsInPageTableHeap(l3_virt)) { if (this->GetPageTableManager().Close(l3_virt, num_l3_blocks)) { *l2_entry = InvalidL2PageTableEntry; this->NoteUpdated(); /* Close reference to the L2 table. */ if (this->GetPageTableManager().IsInPageTableHeap(l2_virt)) { if (this->GetPageTableManager().Close(l2_virt, 1)) { *l1_entry = InvalidL1PageTableEntry; this->NoteUpdated(); this->FreePageTable(page_list, l2_virt); } } this->FreePageTable(page_list, l3_virt); } } } break; MESOSPHERE_UNREACHABLE_DEFAULT_CASE(); } /* Close the blocks. */ if (!force && IsHeapPhysicalAddress(next_entry.phys_addr)) { const KVirtualAddress block_virt_addr = GetHeapVirtualAddress(next_entry.phys_addr); const size_t block_num_pages = next_entry.block_size / PageSize; if (R_FAILED(pages_to_close.AddBlock(block_virt_addr, block_num_pages))) { this->NoteUpdated(); Kernel::GetMemoryManager().Close(block_virt_addr, block_num_pages); } } /* Advance. */ virt_addr += next_entry.block_size; remaining_pages -= next_entry.block_size / PageSize; next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)); } /* Ensure we remain coherent. */ if (this->IsKernel() && num_pages == 1) { this->NoteSingleKernelPageUpdated(orig_virt_addr); } else { this->NoteUpdated(); } return ResultSuccess(); } Result KPageTable::MapContiguous(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); /* Cache initial addresses for use on cleanup. */ const KProcessAddress orig_virt_addr = virt_addr; const KPhysicalAddress orig_phys_addr = phys_addr; size_t remaining_pages = num_pages; /* Map the pages, using a guard to ensure we don't leak. */ { auto map_guard = SCOPE_GUARD { MESOSPHERE_R_ABORT_UNLESS(this->Unmap(orig_virt_addr, num_pages, page_list, true, true)); }; if (num_pages < ContiguousPageSize / PageSize) { R_TRY(this->Map(virt_addr, phys_addr, num_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, L3BlockSize, page_list, reuse_ll)); remaining_pages -= num_pages; virt_addr += num_pages * PageSize; phys_addr += num_pages * PageSize; } else { /* Map the fractional part of the pages. */ size_t alignment; for (alignment = ContiguousPageSize; (virt_addr & (alignment - 1)) == (phys_addr & (alignment - 1)); alignment = GetLargerAlignment(alignment)) { /* Check if this would be our last map. */ const size_t pages_to_map = ((alignment - (virt_addr & (alignment - 1))) & (alignment - 1)) / PageSize; if (pages_to_map + (alignment / PageSize) > remaining_pages) { break; } /* Map pages, if we should. */ if (pages_to_map > 0) { R_TRY(this->Map(virt_addr, phys_addr, pages_to_map, entry_template, disable_head_merge && virt_addr == orig_virt_addr, GetSmallerAlignment(alignment), page_list, reuse_ll)); remaining_pages -= pages_to_map; virt_addr += pages_to_map * PageSize; phys_addr += pages_to_map * PageSize; } /* Don't go further than L1 block. */ if (alignment == L1BlockSize) { break; } } while (remaining_pages > 0) { /* Select the next smallest alignment. */ alignment = GetSmallerAlignment(alignment); MESOSPHERE_ASSERT((virt_addr & (alignment - 1)) == 0); MESOSPHERE_ASSERT((phys_addr & (alignment - 1)) == 0); /* Map pages, if we should. */ const size_t pages_to_map = util::AlignDown(remaining_pages, alignment / PageSize); if (pages_to_map > 0) { R_TRY(this->Map(virt_addr, phys_addr, pages_to_map, entry_template, disable_head_merge && virt_addr == orig_virt_addr, alignment, page_list, reuse_ll)); remaining_pages -= pages_to_map; virt_addr += pages_to_map * PageSize; phys_addr += pages_to_map * PageSize; } } } /* We successfully mapped, so cancel our guard. */ map_guard.Cancel(); } /* Perform what coalescing we can. */ this->MergePages(orig_virt_addr, page_list); if (num_pages > 1) { this->MergePages(orig_virt_addr + (num_pages - 1) * PageSize, page_list); } /* Open references to the pages, if we should. */ if (IsHeapPhysicalAddress(orig_phys_addr)) { Kernel::GetMemoryManager().Open(GetHeapVirtualAddress(orig_phys_addr), num_pages); } return ResultSuccess(); } Result KPageTable::MapGroup(KProcessAddress virt_addr, const KPageGroup &pg, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); /* We want to maintain a new reference to every page in the group. */ KScopedPageGroup spg(pg); /* Cache initial address for use on cleanup. */ const KProcessAddress orig_virt_addr = virt_addr; size_t mapped_pages = 0; /* Map the pages, using a guard to ensure we don't leak. */ { auto map_guard = SCOPE_GUARD { MESOSPHERE_R_ABORT_UNLESS(this->Unmap(orig_virt_addr, num_pages, page_list, true, true)); }; if (num_pages < ContiguousPageSize / PageSize) { for (const auto &block : pg) { const KPhysicalAddress block_phys_addr = GetLinearMappedPhysicalAddress(block.GetAddress()); const size_t cur_pages = block.GetNumPages(); R_TRY(this->Map(virt_addr, block_phys_addr, cur_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, L3BlockSize, page_list, reuse_ll)); virt_addr += cur_pages * PageSize; mapped_pages += cur_pages; } } else { /* Create a block representing our virtual space. */ AlignedMemoryBlock virt_block(GetInteger(virt_addr), num_pages, L1BlockSize); for (const auto &block : pg) { /* Create a block representing this physical group, synchronize its alignment to our virtual block. */ const KPhysicalAddress block_phys_addr = GetLinearMappedPhysicalAddress(block.GetAddress()); size_t cur_pages = block.GetNumPages(); AlignedMemoryBlock phys_block(GetInteger(block_phys_addr), cur_pages, virt_block.GetAlignment()); virt_block.SetAlignment(phys_block.GetAlignment()); while (cur_pages > 0) { /* Find a physical region for us to map at. */ uintptr_t phys_choice = 0; size_t phys_pages = 0; phys_block.FindBlock(phys_choice, phys_pages); /* If we didn't find a region, try decreasing our alignment. */ if (phys_pages == 0) { const size_t next_alignment = KPageTable::GetSmallerAlignment(phys_block.GetAlignment()); MESOSPHERE_ASSERT(next_alignment >= PageSize); phys_block.SetAlignment(next_alignment); virt_block.SetAlignment(next_alignment); continue; } /* Begin choosing virtual blocks to map at the region we chose. */ while (phys_pages > 0) { /* Find a virtual region for us to map at. */ uintptr_t virt_choice = 0; size_t virt_pages = phys_pages; virt_block.FindBlock(virt_choice, virt_pages); /* If we didn't find a region, try decreasing our alignment. */ if (virt_pages == 0) { const size_t next_alignment = KPageTable::GetSmallerAlignment(virt_block.GetAlignment()); MESOSPHERE_ASSERT(next_alignment >= PageSize); phys_block.SetAlignment(next_alignment); virt_block.SetAlignment(next_alignment); continue; } /* Map! */ R_TRY(this->Map(virt_choice, phys_choice, virt_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, virt_block.GetAlignment(), page_list, reuse_ll)); /* Advance. */ phys_choice += virt_pages * PageSize; phys_pages -= virt_pages; cur_pages -= virt_pages; mapped_pages += virt_pages; } } } } /* We successfully mapped, so cancel our guard. */ map_guard.Cancel(); } MESOSPHERE_ASSERT(mapped_pages == num_pages); /* Perform what coalescing we can. */ this->MergePages(orig_virt_addr, page_list); if (num_pages > 1) { this->MergePages(orig_virt_addr + (num_pages - 1) * PageSize, page_list); } /* We succeeded! We want to persist the reference to the pages. */ spg.CancelClose(); return ResultSuccess(); } bool KPageTable::MergePages(KProcessAddress virt_addr, PageLinkedList *page_list) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); auto &impl = this->GetImpl(); bool merged = false; /* If there's no L1 table, don't bother. */ L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr); if (!l1_entry->IsTable()) { /* Ensure the table is not corrupted. */ MESOSPHERE_ABORT_UNLESS(l1_entry->IsBlock() || l1_entry->IsEmpty()); return merged; } /* Examine and try to merge the L2 table. */ L2PageTableEntry *l2_entry = impl.GetL2Entry(l1_entry, virt_addr); if (l2_entry->IsTable()) { /* We have an L3 entry. */ L3PageTableEntry *l3_entry = impl.GetL3Entry(l2_entry, virt_addr); if (!l3_entry->IsBlock()) { return merged; } /* If it's not contiguous, try to make it so. */ if (!l3_entry->IsContiguous()) { virt_addr = util::AlignDown(GetInteger(virt_addr), L3ContiguousBlockSize); const KPhysicalAddress phys_addr = util::AlignDown(GetInteger(l3_entry->GetBlock()), L3ContiguousBlockSize); const u64 entry_template = l3_entry->GetEntryTemplateForMerge(); /* Validate that we can merge. */ for (size_t i = 0; i < L3ContiguousBlockSize / L3BlockSize; i++) { const L3PageTableEntry *check_entry = impl.GetL3Entry(l2_entry, virt_addr + L3BlockSize * i); if (!check_entry->IsForMerge(entry_template | GetInteger(phys_addr + L3BlockSize * i) | PageTableEntry::Type_L3Block)) { return merged; } if (i > 0 && (check_entry->IsHeadMergeDisabled() || check_entry->IsHeadAndBodyMergeDisabled())) { return merged; } if ((i < (L3ContiguousBlockSize / L3BlockSize) - 1) && check_entry->IsTailMergeDisabled()) { return merged; } } /* Determine the new software reserved bits. */ const L3PageTableEntry *head_entry = impl.GetL3Entry(l2_entry, virt_addr + L3BlockSize * 0); const L3PageTableEntry *tail_entry = impl.GetL3Entry(l2_entry, virt_addr + L3BlockSize * ((L3ContiguousBlockSize / L3BlockSize) - 1)); auto sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(head_entry->IsHeadMergeDisabled(), head_entry->IsHeadAndBodyMergeDisabled(), tail_entry->IsTailMergeDisabled()); /* Merge! */ for (size_t i = 0; i < L3ContiguousBlockSize / L3BlockSize; i++) { *impl.GetL3Entry(l2_entry, virt_addr + L3BlockSize * i) = L3PageTableEntry(PageTableEntry::BlockTag{}, phys_addr + L3BlockSize * i, PageTableEntry(entry_template), sw_reserved_bits, true); sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead); } /* Note that we updated. */ this->NoteUpdated(); merged = true; } /* We might be able to upgrade a contiguous set of L3 entries into an L2 block. */ virt_addr = util::AlignDown(GetInteger(virt_addr), L2BlockSize); KPhysicalAddress phys_addr = util::AlignDown(GetInteger(l3_entry->GetBlock()), L2BlockSize); const u64 entry_template = l3_entry->GetEntryTemplateForMerge(); /* Validate that we can merge. */ for (size_t i = 0; i < L2BlockSize / L3ContiguousBlockSize; i++) { const L3PageTableEntry *check_entry = impl.GetL3Entry(l2_entry, virt_addr + L3ContiguousBlockSize * i); if (!check_entry->IsForMerge(entry_template | GetInteger(phys_addr + L3ContiguousBlockSize * i) | PageTableEntry::ContigType_Contiguous | PageTableEntry::Type_L3Block)) { return merged; } if (i > 0 && (check_entry->IsHeadMergeDisabled() || check_entry->IsHeadAndBodyMergeDisabled())) { return merged; } if ((i < (L2BlockSize / L3ContiguousBlockSize) - 1) && check_entry->IsTailMergeDisabled()) { return merged; } } /* Determine the new software reserved bits. */ const L3PageTableEntry *head_entry = impl.GetL3Entry(l2_entry, virt_addr + L3ContiguousBlockSize * 0); const L3PageTableEntry *tail_entry = impl.GetL3Entry(l2_entry, virt_addr + L3ContiguousBlockSize * ((L2BlockSize / L3ContiguousBlockSize) - 1)); auto sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(head_entry->IsHeadMergeDisabled(), head_entry->IsHeadAndBodyMergeDisabled(), tail_entry->IsTailMergeDisabled()); /* Merge! */ PteDataSynchronizationBarrier(); *l2_entry = L2PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false); /* Note that we updated. */ this->NoteUpdated(); merged = true; /* Free the L3 table. */ KVirtualAddress l3_table = util::AlignDown(reinterpret_cast(l3_entry), PageSize); if (this->GetPageTableManager().IsInPageTableHeap(l3_table)) { this->GetPageTableManager().Close(l3_table, L2BlockSize / L3BlockSize); ClearPageTable(l3_table); this->FreePageTable(page_list, l3_table); } } /* If the l2 entry is not a block or we can't make it contiguous, we're done. */ if (!l2_entry->IsBlock()) { return merged; } /* If it's not contiguous, try to make it so. */ if (!l2_entry->IsContiguous()) { virt_addr = util::AlignDown(GetInteger(virt_addr), L2ContiguousBlockSize); KPhysicalAddress phys_addr = util::AlignDown(GetInteger(l2_entry->GetBlock()), L2ContiguousBlockSize); const u64 entry_template = l2_entry->GetEntryTemplateForMerge(); /* Validate that we can merge. */ for (size_t i = 0; i < L2ContiguousBlockSize / L2BlockSize; i++) { const L2PageTableEntry *check_entry = impl.GetL2Entry(l1_entry, virt_addr + L2BlockSize * i); if (!check_entry->IsForMerge(entry_template | GetInteger(phys_addr + L2BlockSize * i) | PageTableEntry::Type_L2Block)) { return merged; } if (i > 0 && (check_entry->IsHeadMergeDisabled() || check_entry->IsHeadAndBodyMergeDisabled())) { return merged; } if ((i < (L2ContiguousBlockSize / L2BlockSize) - 1) && check_entry->IsTailMergeDisabled()) { return merged; } } /* Determine the new software reserved bits. */ const L2PageTableEntry *head_entry = impl.GetL2Entry(l1_entry, virt_addr + L2BlockSize * 0); const L2PageTableEntry *tail_entry = impl.GetL2Entry(l1_entry, virt_addr + L2BlockSize * ((L2ContiguousBlockSize / L2BlockSize) - 1)); auto sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(head_entry->IsHeadMergeDisabled(), head_entry->IsHeadAndBodyMergeDisabled(), tail_entry->IsTailMergeDisabled()); /* Merge! */ for (size_t i = 0; i < L2ContiguousBlockSize / L2BlockSize; i++) { *impl.GetL2Entry(l1_entry, virt_addr + L2BlockSize * i) = L2PageTableEntry(PageTableEntry::BlockTag{}, phys_addr + L2BlockSize * i, PageTableEntry(entry_template), sw_reserved_bits, true); sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead); } /* Note that we updated. */ this->NoteUpdated(); merged = true; } /* We might be able to upgrade a contiguous set of L2 entries into an L1 block. */ virt_addr = util::AlignDown(GetInteger(virt_addr), L1BlockSize); KPhysicalAddress phys_addr = util::AlignDown(GetInteger(l2_entry->GetBlock()), L1BlockSize); const u64 entry_template = l2_entry->GetEntryTemplateForMerge(); /* Validate that we can merge. */ for (size_t i = 0; i < L1BlockSize / L2ContiguousBlockSize; i++) { const L2PageTableEntry *check_entry = impl.GetL2Entry(l1_entry, virt_addr + L2ContiguousBlockSize * i); if (!check_entry->IsForMerge(entry_template | GetInteger(phys_addr + L2ContiguousBlockSize * i) | PageTableEntry::ContigType_Contiguous | PageTableEntry::Type_L2Block)) { return merged; } if (i > 0 && (check_entry->IsHeadMergeDisabled() || check_entry->IsHeadAndBodyMergeDisabled())) { return merged; } if ((i < (L1ContiguousBlockSize / L2ContiguousBlockSize) - 1) && check_entry->IsTailMergeDisabled()) { return merged; } } /* Determine the new software reserved bits. */ const L2PageTableEntry *head_entry = impl.GetL2Entry(l1_entry, virt_addr + L2ContiguousBlockSize * 0); const L2PageTableEntry *tail_entry = impl.GetL2Entry(l1_entry, virt_addr + L2ContiguousBlockSize * ((L1BlockSize / L2ContiguousBlockSize) - 1)); auto sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(head_entry->IsHeadMergeDisabled(), head_entry->IsHeadAndBodyMergeDisabled(), tail_entry->IsTailMergeDisabled()); /* Merge! */ PteDataSynchronizationBarrier(); *l1_entry = L1PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false); /* Note that we updated. */ this->NoteUpdated(); merged = true; /* Free the L2 table. */ KVirtualAddress l2_table = util::AlignDown(reinterpret_cast(l2_entry), PageSize); if (this->GetPageTableManager().IsInPageTableHeap(l2_table)) { this->GetPageTableManager().Close(l2_table, L1BlockSize / L2BlockSize); ClearPageTable(l2_table); this->FreePageTable(page_list, l2_table); } return merged; } Result KPageTable::SeparatePagesImpl(KProcessAddress virt_addr, size_t block_size, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); auto &impl = this->GetImpl(); /* First, try to separate an L1 block into contiguous L2 blocks. */ L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr); if (l1_entry->IsBlock()) { /* If our block size is too big, don't bother. */ R_SUCCEED_IF(block_size >= L1BlockSize); /* Get the addresses we're working with. */ const KProcessAddress block_virt_addr = util::AlignDown(GetInteger(virt_addr), L1BlockSize); const KPhysicalAddress block_phys_addr = l1_entry->GetBlock(); /* Allocate a new page for the L2 table. */ const KVirtualAddress l2_table = this->AllocatePageTable(page_list, reuse_ll); R_UNLESS(l2_table != Null, svc::ResultOutOfResource()); const KPhysicalAddress l2_phys = GetPageTablePhysicalAddress(l2_table); /* Set the entries in the L2 table. */ for (size_t i = 0; i < L1BlockSize / L2BlockSize; i++) { const u64 entry_template = l1_entry->GetEntryTemplateForL2Block(i); *(impl.GetL2EntryFromTable(l2_table, block_virt_addr + L2BlockSize * i)) = L2PageTableEntry(PageTableEntry::BlockTag{}, block_phys_addr + L2BlockSize * i, PageTableEntry(entry_template), PageTableEntry::SoftwareReservedBit_None, true); } /* Open references to the L2 table. */ this->GetPageTableManager().Open(l2_table, L1BlockSize / L2BlockSize); /* Replace the L1 entry with one to the new table. */ PteDataSynchronizationBarrier(); *l1_entry = L1PageTableEntry(PageTableEntry::TableTag{}, l2_phys, this->IsKernel(), true); this->NoteUpdated(); } /* If we don't have an l1 table, we're done. */ MESOSPHERE_ABORT_UNLESS(l1_entry->IsTable() || l1_entry->IsEmpty()); R_SUCCEED_IF(!l1_entry->IsTable()); /* We want to separate L2 contiguous blocks into L2 blocks, so check that our size permits that. */ R_SUCCEED_IF(block_size >= L2ContiguousBlockSize); L2PageTableEntry *l2_entry = impl.GetL2Entry(l1_entry, virt_addr); if (l2_entry->IsBlock()) { /* If we're contiguous, try to separate. */ if (l2_entry->IsContiguous()) { const KProcessAddress block_virt_addr = util::AlignDown(GetInteger(virt_addr), L2ContiguousBlockSize); const KPhysicalAddress block_phys_addr = l2_entry->GetBlock(); /* Mark the entries as non-contiguous. */ for (size_t i = 0; i < L2ContiguousBlockSize / L2BlockSize; i++) { const u64 entry_template = l2_entry->GetEntryTemplateForL2Block(i); *(impl.GetL2Entry(l1_entry, block_virt_addr + L2BlockSize * i)) = L2PageTableEntry(PageTableEntry::BlockTag{}, block_phys_addr + L2BlockSize * i, PageTableEntry(entry_template), PageTableEntry::SoftwareReservedBit_None, false); } this->NoteUpdated(); } /* We want to separate L2 blocks into L3 contiguous blocks, so check that our size permits that. */ R_SUCCEED_IF(block_size >= L2BlockSize); /* Get the addresses we're working with. */ const KProcessAddress block_virt_addr = util::AlignDown(GetInteger(virt_addr), L2BlockSize); const KPhysicalAddress block_phys_addr = l2_entry->GetBlock(); /* Allocate a new page for the L3 table. */ const KVirtualAddress l3_table = this->AllocatePageTable(page_list, reuse_ll); R_UNLESS(l3_table != Null, svc::ResultOutOfResource()); const KPhysicalAddress l3_phys = GetPageTablePhysicalAddress(l3_table); /* Set the entries in the L3 table. */ for (size_t i = 0; i < L2BlockSize / L3BlockSize; i++) { const u64 entry_template = l2_entry->GetEntryTemplateForL3Block(i); *(impl.GetL3EntryFromTable(l3_table, block_virt_addr + L3BlockSize * i)) = L3PageTableEntry(PageTableEntry::BlockTag{}, block_phys_addr + L3BlockSize * i, PageTableEntry(entry_template), PageTableEntry::SoftwareReservedBit_None, true); } /* Open references to the L3 table. */ this->GetPageTableManager().Open(l3_table, L2BlockSize / L3BlockSize); /* Replace the L2 entry with one to the new table. */ PteDataSynchronizationBarrier(); *l2_entry = L2PageTableEntry(PageTableEntry::TableTag{}, l3_phys, this->IsKernel(), true); this->NoteUpdated(); } /* If we don't have an L3 table, we're done. */ MESOSPHERE_ABORT_UNLESS(l2_entry->IsTable() || l2_entry->IsEmpty()); R_SUCCEED_IF(!l2_entry->IsTable()); /* We want to separate L3 contiguous blocks into L2 blocks, so check that our size permits that. */ R_SUCCEED_IF(block_size >= L3ContiguousBlockSize); /* If we're contiguous, try to separate. */ L3PageTableEntry *l3_entry = impl.GetL3Entry(l2_entry, virt_addr); if (l3_entry->IsBlock() && l3_entry->IsContiguous()) { const KProcessAddress block_virt_addr = util::AlignDown(GetInteger(virt_addr), L3ContiguousBlockSize); const KPhysicalAddress block_phys_addr = l3_entry->GetBlock(); /* Mark the entries as non-contiguous. */ for (size_t i = 0; i < L3ContiguousBlockSize / L3BlockSize; i++) { const u64 entry_template = l3_entry->GetEntryTemplateForL3Block(i); *(impl.GetL3Entry(l2_entry, block_virt_addr + L3BlockSize * i)) = L3PageTableEntry(PageTableEntry::BlockTag{}, block_phys_addr + L3BlockSize * i, PageTableEntry(entry_template), PageTableEntry::SoftwareReservedBit_None, false); } this->NoteUpdated(); } /* We're done! */ return ResultSuccess(); } Result KPageTable::SeparatePages(KProcessAddress virt_addr, size_t block_size, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); /* Try to separate pages, re-merging if we fail. */ auto guard = SCOPE_GUARD { this->MergePages(virt_addr, page_list); }; R_TRY(this->SeparatePagesImpl(virt_addr, block_size, page_list, reuse_ll)); guard.Cancel(); return ResultSuccess(); } Result KPageTable::ChangePermissions(KProcessAddress virt_addr, size_t num_pages, PageTableEntry entry_template, DisableMergeAttribute disable_merge_attr, bool refresh_mapping, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); /* Separate pages before we change permissions. */ const size_t size = num_pages * PageSize; R_TRY(this->SeparatePages(virt_addr, std::min(GetInteger(virt_addr) & -GetInteger(virt_addr), size), page_list, reuse_ll)); if (num_pages > 1) { const auto end_page = virt_addr + size; const auto last_page = end_page - PageSize; auto merge_guard = SCOPE_GUARD { this->MergePages(virt_addr, page_list); }; R_TRY(this->SeparatePages(last_page, std::min(GetInteger(end_page) & -GetInteger(end_page), size), page_list, reuse_ll)); merge_guard.Cancel(); } /* ===================================================== */ /* Define a helper function which will apply our template to entries. */ enum ApplyOption : u32 { ApplyOption_None = 0, ApplyOption_FlushDataCache = (1u << 0), ApplyOption_MergeMappings = (1u << 1), }; auto ApplyEntryTemplate = [this, virt_addr, disable_merge_attr, num_pages, page_list](PageTableEntry entry_template, u32 apply_option) -> void { /* Create work variables for us to use. */ const KProcessAddress orig_virt_addr = virt_addr; const KProcessAddress end_virt_addr = orig_virt_addr + (num_pages * PageSize); KProcessAddress cur_virt_addr = virt_addr; size_t remaining_pages = num_pages; auto &impl = this->GetImpl(); /* Parse the disable merge attrs. */ const bool attr_disable_head = (disable_merge_attr & DisableMergeAttribute_DisableHead) != 0; const bool attr_disable_head_body = (disable_merge_attr & DisableMergeAttribute_DisableHeadAndBody) != 0; const bool attr_enable_head_body = (disable_merge_attr & DisableMergeAttribute_EnableHeadAndBody) != 0; const bool attr_disable_tail = (disable_merge_attr & DisableMergeAttribute_DisableTail) != 0; const bool attr_enable_tail = (disable_merge_attr & DisableMergeAttribute_EnableTail) != 0; const bool attr_enable_and_merge = (disable_merge_attr & DisableMergeAttribute_EnableAndMergeHeadBodyTail) != 0; /* Begin traversal. */ TraversalContext context; TraversalEntry next_entry; MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), cur_virt_addr)); /* Continue changing properties until we've changed them for all pages. */ bool cleared_disable_merge_bits = false; while (remaining_pages > 0) { MESOSPHERE_ABORT_UNLESS(util::IsAligned(GetInteger(next_entry.phys_addr), next_entry.block_size)); MESOSPHERE_ABORT_UNLESS(next_entry.block_size <= remaining_pages * PageSize); /* Determine if we're at the start. */ const bool is_start = (cur_virt_addr == orig_virt_addr); const bool is_end = ((cur_virt_addr + next_entry.block_size) == end_virt_addr); /* Determine the relevant merge attributes. */ bool disable_head_merge, disable_head_body_merge, disable_tail_merge; if (next_entry.IsHeadMergeDisabled()) { disable_head_merge = true; } else if (attr_disable_head) { disable_head_merge = is_start; } else { disable_head_merge = false; } if (is_start) { if (attr_disable_head_body) { disable_head_body_merge = true; } else if (attr_enable_head_body) { disable_head_body_merge = false; } else { disable_head_body_merge = (!attr_enable_and_merge && next_entry.IsHeadAndBodyMergeDisabled()); } } else { disable_head_body_merge = (!attr_enable_and_merge && next_entry.IsHeadAndBodyMergeDisabled()); cleared_disable_merge_bits |= (attr_enable_and_merge && next_entry.IsHeadAndBodyMergeDisabled()); } if (is_end) { if (attr_disable_tail) { disable_tail_merge = true; } else if (attr_enable_tail) { disable_tail_merge = false; } else { disable_tail_merge = (!attr_enable_and_merge && next_entry.IsTailMergeDisabled()); } } else { disable_tail_merge = (!attr_enable_and_merge && next_entry.IsTailMergeDisabled()); cleared_disable_merge_bits |= (attr_enable_and_merge && next_entry.IsTailMergeDisabled()); } /* Encode the merge disable flags into the software reserved bits. */ u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, disable_head_body_merge, disable_tail_merge); /* If we should flush entries, do so. */ if ((apply_option & ApplyOption_FlushDataCache) != 0) { if (IsHeapPhysicalAddress(next_entry.phys_addr)) { cpu::FlushDataCache(GetVoidPointer(GetHeapVirtualAddress(next_entry.phys_addr)), next_entry.block_size); } } /* Apply the entry template. */ L1PageTableEntry *l1_entry = impl.GetL1Entry(cur_virt_addr); switch (next_entry.block_size) { case L1BlockSize: { /* Write the updated entry. */ *l1_entry = L1PageTableEntry(PageTableEntry::BlockTag{}, next_entry.phys_addr, entry_template, sw_reserved_bits, false); } break; case L2ContiguousBlockSize: case L2BlockSize: { /* Get the number of L2 blocks. */ const size_t num_l2_blocks = next_entry.block_size / L2BlockSize; /* Get the L2 entry. */ KPhysicalAddress l2_phys = Null; MESOSPHERE_ABORT_UNLESS(l1_entry->GetTable(l2_phys)); const KVirtualAddress l2_virt = GetPageTableVirtualAddress(l2_phys); /* Write the updated entry. */ const bool contig = next_entry.block_size == L2ContiguousBlockSize; for (size_t i = 0; i < num_l2_blocks; i++) { *impl.GetL2EntryFromTable(l2_virt, cur_virt_addr + L2BlockSize * i) = L2PageTableEntry(PageTableEntry::BlockTag{}, next_entry.phys_addr + L2BlockSize * i, entry_template, sw_reserved_bits, contig); sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead); } } break; case L3ContiguousBlockSize: case L3BlockSize: { /* Get the number of L3 blocks. */ const size_t num_l3_blocks = next_entry.block_size / L3BlockSize; /* Get the L2 entry. */ KPhysicalAddress l2_phys = Null; MESOSPHERE_ABORT_UNLESS(l1_entry->GetTable(l2_phys)); const KVirtualAddress l2_virt = GetPageTableVirtualAddress(l2_phys); L2PageTableEntry *l2_entry = impl.GetL2EntryFromTable(l2_virt, cur_virt_addr); /* Get the L3 entry. */ KPhysicalAddress l3_phys = Null; MESOSPHERE_ABORT_UNLESS(l2_entry->GetTable(l3_phys)); const KVirtualAddress l3_virt = GetPageTableVirtualAddress(l3_phys); /* Write the updated entry. */ const bool contig = next_entry.block_size == L3ContiguousBlockSize; for (size_t i = 0; i < num_l3_blocks; i++) { *impl.GetL3EntryFromTable(l3_virt, cur_virt_addr + L3BlockSize * i) = L3PageTableEntry(PageTableEntry::BlockTag{}, next_entry.phys_addr + L3BlockSize * i, entry_template, sw_reserved_bits, contig); sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead); } } break; MESOSPHERE_UNREACHABLE_DEFAULT_CASE(); } /* If our option asks us to, try to merge mappings. */ bool merge = ((apply_option & ApplyOption_MergeMappings) != 0 || cleared_disable_merge_bits) && next_entry.block_size < L1BlockSize; if (merge) { const size_t larger_align = GetLargerAlignment(next_entry.block_size); if (util::IsAligned(GetInteger(cur_virt_addr) + next_entry.block_size, larger_align)) { const uintptr_t aligned_start = util::AlignDown(GetInteger(cur_virt_addr), larger_align); if (orig_virt_addr <= aligned_start && aligned_start + larger_align - 1 < GetInteger(orig_virt_addr) + (num_pages * PageSize) - 1) { merge = this->MergePages(cur_virt_addr, page_list); } else { merge = false; } } else { merge = false; } } /* If we merged, correct the traversal to a sane state. */ if (merge) { /* NOTE: Nintendo does not verify the result of this BeginTraversal call. */ MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), cur_virt_addr)); /* The actual size needs to not take into account the portion of the block before our virtual address. */ const size_t actual_size = next_entry.block_size - (GetInteger(next_entry.phys_addr) & (next_entry.block_size - 1)); remaining_pages -= std::min(remaining_pages, actual_size / PageSize); cur_virt_addr += actual_size; } else { /* If we didn't merge, just advance. */ remaining_pages -= next_entry.block_size / PageSize; cur_virt_addr += next_entry.block_size; } /* Continue our traversal. */ if (remaining_pages == 0) { break; } MESOSPHERE_ABORT_UNLESS(impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context))); } }; /* ===================================================== */ /* If we don't need to refresh the pages, we can just apply the mappings. */ if (!refresh_mapping) { ApplyEntryTemplate(entry_template, ApplyOption_None); this->NoteUpdated(); } else { /* We need to refresh the mappings. */ /* First, apply the changes without the mapped bit. This will cause all entries to page fault if accessed. */ { PageTableEntry unmapped_template = entry_template; unmapped_template.SetMapped(false); ApplyEntryTemplate(unmapped_template, ApplyOption_MergeMappings); this->NoteUpdated(); } /* Next, take and immediately release the scheduler lock. This will force a reschedule. */ { KScopedSchedulerLock sl; } /* Finally, apply the changes as directed, flushing the mappings before they're applied. */ ApplyEntryTemplate(entry_template, ApplyOption_FlushDataCache); } /* We've succeeded, now perform what coalescing we can. */ this->MergePages(virt_addr, page_list); if (num_pages > 1) { this->MergePages(virt_addr + (num_pages - 1) * PageSize, page_list); } return ResultSuccess(); } void KPageTable::FinalizeUpdate(PageLinkedList *page_list) { while (page_list->Peek()) { KVirtualAddress page = KVirtualAddress(page_list->Pop()); MESOSPHERE_ASSERT(this->GetPageTableManager().IsInPageTableHeap(page)); MESOSPHERE_ASSERT(this->GetPageTableManager().GetRefCount(page) == 0); this->GetPageTableManager().Free(page); } } }