/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <mesosphere.hpp> namespace ams::kern { Result KCapabilities::Initialize(const u32 *caps, s32 num_caps, KProcessPageTable *page_table) { /* We're initializing an initial process. */ m_svc_access_flags.Reset(); m_irq_access_flags.Reset(); m_debug_capabilities = {0}; m_handle_table_size = 0; m_intended_kernel_version = {0}; m_program_type = 0; /* Initial processes may run on all cores. */ constexpr u64 VirtMask = cpu::VirtualCoreMask; constexpr u64 PhysMask = cpu::ConvertVirtualCoreMaskToPhysical(VirtMask); m_core_mask = VirtMask; m_phys_core_mask = PhysMask; /* Initial processes may use any user priority they like. */ m_priority_mask = ~0xFul; /* Here, Nintendo sets the kernel version to the current kernel version. */ /* We will follow suit and set the version to the highest supported kernel version. */ m_intended_kernel_version.Set<KernelVersion::MajorVersion>(ams::svc::SupportedKernelMajorVersion); m_intended_kernel_version.Set<KernelVersion::MinorVersion>(ams::svc::SupportedKernelMinorVersion); /* Parse the capabilities array. */ R_RETURN(this->SetCapabilities(caps, num_caps, page_table)); } Result KCapabilities::Initialize(svc::KUserPointer<const u32 *> user_caps, s32 num_caps, KProcessPageTable *page_table) { /* We're initializing a user process. */ m_svc_access_flags.Reset(); m_irq_access_flags.Reset(); m_debug_capabilities = {0}; m_handle_table_size = 0; m_intended_kernel_version = {0}; m_program_type = 0; /* User processes must specify what cores/priorities they can use. */ m_core_mask = 0; m_priority_mask = 0; /* Parse the user capabilities array. */ R_RETURN(this->SetCapabilities(user_caps, num_caps, page_table)); } Result KCapabilities::SetCorePriorityCapability(const util::BitPack32 cap) { /* We can't set core/priority if we've already set them. */ R_UNLESS(m_core_mask == 0, svc::ResultInvalidArgument()); R_UNLESS(m_priority_mask == 0, svc::ResultInvalidArgument()); /* Validate the core/priority. */ const auto min_core = cap.Get<CorePriority::MinimumCoreId>(); const auto max_core = cap.Get<CorePriority::MaximumCoreId>(); const auto max_prio = cap.Get<CorePriority::LowestThreadPriority>(); const auto min_prio = cap.Get<CorePriority::HighestThreadPriority>(); R_UNLESS(min_core <= max_core, svc::ResultInvalidCombination()); R_UNLESS(min_prio <= max_prio, svc::ResultInvalidCombination()); R_UNLESS(max_core < cpu::NumVirtualCores, svc::ResultInvalidCoreId()); MESOSPHERE_ASSERT(max_prio < BITSIZEOF(u64)); /* Set core mask. */ for (auto core_id = min_core; core_id <= max_core; core_id++) { m_core_mask |= (1ul << core_id); } MESOSPHERE_ASSERT((m_core_mask & cpu::VirtualCoreMask) == m_core_mask); /* Set physical core mask. */ m_phys_core_mask = cpu::ConvertVirtualCoreMaskToPhysical(m_core_mask); /* Set priority mask. */ for (auto prio = min_prio; prio <= max_prio; prio++) { m_priority_mask |= (1ul << prio); } /* We must have some core/priority we can use. */ R_UNLESS(m_core_mask != 0, svc::ResultInvalidArgument()); R_UNLESS(m_priority_mask != 0, svc::ResultInvalidArgument()); /* Processes must not have access to kernel thread priorities. */ R_UNLESS((m_priority_mask & 0xF) == 0, svc::ResultInvalidArgument()); R_SUCCEED(); } Result KCapabilities::SetSyscallMaskCapability(const util::BitPack32 cap, u32 &set_svc) { /* Validate the index. */ const auto mask = cap.Get<SyscallMask::Mask>(); const auto index = cap.Get<SyscallMask::Index>(); const u32 index_flag = (1u << index); R_UNLESS((set_svc & index_flag) == 0, svc::ResultInvalidCombination()); set_svc |= index_flag; /* Set SVCs. */ for (size_t i = 0; i < SyscallMask::Mask::Count; i++) { const u32 svc_id = SyscallMask::Mask::Count * index + i; if (mask & (1u << i)) { R_UNLESS(this->SetSvcAllowed(svc_id), svc::ResultOutOfRange()); } } R_SUCCEED(); } Result KCapabilities::MapRange(const util::BitPack32 cap, const util::BitPack32 size_cap, KProcessPageTable *page_table) { /* Get/validate address/size */ #if defined(MESOSPHERE_ENABLE_LARGE_PHYSICAL_ADDRESS_CAPABILITIES) const u64 phys_addr = static_cast<u64>(cap.Get<MapRange::Address>() | (size_cap.Get<MapRangeSize::AddressHigh>() << MapRange::Address::Count)) * PageSize; #else const u64 phys_addr = static_cast<u64>(cap.Get<MapRange::Address>()) * PageSize; /* Validate reserved bits are unused. */ R_UNLESS(size_cap.Get<MapRangeSize::Reserved>() == 0, svc::ResultOutOfRange()); #endif const size_t num_pages = size_cap.Get<MapRangeSize::Pages>(); const size_t size = num_pages * PageSize; R_UNLESS(phys_addr == GetInteger(KPhysicalAddress(phys_addr)), svc::ResultInvalidAddress()); R_UNLESS(num_pages != 0, svc::ResultInvalidSize()); R_UNLESS(phys_addr < phys_addr + size, svc::ResultInvalidAddress()); R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, svc::ResultInvalidAddress()); /* Do the mapping. */ const KMemoryPermission perm = cap.Get<MapRange::ReadOnly>() ? KMemoryPermission_UserRead : KMemoryPermission_UserReadWrite; if (size_cap.Get<MapRangeSize::Normal>()) { R_RETURN(page_table->MapStatic(phys_addr, size, perm)); } else { R_RETURN(page_table->MapIo(phys_addr, size, perm)); } } Result KCapabilities::MapIoPage(const util::BitPack32 cap, KProcessPageTable *page_table) { /* Get/validate address/size */ const u64 phys_addr = cap.Get<MapIoPage::Address>() * PageSize; const size_t num_pages = 1; const size_t size = num_pages * PageSize; R_UNLESS(phys_addr == GetInteger(KPhysicalAddress(phys_addr)), svc::ResultInvalidAddress()); R_UNLESS(num_pages != 0, svc::ResultInvalidSize()); R_UNLESS(phys_addr < phys_addr + size, svc::ResultInvalidAddress()); R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, svc::ResultInvalidAddress()); /* Do the mapping. */ R_RETURN(page_table->MapIo(phys_addr, size, KMemoryPermission_UserReadWrite)); } template<typename F> ALWAYS_INLINE Result KCapabilities::ProcessMapRegionCapability(const util::BitPack32 cap, F f) { /* Define the allowed memory regions. */ constexpr const KMemoryRegionType MemoryRegions[] = { KMemoryRegionType_None, KMemoryRegionType_KernelTraceBuffer, KMemoryRegionType_OnMemoryBootImage, KMemoryRegionType_DTB, }; /* Extract regions/read only. */ const RegionType types[3] = { cap.Get<MapRegion::Region0>(), cap.Get<MapRegion::Region1>(), cap.Get<MapRegion::Region2>(), }; const bool ro[3] = { cap.Get<MapRegion::ReadOnly0>(), cap.Get<MapRegion::ReadOnly1>(), cap.Get<MapRegion::ReadOnly2>(), }; for (size_t i = 0; i < util::size(types); i++) { const auto type = types[i]; const auto perm = ro[i] ? KMemoryPermission_UserRead : KMemoryPermission_UserReadWrite; switch (type) { case RegionType::NoMapping: break; case RegionType::KernelTraceBuffer: /* NOTE: This does not match official, but is used to make pre-processing hbl capabilities in userland unnecessary. */ /* If ktrace isn't enabled, allow ktrace to succeed without mapping anything. */ if constexpr (!ams::kern::IsKTraceEnabled) { break; } case RegionType::OnMemoryBootImage: case RegionType::DTB: R_TRY(f(MemoryRegions[static_cast<u32>(type)], perm)); break; default: R_THROW(svc::ResultNotFound()); } } R_SUCCEED(); } Result KCapabilities::MapRegion(const util::BitPack32 cap, KProcessPageTable *page_table) { /* Map each region into the process's page table. */ R_RETURN(ProcessMapRegionCapability(cap, [page_table] ALWAYS_INLINE_LAMBDA (KMemoryRegionType region_type, KMemoryPermission perm) -> Result { R_RETURN(page_table->MapRegion(region_type, perm)); })); } Result KCapabilities::CheckMapRegion(const util::BitPack32 cap) { /* Check that each region has a physical backing store. */ R_RETURN(ProcessMapRegionCapability(cap, [] ALWAYS_INLINE_LAMBDA (KMemoryRegionType region_type, KMemoryPermission perm) -> Result { MESOSPHERE_UNUSED(perm); R_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().FindFirstDerived(region_type) != nullptr, svc::ResultOutOfRange()); R_SUCCEED(); })); } Result KCapabilities::SetInterruptPairCapability(const util::BitPack32 cap) { /* Extract interrupts. */ const u32 ids[2] = { cap.Get<InterruptPair::InterruptId0>(), cap.Get<InterruptPair::InterruptId1>(), }; for (size_t i = 0; i < util::size(ids); i++) { if (ids[i] != PaddingInterruptId) { R_UNLESS(Kernel::GetInterruptManager().IsInterruptDefined(ids[i]), svc::ResultOutOfRange()); R_UNLESS(this->SetInterruptPermitted(ids[i]), svc::ResultOutOfRange()); } } R_SUCCEED(); } Result KCapabilities::SetProgramTypeCapability(const util::BitPack32 cap) { /* Validate. */ R_UNLESS(cap.Get<ProgramType::Reserved>() == 0, svc::ResultReservedUsed()); m_program_type = cap.Get<ProgramType::Type>(); R_SUCCEED(); } Result KCapabilities::SetKernelVersionCapability(const util::BitPack32 cap) { /* Ensure we haven't set our version before. */ R_UNLESS(m_intended_kernel_version.Get<KernelVersion::MajorVersion>() == 0, svc::ResultInvalidArgument()); /* Set, ensure that we set a valid version. */ m_intended_kernel_version = cap; R_UNLESS(m_intended_kernel_version.Get<KernelVersion::MajorVersion>() != 0, svc::ResultInvalidArgument()); R_SUCCEED(); } Result KCapabilities::SetHandleTableCapability(const util::BitPack32 cap) { /* Validate. */ R_UNLESS(cap.Get<HandleTable::Reserved>() == 0, svc::ResultReservedUsed()); m_handle_table_size = cap.Get<HandleTable::Size>(); R_SUCCEED(); } Result KCapabilities::SetDebugFlagsCapability(const util::BitPack32 cap) { /* Validate. */ R_UNLESS(cap.Get<DebugFlags::Reserved>() == 0, svc::ResultReservedUsed()); m_debug_capabilities.Set<DebugFlags::AllowDebug>(cap.Get<DebugFlags::AllowDebug>()); m_debug_capabilities.Set<DebugFlags::ForceDebug>(cap.Get<DebugFlags::ForceDebug>()); R_SUCCEED(); } Result KCapabilities::SetCapability(const util::BitPack32 cap, u32 &set_flags, u32 &set_svc, KProcessPageTable *page_table) { /* Validate this is a capability we can act on. */ const auto type = GetCapabilityType(cap); R_UNLESS(type != CapabilityType::Invalid, svc::ResultInvalidArgument()); /* If the type is padding, we have no work to do. */ R_SUCCEED_IF(type == CapabilityType::Padding); /* Check that we haven't already processed this capability. */ const auto flag = GetCapabilityFlag(type); R_UNLESS(((set_flags & InitializeOnceFlags) & flag) == 0, svc::ResultInvalidCombination()); set_flags |= flag; /* Process the capability. */ switch (type) { case CapabilityType::CorePriority: R_RETURN(this->SetCorePriorityCapability(cap)); case CapabilityType::SyscallMask: R_RETURN(this->SetSyscallMaskCapability(cap, set_svc)); case CapabilityType::MapIoPage: R_RETURN(this->MapIoPage(cap, page_table)); case CapabilityType::MapRegion: R_RETURN(this->MapRegion(cap, page_table)); case CapabilityType::InterruptPair: R_RETURN(this->SetInterruptPairCapability(cap)); case CapabilityType::ProgramType: R_RETURN(this->SetProgramTypeCapability(cap)); case CapabilityType::KernelVersion: R_RETURN(this->SetKernelVersionCapability(cap)); case CapabilityType::HandleTable: R_RETURN(this->SetHandleTableCapability(cap)); case CapabilityType::DebugFlags: R_RETURN(this->SetDebugFlagsCapability(cap)); default: R_THROW(svc::ResultInvalidArgument()); } } Result KCapabilities::SetCapabilities(const u32 *caps, s32 num_caps, KProcessPageTable *page_table) { u32 set_flags = 0, set_svc = 0; for (s32 i = 0; i < num_caps; i++) { const util::BitPack32 cap = { caps[i] }; if (GetCapabilityType(cap) == CapabilityType::MapRange) { /* Check that the pair cap exists. */ R_UNLESS((++i) < num_caps, svc::ResultInvalidCombination()); /* Check the pair cap is a map range cap. */ const util::BitPack32 size_cap = { caps[i] }; R_UNLESS(GetCapabilityType(size_cap) == CapabilityType::MapRange, svc::ResultInvalidCombination()); /* Map the range. */ R_TRY(this->MapRange(cap, size_cap, page_table)); } else { R_TRY(this->SetCapability(cap, set_flags, set_svc, page_table)); } } R_SUCCEED(); } Result KCapabilities::SetCapabilities(svc::KUserPointer<const u32 *> user_caps, s32 num_caps, KProcessPageTable *page_table) { u32 set_flags = 0, set_svc = 0; for (s32 i = 0; i < num_caps; i++) { /* Read the cap from userspace. */ u32 cap0; R_TRY(user_caps.CopyArrayElementTo(std::addressof(cap0), i)); const util::BitPack32 cap = { cap0 }; if (GetCapabilityType(cap) == CapabilityType::MapRange) { /* Check that the pair cap exists. */ R_UNLESS((++i) < num_caps, svc::ResultInvalidCombination()); /* Read the second cap from userspace. */ u32 cap1; R_TRY(user_caps.CopyArrayElementTo(std::addressof(cap1), i)); /* Check the pair cap is a map range cap. */ const util::BitPack32 size_cap = { cap1 }; R_UNLESS(GetCapabilityType(size_cap) == CapabilityType::MapRange, svc::ResultInvalidCombination()); /* Map the range. */ R_TRY(this->MapRange(cap, size_cap, page_table)); } else { R_TRY(this->SetCapability(cap, set_flags, set_svc, page_table)); } } R_SUCCEED(); } Result KCapabilities::CheckCapabilities(svc::KUserPointer<const u32 *> user_caps, s32 num_caps) { for (s32 i = 0; i < num_caps; ++i) { /* Read the cap from userspace. */ u32 cap0; R_TRY(user_caps.CopyArrayElementTo(std::addressof(cap0), i)); /* Check the capability refers to a valid region. */ const util::BitPack32 cap = { cap0 }; if (GetCapabilityType(cap) == CapabilityType::MapRegion) { R_TRY(CheckMapRegion(cap)); } } R_SUCCEED(); } }