/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <vapours.hpp> namespace ams::crypto::impl { namespace { struct Md5Constants { static constexpr const u32 A = 0x67452301; static constexpr const u32 B = 0xEFCDAB89; static constexpr const u32 C = 0x98BADCFE; static constexpr const u32 D = 0x10325476; static constexpr const u32 T[] = { 0xD76AA478, 0xE8C7B756, 0x242070DB, 0xC1BDCEEE, 0xF57C0FAF, 0x4787C62A, 0xA8304613, 0xFD469501, 0x698098D8, 0x8B44F7AF, 0xFFFF5BB1, 0x895CD7BE, 0x6B901122, 0xFD987193, 0xA679438E, 0x49B40821, 0xF61E2562, 0xC040B340, 0x265E5A51, 0xE9B6C7AA, 0xD62F105D, 0x02441453, 0xD8A1E681, 0xE7D3FBC8, 0x21E1CDE6, 0xC33707D6, 0xF4D50D87, 0x455A14ED, 0xA9E3E905, 0xFCEFA3F8, 0x676F02D9, 0x8D2A4C8A, 0xFFFA3942, 0x8771F681, 0x6D9D6122, 0xFDE5380C, 0xA4BEEA44, 0x4BDECFA9, 0xF6BB4B60, 0xBEBFBC70, 0x289B7EC6, 0xEAA127FA, 0xD4EF3085, 0x04881D05, 0xD9D4D039, 0xE6DB99E5, 0x1FA27CF8, 0xC4AC5665, 0xF4292244, 0x432AFF97, 0xAB9423A7, 0xFC93A039, 0x655B59C3, 0x8F0CCC92, 0xFFEFF47D, 0x85845DD1, 0x6FA87E4F, 0xFE2CE6E0, 0xA3014314, 0x4E0811A1, 0xF7537E82, 0xBD3AF235, 0x2AD7D2BB, 0xEB86D391, }; static constexpr u32 K[] = { 0x1, 0x6, 0xB, 0x0, 0x5, 0xA, 0xF, 0x4, 0x9, 0xE, 0x3, 0x8, 0xD, 0x2, 0x7, 0xC, 0x5, 0x8, 0xB, 0xE, 0x1, 0x4, 0x7, 0xA, 0xD, 0x0, 0x3, 0x6, 0x9, 0xC, 0xF, 0x2, 0x0, 0x7, 0xE, 0x5, 0xC, 0x3, 0xA, 0x1, 0x8, 0xF, 0x6, 0xD, 0x4, 0xB, 0x2, 0x9, }; static constexpr u8 Padding[] = { 0x80 }; }; constexpr ALWAYS_INLINE u32 F(u32 x, u32 y, u32 z) { return (x & y) | ((~x) & z); } constexpr ALWAYS_INLINE u32 G(u32 x, u32 y, u32 z) { return (x & z) | (y & (~z)); } constexpr ALWAYS_INLINE u32 H(u32 x, u32 y, u32 z) { return x ^ y ^ z; } constexpr ALWAYS_INLINE u32 I(u32 x, u32 y, u32 z) { return y ^ (x | (~z)); } constexpr ALWAYS_INLINE u32 CalculateRound1(u32 a, u32 b, u32 c, u32 d, u32 x, u32 s, u32 t) { return b + util::RotateLeft<u32>(a + F(b, c, d) + x + t, s); } constexpr ALWAYS_INLINE u32 CalculateRound2(u32 a, u32 b, u32 c, u32 d, u32 x, u32 s, u32 t) { return b + util::RotateLeft<u32>(a + G(b, c, d) + x + t, s); } constexpr ALWAYS_INLINE u32 CalculateRound3(u32 a, u32 b, u32 c, u32 d, u32 x, u32 s, u32 t) { return b + util::RotateLeft<u32>(a + H(b, c, d) + x + t, s); } constexpr ALWAYS_INLINE u32 CalculateRound4(u32 a, u32 b, u32 c, u32 d, u32 x, u32 s, u32 t) { return b + util::RotateLeft<u32>(a + I(b, c, d) + x + t, s); } void Encode(u32 *dst, const u32 *src, size_t size) { if constexpr (util::IsBigEndian()) { for (size_t i = 0; i < size; i += sizeof(u32)) { util::StoreLittleEndian(dst + i, src[i]); } } else { std::memcpy(dst, src, size); } } void Decode(u32 *dst, const u32 *src, size_t size) { if constexpr (util::IsBigEndian()) { for (size_t i = 0; i < size; i += sizeof(u32)) { dst[i] = util::LoadLittleEndian(src + i); } } else { std::memcpy(dst, src, size); } } } void Md5Impl::Initialize() { /* Set constants. */ m_x.p.a = Md5Constants::A; m_x.p.b = Md5Constants::B; m_x.p.c = Md5Constants::C; m_x.p.d = Md5Constants::D; /* Set size. */ m_size = 0; /* Set initialized. */ m_state = State_Initialized; } void Md5Impl::Update(const void *data, size_t size) { /* Check pre-conditions. */ AMS_ASSERT(m_state == State_Initialized); /* Determine how much we can process. */ const size_t work_idx = m_size % BlockSize; const size_t work_remaining = BlockSize - work_idx; /* Increment our size. */ m_size += size; /* Copy in the data to our buffer, if we don't have a full block. */ if (work_remaining > size) { if (size > 0) { std::memcpy(m_y + work_idx, data, size); } return; } /* Copy what we can to complete our block. */ std::memcpy(m_y + work_idx, data, work_remaining); /* Process the block. */ this->ProcessBlock(); /* Adjust size to account for what we've processed. */ size -= work_remaining; /* Process as many full blocks as we can. */ const u8 *cur_block = static_cast<const u8 *>(data) + work_remaining; for (size_t i = 0; i < size / BlockSize; ++i) { std::memcpy(m_y, cur_block, BlockSize); cur_block += BlockSize; this->ProcessBlock(); } /* Copy in any leftover data. */ if (const auto left = size % BlockSize; left > 0) { std::memcpy(m_y, cur_block, left); } } void Md5Impl::GetHash(void *dst, size_t size) { /* Check pre-conditions. */ AMS_ASSERT(m_state == State_Initialized || m_state == State_Done); AMS_ASSERT(size >= HashSize); AMS_UNUSED(size); /* If we need to, finish processing. */ if (m_state == State_Initialized) { this->ProcessLastBlock(); m_state = State_Done; } /* Encode the result. */ Encode(static_cast<u32 *>(dst), m_x.state, HashSize); } void Md5Impl::ProcessBlock() { /* Declare tracking pointers for rounds. */ u32 x[BlockSize / sizeof(u32)]; const u32 *p_t = Md5Constants::T; const u32 *p_k = Md5Constants::K; const u32 *p_x = x; /* Extract current state. */ u32 a = m_x.p.a; u32 b = m_x.p.b; u32 c = m_x.p.c; u32 d = m_x.p.d; /* Decode the block into native endian. */ Decode(x, reinterpret_cast<const u32 *>(m_y), BlockSize); /* Perform round 1. */ for (size_t i = 0; i < 4; ++i) { a = CalculateRound1(a, b, c, d, *p_x++, 7, *p_t++); d = CalculateRound1(d, a, b, c, *p_x++, 12, *p_t++); c = CalculateRound1(c, d, a, b, *p_x++, 17, *p_t++); b = CalculateRound1(b, c, d, a, *p_x++, 22, *p_t++); } /* Perform round 2. */ for (size_t i = 0; i < 4; ++i) { a = CalculateRound2(a, b, c, d, x[*p_k++], 5, *p_t++); d = CalculateRound2(d, a, b, c, x[*p_k++], 9, *p_t++); c = CalculateRound2(c, d, a, b, x[*p_k++], 14, *p_t++); b = CalculateRound2(b, c, d, a, x[*p_k++], 20, *p_t++); } /* Perform round 3. */ for (size_t i = 0; i < 4; ++i) { a = CalculateRound3(a, b, c, d, x[*p_k++], 4, *p_t++); d = CalculateRound3(d, a, b, c, x[*p_k++], 11, *p_t++); c = CalculateRound3(c, d, a, b, x[*p_k++], 16, *p_t++); b = CalculateRound3(b, c, d, a, x[*p_k++], 23, *p_t++); } /* Perform round 4. */ for (size_t i = 0; i < 4; ++i) { a = CalculateRound4(a, b, c, d, x[*p_k++], 6, *p_t++); d = CalculateRound4(d, a, b, c, x[*p_k++], 10, *p_t++); c = CalculateRound4(c, d, a, b, x[*p_k++], 15, *p_t++); b = CalculateRound4(b, c, d, a, x[*p_k++], 21, *p_t++); } /* Mix the result back into our state. */ m_x.p.a += a; m_x.p.b += b; m_x.p.c += c; m_x.p.d += d; } void Md5Impl::ProcessLastBlock() { /* Get bit count. */ const u64 bit_count = m_size * BITSIZEOF(u8); /* Add padding byte unconditionally. */ this->Update(Md5Constants::Padding, sizeof(Md5Constants::Padding)); /* Determine remaining. */ size_t work_idx = m_size % BlockSize; size_t work_remaining = BlockSize - work_idx; /* We want to process 8000.....{bit count}. */ if (work_remaining < sizeof(u64)) { std::memset(m_y + work_idx, 0, work_remaining); this->ProcessBlock(); work_idx = 0; work_remaining = BlockSize; } if (work_remaining > sizeof(u64)) { std::memset(m_y + work_idx, 0, work_remaining - sizeof(u64)); } util::StoreLittleEndian<u64>(reinterpret_cast<u64 *>(m_y + BlockSize - sizeof(u64)), bit_count); this->ProcessBlock(); } }