/* * Copyright (c) 2018 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef FUSEE_UTILS_H #define FUSEE_UTILS_H #include #include #include #include #define BIT(n) (1u << (n)) #define BITL(n) (1ull << (n)) #define MASK(n) (BIT(n) - 1) #define MASKL(n) (BITL(n) - 1) #define MASK2(a,b) (MASK(a) & ~MASK(b)) #define MASK2L(a,b) (MASKL(a) & ~MASKL(b)) #define MAKE_REG32(a) (*(volatile uint32_t *)(a)) #define ALIGN(m) __attribute__((aligned(m))) #define PACKED __attribute__((packed)) #define ALINLINE __attribute__((always_inline)) #define NOINLINE __attribute__((noinline)) #define SET_SYSREG(reg, val) do { temp_reg = (val); __asm__ __volatile__ ("msr " #reg ", %0" :: "r"(temp_reg) : "memory"); } while(false) static inline uintptr_t get_physical_address(const void *addr) { return (uintptr_t)addr; } static inline uint32_t read32le(const volatile void *dword, size_t offset) { uintptr_t addr = (uintptr_t)dword + offset; volatile uint32_t *target = (uint32_t *)addr; return *target; } static inline uint32_t read32be(const volatile void *dword, size_t offset) { return __builtin_bswap32(read32le(dword, offset)); } static inline uint64_t read64le(const volatile void *qword, size_t offset) { uintptr_t addr = (uintptr_t)qword + offset; volatile uint64_t *target = (uint64_t *)addr; return *target; } static inline uint64_t read64be(const volatile void *qword, size_t offset) { return __builtin_bswap64(read64le(qword, offset)); } static inline void write32le(volatile void *dword, size_t offset, uint32_t value) { uintptr_t addr = (uintptr_t)dword + offset; volatile uint32_t *target = (uint32_t *)addr; *target = value; } static inline void write32be(volatile void *dword, size_t offset, uint32_t value) { write32le(dword, offset, __builtin_bswap32(value)); } static inline void write64le(volatile void *qword, size_t offset, uint64_t value) { uintptr_t addr = (uintptr_t)qword + offset; volatile uint64_t *target = (uint64_t *)addr; *target = value; } static inline void write64be(volatile void *qword, size_t offset, uint64_t value) { write64le(qword, offset, __builtin_bswap64(value)); } static inline bool check_32bit_additive_overflow(uint32_t a, uint32_t b) { return __builtin_add_overflow_p(a, b, (uint32_t)0); } static inline bool check_32bit_address_loadable(uintptr_t addr) { /* FWIW the bootROM forbids loading anything between 0x40000000 and 0x40010000, using it for itself... */ return (addr >= 0x40010000u && addr < 0x40040000u) || addr >= 0x80000000u; } static inline bool check_32bit_address_range_loadable(uintptr_t addr, size_t size) { return !__builtin_add_overflow_p(addr, size, (uintptr_t)0) && /* the range doesn't overflow */ check_32bit_address_loadable(addr) && check_32bit_address_loadable(addr + size) && /* bounds are valid */ !(addr >= 0x40010000u && addr < 0x40040000u && addr + size >= 0x40040000u) /* the range doesn't cross MMIO */ ; } bool overlaps(uint64_t as, uint64_t ae, uint64_t bs, uint64_t be); static inline bool overlaps_a(const void *as, const void *ae, const void *bs, const void *be) { return overlaps((uint64_t)(uintptr_t)as, (uint64_t)(uintptr_t)ae, (uint64_t)(uintptr_t)bs, (uint64_t)(uintptr_t)be); } static inline bool check_32bit_address_range_in_program(uintptr_t addr, size_t size) { extern uint8_t __chainloader_start__[], __chainloader_end__[]; extern uint8_t __stack_bottom__[], __stack_top__[]; extern uint8_t __heap_start__[], __heap_end__[]; extern uint8_t __start__[], __end__[]; uint8_t *start = (uint8_t *)addr, *end = start + size; return overlaps_a(start, end, __chainloader_start__, __chainloader_end__) || overlaps_a(start, end, __stack_bottom__, __stack_top__) || overlaps_a(start, end, __heap_start__, __heap_end__) || overlaps_a(start, end, __start__, __end__); } void hexdump(const void* data, size_t size, uintptr_t addrbase); __attribute__((noreturn)) void watchdog_reboot(void); __attribute__((noreturn)) void pmc_reboot(uint32_t scratch0); __attribute__((noreturn)) void reboot_to_fusee_primary(void); __attribute__((noreturn)) void reboot_to_sept(const void *tsec_fw, size_t tsec_fw_length, const void *stage2, size_t stage2_size); __attribute__((noreturn)) void reboot_to_iram_payload(void *payload, size_t payload_size); __attribute__((noreturn)) void wait_for_button_and_reboot(void); void wait_for_button(void); __attribute__((noreturn)) void generic_panic(void); __attribute__((noreturn)) void fatal_error(const char *fmt, ...); #endif