/* * Copyright (c) 2018-2019 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include "nxfs.h" #include "mc.h" #include "gpt.h" #include "se.h" #include "utils.h" #include "sdmmc/sdmmc.h" static bool g_ahb_redirect_enabled = false; static bool g_sd_device_initialized = false; static bool g_emmc_device_initialized = false; static bool g_fsdev_ready = false; static bool g_rawdev_ready = false; static bool g_emudev_ready = false; static sdmmc_t g_sd_sdmmc = {0}; static sdmmc_t g_emmc_sdmmc = {0}; static sdmmc_device_t g_sd_device = {0}; static sdmmc_device_t g_emmc_device = {0}; typedef struct mmc_partition_info_t { sdmmc_device_t *device; SdmmcControllerNum controller; SdmmcPartitionNum partition; } mmc_partition_info_t; static mmc_partition_info_t g_sd_mmcpart = {&g_sd_device, SDMMC_1, SDMMC_PARTITION_USER}; static mmc_partition_info_t g_emmc_boot0_mmcpart = {&g_emmc_device, SDMMC_4, SDMMC_PARTITION_BOOT0}; static mmc_partition_info_t g_emmc_boot1_mmcpart = {&g_emmc_device, SDMMC_4, SDMMC_PARTITION_BOOT1}; static mmc_partition_info_t g_emmc_user_mmcpart = {&g_emmc_device, SDMMC_4, SDMMC_PARTITION_USER}; SdmmcPartitionNum g_current_emmc_partition = SDMMC_PARTITION_INVALID; static int mmc_partition_initialize(device_partition_t *devpart) { mmc_partition_info_t *mmcpart = (mmc_partition_info_t *)devpart->device_struct; if (devpart->read_cipher != NULL || devpart->write_cipher != NULL) { devpart->crypto_work_buffer = memalign(16, devpart->sector_size * 16); if (devpart->crypto_work_buffer == NULL) { return ENOMEM; } else { devpart->crypto_work_buffer_num_sectors = devpart->sector_size * 16; } } else { devpart->crypto_work_buffer = NULL; devpart->crypto_work_buffer_num_sectors = 0; } /* Enable AHB redirection if necessary. */ if (!g_ahb_redirect_enabled) { mc_enable_ahb_redirect(); g_ahb_redirect_enabled = true; } if (mmcpart->device == &g_sd_device) { if (!g_sd_device_initialized) { int rc = sdmmc_device_sd_init(mmcpart->device, &g_sd_sdmmc, SDMMC_BUS_WIDTH_4BIT, SDMMC_SPEED_SDR104) ? 0 : EIO; if (rc) return rc; g_sd_device_initialized = true; } devpart->initialized = true; return 0; } else if (mmcpart->device == &g_emmc_device) { if (!g_emmc_device_initialized) { int rc = sdmmc_device_mmc_init(mmcpart->device, &g_emmc_sdmmc, SDMMC_BUS_WIDTH_8BIT, SDMMC_SPEED_HS400) ? 0 : EIO; if (rc) return rc; g_emmc_device_initialized = true; } devpart->initialized = true; return 0; } return 0; } static void mmc_partition_finalize(device_partition_t *devpart) { free(devpart->crypto_work_buffer); /* Disable AHB redirection if necessary. */ if (g_ahb_redirect_enabled) { mc_disable_ahb_redirect(); g_ahb_redirect_enabled = false; } } static int mmc_partition_read(device_partition_t *devpart, void *dst, uint64_t sector, uint64_t num_sectors) { mmc_partition_info_t *mmcpart = (mmc_partition_info_t *)devpart->device_struct; if ((mmcpart->device == &g_emmc_device) && (g_current_emmc_partition != mmcpart->partition)) { if (!sdmmc_mmc_select_partition(mmcpart->device, mmcpart->partition)) return EIO; g_current_emmc_partition = mmcpart->partition; } return sdmmc_device_read(mmcpart->device, (uint32_t)(devpart->start_sector + sector), (uint32_t)num_sectors, dst) ? 0 : EIO; } static int mmc_partition_write(device_partition_t *devpart, const void *src, uint64_t sector, uint64_t num_sectors) { mmc_partition_info_t *mmcpart = (mmc_partition_info_t *)devpart->device_struct; if ((mmcpart->device == &g_emmc_device) && (g_current_emmc_partition != mmcpart->partition)) { if (!sdmmc_mmc_select_partition(mmcpart->device, mmcpart->partition)) return EIO; g_current_emmc_partition = mmcpart->partition; } return sdmmc_device_write(mmcpart->device, (uint32_t)(devpart->start_sector + sector), (uint32_t)num_sectors, (void *)src) ? 0 : EIO; } static int nxfs_bis_crypto_decrypt(device_partition_t *devpart, uint64_t sector, uint64_t num_sectors) { unsigned int keyslot_a = 4; /* These keyslots are never used by exosphere, and should be safe. */ unsigned int keyslot_b = 5; size_t size = num_sectors * devpart->sector_size; switch (devpart->crypto_mode) { case DevicePartitionCryptoMode_Ctr: set_aes_keyslot(keyslot_a, devpart->keys[0], 0x10); se_aes_ctr_crypt(keyslot_a, devpart->crypto_work_buffer, size, devpart->crypto_work_buffer, size, devpart->iv, 0x10); return 0; case DevicePartitionCryptoMode_Xts: set_aes_keyslot(keyslot_a, devpart->keys[0], 0x10); set_aes_keyslot(keyslot_b, devpart->keys[1], 0x10); se_aes_128_xts_nintendo_decrypt(keyslot_a, keyslot_b, sector, devpart->crypto_work_buffer, devpart->crypto_work_buffer, size, devpart->sector_size); return 0; case DevicePartitionCryptoMode_None: default: return 0; } } static int nxfs_bis_crypto_encrypt(device_partition_t *devpart, uint64_t sector, uint64_t num_sectors) { unsigned int keyslot_a = 4; /* These keyslots are never used by exosphere, and should be safe. */ unsigned int keyslot_b = 5; size_t size = num_sectors * devpart->sector_size; switch (devpart->crypto_mode) { case DevicePartitionCryptoMode_Ctr: set_aes_keyslot(keyslot_a, devpart->keys[0], 0x10); se_aes_ctr_crypt(keyslot_a, devpart->crypto_work_buffer, size, devpart->crypto_work_buffer, size, devpart->iv, 0x10); return 0; case DevicePartitionCryptoMode_Xts: set_aes_keyslot(keyslot_a, devpart->keys[0], 0x10); set_aes_keyslot(keyslot_b, devpart->keys[1], 0x10); se_aes_128_xts_nintendo_encrypt(keyslot_a, keyslot_b, sector, devpart->crypto_work_buffer, devpart->crypto_work_buffer, size, devpart->sector_size); return 0; case DevicePartitionCryptoMode_None: default: return 0; } } static const device_partition_t g_mmc_devpart_template = { .sector_size = 512, .initializer = mmc_partition_initialize, .finalizer = mmc_partition_finalize, .reader = mmc_partition_read, .writer = mmc_partition_write, }; static const device_partition_t g_emummc_devpart_template = { .sector_size = 512, .initializer = NULL, .finalizer = NULL, .reader = NULL, .writer = NULL, }; static int nxfs_mount_partition_gpt_callback(const efi_entry_t *entry, void *param, size_t entry_offset, FILE *disk) { (void)entry_offset; (void)disk; device_partition_t *parent = (device_partition_t *)param; device_partition_t devpart = *parent; char name_buffer[128]; const uint16_t *utf16name = entry->name; uint32_t name_len; int rc; static const struct { const char *partition_name; const char *mount_point; bool is_fat; bool is_encrypted; bool register_immediately; } known_partitions[] = { {"PRODINFO", "prodinfo", false, true, false}, {"PRODINFOF", "prodinfof", true, true, false}, {"BCPKG2-1-Normal-Main", "bcpkg21", false, false, true}, {"BCPKG2-2-Normal-Sub", "bcpkg22", false, false, false}, {"BCPKG2-3-SafeMode-Main", "bcpkg23", false, false, false}, {"BCPKG2-4-SafeMode-Sub", "bcpkg24", false, false, false}, {"BCPKG2-5-Repair-Main", "bcpkg25", false, false, false}, {"BCPKG2-6-Repair-Sub", "bcpkg26", false, false, false}, {"SAFE", "safe", true, true, false}, {"SYSTEM", "system", true, true, false}, {"USER", "user", true, true, false}, }; /* Convert the partition name to ASCII, for comparison. */ for (name_len = 0; name_len < sizeof(entry->name) && *utf16name != 0; name_len++) { name_buffer[name_len] = (char)*utf16name++; } name_buffer[name_len] = '\0'; /* Mount the partition, if we know about it. */ for (size_t i = 0; i < sizeof(known_partitions)/sizeof(known_partitions[0]); i++) { if (strcmp(name_buffer, known_partitions[i].partition_name) == 0) { devpart.start_sector += entry->first_lba; devpart.num_sectors = (entry->last_lba + 1) - entry->first_lba; if (parent->num_sectors < devpart.num_sectors) { errno = EINVAL; return -1; } if (known_partitions[i].is_encrypted) { devpart.read_cipher = nxfs_bis_crypto_decrypt; devpart.write_cipher = nxfs_bis_crypto_encrypt; devpart.crypto_mode = DevicePartitionCryptoMode_Xts; } if (known_partitions[i].is_fat) { rc = fsdev_mount_device(known_partitions[i].mount_point, &devpart, false); if (rc == -1) { return -1; } if (known_partitions[i].register_immediately) { rc = fsdev_register_device(known_partitions[i].mount_point); if (rc == -1) { return -1; } } } else { rc = rawdev_mount_device(known_partitions[i].mount_point, &devpart, false); if (rc == -1) { return -1; } if (known_partitions[i].register_immediately) { rc = rawdev_register_device(known_partitions[i].mount_point); if (rc == -1) { return -1; } } } } } return 0; } int nxfs_mount_sd() { device_partition_t model; int rc; /* Setup a template for the SD card. */ model = g_mmc_devpart_template; model.device_struct = &g_sd_mmcpart; model.start_sector = 0; model.num_sectors = 1u << 30; /* arbitrary numbers of sectors. TODO: find the size of the SD in sectors. */ /* Mount the SD card device. */ rc = fsdev_mount_device("sdmc", &model, true); if (rc == -1) { return -1; } /* Register the SD card device. */ rc = fsdev_register_device("sdmc"); if (rc == -1) { return -1; } /* All fs devices are ready. */ if (rc == 0) { g_fsdev_ready = true; } return rc; } int nxfs_mount_emmc() { device_partition_t model; int rc; FILE *rawnand; /* Setup a template for boot0. */ model = g_mmc_devpart_template; model.device_struct = &g_emmc_boot0_mmcpart; model.start_sector = 0; model.num_sectors = 0x184000 / model.sector_size; /* Mount boot0 device. */ rc = rawdev_mount_device("boot0", &model, true); if (rc == -1) { return -1; } /* Register boot0 device. */ rc = rawdev_register_device("boot0"); if (rc == -1) { return -1; } /* Setup a template for boot1. */ model = g_mmc_devpart_template; model.device_struct = &g_emmc_boot1_mmcpart; model.start_sector = 0; model.num_sectors = 0x80000 / model.sector_size; /* Mount boot1 device. */ rc = rawdev_mount_device("boot1", &model, false); if (rc == -1) { return -1; } /* Don't register boot1 for now. */ /* Setup a template for raw NAND. */ model = g_mmc_devpart_template; model.device_struct = &g_emmc_user_mmcpart; model.start_sector = 0; model.num_sectors = (256ull << 30) / model.sector_size; /* Mount raw NAND device. */ rc = rawdev_mount_device("rawnand", &model, false); if (rc == -1) { return -1; } /* Register raw NAND device. */ rc = rawdev_register_device("rawnand"); if (rc == -1) { return -1; } /* Open raw NAND device. */ rawnand = fopen("rawnand:/", "rb"); if (rawnand == NULL) { return -1; } /* Iterate the GPT and mount each raw NAND partition. */ rc = gpt_iterate_through_entries(rawnand, model.sector_size, nxfs_mount_partition_gpt_callback, &model); /* Close raw NAND device. */ fclose(rawnand); /* All raw devices are ready. */ if (rc == 0) { g_rawdev_ready = true; } return rc; } int nxfs_mount_emu_emmc(const char *emunand_path) { device_partition_t model; int rc; FILE *rawnand; /* Setup emunand paths. */ char emu_boot0_path[0x100]; char emu_boot1_path[0x100]; char emu_rawnand_path[0x100]; memset(emu_boot0_path, 0, sizeof(emu_boot0_path)); memset(emu_boot1_path, 0, sizeof(emu_boot1_path)); memset(emu_rawnand_path, 0, sizeof(emu_rawnand_path)); snprintf(emu_boot0_path, sizeof(emu_boot0_path), "sdmc:/%s/%s", emunand_path, "boot0"); snprintf(emu_boot1_path, sizeof(emu_boot1_path), "sdmc:/%s/%s", emunand_path, "boot1"); snprintf(emu_rawnand_path, sizeof(emu_rawnand_path), "sdmc:/%s/%s", emunand_path, "rawnand"); /* Setup an emulation template for boot0. */ model = g_emummc_devpart_template; model.start_sector = 0; model.num_sectors = 0x184000 / model.sector_size; /* Mount emulated boot0 device. */ rc = emudev_mount_device("boot0", emu_boot0_path, &model); if (rc == -1) { return -1; } /* Register emulated boot0 device. */ rc = emudev_register_device("boot0"); if (rc == -1) { return -1; } /* Setup an emulation template for boot1. */ model = g_emummc_devpart_template; model.start_sector = 0; model.num_sectors = 0x80000 / model.sector_size; /* Mount emulated boot1 device. */ rc = emudev_mount_device("boot1", emu_boot1_path, &model); if (rc == -1) { return -1; } /* Don't register emulated boot1 for now. */ /* Setup a template for raw NAND. */ model = g_emummc_devpart_template; model.start_sector = 0; model.num_sectors = (256ull << 30) / model.sector_size; /* Mount emulated raw NAND device. */ rc = emudev_mount_device("rawnand", emu_rawnand_path, &model); if (rc == -1) { return -1; } /* Register emulated raw NAND device. */ rc = emudev_register_device("rawnand"); if (rc == -1) { return -1; } /* Open emulated raw NAND device. */ rawnand = fopen("rawnand:/", "rb"); if (rawnand == NULL) { return -1; } /* Iterate the GPT and mount each emulated raw NAND partition. */ rc = gpt_iterate_through_entries(rawnand, model.sector_size, nxfs_mount_partition_gpt_callback, &model); /* Close emulated raw NAND device. */ fclose(rawnand); /* All emulated devices are ready. */ if (rc == 0) { g_emudev_ready = true; } return rc; } int nxfs_unmount_sd() { int rc = 0; /* Unmount all fs devices. */ if (g_fsdev_ready) { rc = fsdev_unmount_all(); g_fsdev_ready = false; } return rc; } int nxfs_unmount_emmc() { int rc = 0; /* Unmount all raw devices. */ if (g_rawdev_ready) { rc = rawdev_unmount_all(); g_rawdev_ready = false; } return rc; } int nxfs_unmount_emu_emmc() { int rc = 0; /* Unmount all emulated devices. */ if (g_emudev_ready) { rc = emudev_unmount_all(); g_emudev_ready = false; } return rc; } int nxfs_init() { int rc; /* Mount and register the SD card. */ rc = nxfs_mount_sd(); /* Set the SD card as the default file system device. */ if (rc == 0) { rc = fsdev_set_default_device("sdmc"); } return rc; } int nxfs_end() { return ((nxfs_unmount_sd() || nxfs_unmount_emmc() || nxfs_unmount_emu_emmc()) ? -1 : 0); }