/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once #include #include #if defined(ATMOSPHERE_BOARD_NINTENDO_NX) #include #else #error "Unknown board for KMemoryLayout" #endif namespace ams::kern { constexpr size_t KernelAslrAlignment = 2_MB; constexpr size_t KernelVirtualAddressSpaceWidth = size_t(1ul) << 39ul; constexpr size_t KernelPhysicalAddressSpaceWidth = size_t(1ul) << 48ul; constexpr size_t KernelVirtualAddressSpaceBase = 0ul - KernelVirtualAddressSpaceWidth; constexpr size_t KernelVirtualAddressSpaceEnd = KernelVirtualAddressSpaceBase + (KernelVirtualAddressSpaceWidth - KernelAslrAlignment); constexpr size_t KernelVirtualAddressSpaceLast = KernelVirtualAddressSpaceEnd - 1ul; constexpr size_t KernelVirtualAddressSpaceSize = KernelVirtualAddressSpaceEnd - KernelVirtualAddressSpaceBase; constexpr size_t KernelPhysicalAddressSpaceBase = 0ul; constexpr size_t KernelPhysicalAddressSpaceEnd = KernelPhysicalAddressSpaceBase + KernelPhysicalAddressSpaceWidth; constexpr size_t KernelPhysicalAddressSpaceLast = KernelPhysicalAddressSpaceEnd - 1ul; constexpr size_t KernelPhysicalAddressSpaceSize = KernelPhysicalAddressSpaceEnd - KernelPhysicalAddressSpaceBase; constexpr size_t KernelPageTableHeapSize = init::KInitialPageTable::GetMaximumOverheadSize(kern::MainMemorySizeMax); constexpr size_t KernelInitialPageHeapSize = 128_KB; constexpr size_t KernelSlabHeapDataSize = 5_MB; constexpr size_t KernelSlabHeapGapsSize = 2_MB - 64_KB; constexpr size_t KernelSlabHeapGapsSizeDeprecated = 2_MB; constexpr size_t KernelSlabHeapSize = KernelSlabHeapDataSize + KernelSlabHeapGapsSize; /* NOTE: This is calculated from KThread slab counts, assuming KThread size <= 0x860. */ constexpr size_t KernelSlabHeapAdditionalSize = 0x68000; constexpr size_t KernelResourceSize = KernelPageTableHeapSize + KernelInitialPageHeapSize + KernelSlabHeapSize; enum KMemoryRegionType : u32 { KMemoryRegionAttr_CarveoutProtected = 0x04000000, KMemoryRegionAttr_DidKernelMap = 0x08000000, KMemoryRegionAttr_ShouldKernelMap = 0x10000000, KMemoryRegionAttr_UserReadOnly = 0x20000000, KMemoryRegionAttr_NoUserMap = 0x40000000, KMemoryRegionAttr_LinearMapped = 0x80000000, KMemoryRegionType_None = 0, KMemoryRegionType_Kernel = 1, KMemoryRegionType_Dram = 2, KMemoryRegionType_CoreLocal = 4, KMemoryRegionType_VirtualKernelPtHeap = 0x2A, KMemoryRegionType_VirtualKernelTraceBuffer = 0x4A, KMemoryRegionType_VirtualKernelInitPt = 0x19A, KMemoryRegionType_VirtualDramMetadataPool = 0x29A, KMemoryRegionType_VirtualDramManagedPool = 0x31A, KMemoryRegionType_VirtualDramApplicationPool = 0x271A, KMemoryRegionType_VirtualDramAppletPool = 0x1B1A, KMemoryRegionType_VirtualDramSystemPool = 0x2B1A, KMemoryRegionType_VirtualDramSystemNonSecurePool = 0x331A, KMemoryRegionType_Uart = 0x1D, KMemoryRegionType_InterruptDistributor = 0x4D | KMemoryRegionAttr_NoUserMap, KMemoryRegionType_InterruptCpuInterface = 0x2D | KMemoryRegionAttr_NoUserMap, KMemoryRegionType_MemoryController = 0x55, KMemoryRegionType_MemoryController0 = 0x95, KMemoryRegionType_MemoryController1 = 0x65, KMemoryRegionType_PowerManagementController = 0x1A5, KMemoryRegionType_KernelAutoMap = KMemoryRegionType_Kernel | KMemoryRegionAttr_ShouldKernelMap, KMemoryRegionType_KernelTemp = 0x31, KMemoryRegionType_KernelCode = 0x19, KMemoryRegionType_KernelStack = 0x29, KMemoryRegionType_KernelMisc = 0x49, KMemoryRegionType_KernelSlab = 0x89, KMemoryRegionType_KernelMiscMainStack = 0xB49, KMemoryRegionType_KernelMiscMappedDevice = 0xD49, KMemoryRegionType_KernelMiscIdleStack = 0x1349, KMemoryRegionType_KernelMiscUnknownDebug = 0x1549, KMemoryRegionType_KernelMiscExceptionStack = 0x2349, KMemoryRegionType_DramLinearMapped = KMemoryRegionType_Dram | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramReservedEarly = 0x16 | KMemoryRegionAttr_NoUserMap, KMemoryRegionType_DramPoolPartition = 0x26 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramMetadataPool = 0x166 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramNonKernel = 0x1A6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramApplicationPool = 0x7A6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramAppletPool = 0xBA6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramSystemNonSecurePool = 0xDA6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramSystemPool = 0x13A6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramKernel = 0xE | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramKernelCode = 0xCE | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramKernelSlab = 0x14E | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramKernelPtHeap = 0x24E | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramKernelInitPt = 0x44E | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_LinearMapped, /* These regions aren't normally mapped in retail kernel. */ KMemoryRegionType_KernelTraceBuffer = 0xA6 | KMemoryRegionAttr_UserReadOnly | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_OnMemoryBootImage = 0x156, KMemoryRegionType_DTB = 0x256, }; constexpr ALWAYS_INLINE KMemoryRegionType GetTypeForVirtualLinearMapping(u32 type_id) { if (type_id == (type_id | KMemoryRegionType_KernelTraceBuffer)) { return KMemoryRegionType_VirtualKernelTraceBuffer; } else if (type_id == (type_id | KMemoryRegionType_DramKernelPtHeap)) { return KMemoryRegionType_VirtualKernelPtHeap; } else { return KMemoryRegionType_Dram; } } class KMemoryRegionTree; class KMemoryRegion : public util::IntrusiveRedBlackTreeBaseNode { NON_COPYABLE(KMemoryRegion); NON_MOVEABLE(KMemoryRegion); private: friend class KMemoryRegionTree; private: uintptr_t address; uintptr_t pair_address; size_t region_size; u32 attributes; u32 type_id; public: static constexpr ALWAYS_INLINE int Compare(const KMemoryRegion &lhs, const KMemoryRegion &rhs) { if (lhs.GetAddress() < rhs.GetAddress()) { return -1; } else if (lhs.GetAddress() <= rhs.GetLastAddress()) { return 0; } else { return 1; } } public: constexpr ALWAYS_INLINE KMemoryRegion() : address(0), pair_address(0), region_size(0), attributes(0), type_id(0) { /* ... */ } constexpr ALWAYS_INLINE KMemoryRegion(uintptr_t a, size_t rs, uintptr_t p, u32 r, u32 t) : address(a), pair_address(p), region_size(rs), attributes(r), type_id(t) { /* ... */ } constexpr ALWAYS_INLINE KMemoryRegion(uintptr_t a, size_t rs, u32 r, u32 t) : KMemoryRegion(a, rs, std::numeric_limits::max(), r, t) { /* ... */ } private: constexpr ALWAYS_INLINE void Reset(uintptr_t a, uintptr_t rs, uintptr_t p, u32 r, u32 t) { this->address = a; this->pair_address = p; this->region_size = rs; this->attributes = r; this->type_id = t; } public: constexpr ALWAYS_INLINE uintptr_t GetAddress() const { return this->address; } constexpr ALWAYS_INLINE uintptr_t GetPairAddress() const { return this->pair_address; } constexpr ALWAYS_INLINE size_t GetSize() const { return this->region_size; } constexpr ALWAYS_INLINE uintptr_t GetEndAddress() const { return this->GetAddress() + this->GetSize(); } constexpr ALWAYS_INLINE uintptr_t GetLastAddress() const { return this->GetEndAddress() - 1; } constexpr ALWAYS_INLINE u32 GetAttributes() const { return this->attributes; } constexpr ALWAYS_INLINE u32 GetType() const { return this->type_id; } constexpr ALWAYS_INLINE void SetType(u32 type) { MESOSPHERE_INIT_ABORT_UNLESS(this->CanDerive(type)); this->type_id = type; } constexpr ALWAYS_INLINE bool Contains(uintptr_t address) const { return this->GetAddress() <= address && address <= this->GetLastAddress(); } constexpr ALWAYS_INLINE bool IsDerivedFrom(u32 type) const { return (this->GetType() | type) == this->GetType(); } constexpr ALWAYS_INLINE bool HasTypeAttribute(KMemoryRegionType attr) const { return (this->GetType() | attr) == this->GetType(); } constexpr ALWAYS_INLINE bool CanDerive(u32 type) const { return (this->GetType() | type) == type; } constexpr ALWAYS_INLINE void SetPairAddress(uintptr_t a) { this->pair_address = a; } constexpr ALWAYS_INLINE void SetTypeAttribute(KMemoryRegionType attr) { this->type_id |= attr; } }; static_assert(std::is_trivially_destructible::value); class KMemoryRegionTree { public: struct DerivedRegionExtents { const KMemoryRegion *first_region; const KMemoryRegion *last_region; constexpr DerivedRegionExtents() : first_region(nullptr), last_region(nullptr) { /* ... */ } constexpr ALWAYS_INLINE uintptr_t GetAddress() const { return this->first_region->GetAddress(); } constexpr ALWAYS_INLINE uintptr_t GetEndAddress() const { return this->last_region->GetEndAddress(); } constexpr ALWAYS_INLINE size_t GetSize() const { return this->GetEndAddress() - this->GetAddress(); } constexpr ALWAYS_INLINE uintptr_t GetLastAddress() const { return this->GetEndAddress() - 1; } }; private: using TreeType = util::IntrusiveRedBlackTreeBaseTraits::TreeType; public: using value_type = TreeType::value_type; using size_type = TreeType::size_type; using difference_type = TreeType::difference_type; using pointer = TreeType::pointer; using const_pointer = TreeType::const_pointer; using reference = TreeType::reference; using const_reference = TreeType::const_reference; using iterator = TreeType::iterator; using const_iterator = TreeType::const_iterator; private: TreeType tree; public: constexpr ALWAYS_INLINE KMemoryRegionTree() : tree() { /* ... */ } public: KMemoryRegion *FindModifiable(uintptr_t address) { if (auto it = this->find(KMemoryRegion(address, 1, 0, 0)); it != this->end()) { return std::addressof(*it); } else { return nullptr; } } const KMemoryRegion *Find(uintptr_t address) const { if (auto it = this->find(KMemoryRegion(address, 1, 0, 0)); it != this->cend()) { return std::addressof(*it); } else { return nullptr; } } const KMemoryRegion *FindByType(u32 type_id) const { for (auto it = this->cbegin(); it != this->cend(); ++it) { if (it->GetType() == type_id) { return std::addressof(*it); } } return nullptr; } const KMemoryRegion *FindByTypeAndAttribute(u32 type_id, u32 attr) const { for (auto it = this->cbegin(); it != this->cend(); ++it) { if (it->GetType() == type_id && it->GetAttributes() == attr) { return std::addressof(*it); } } return nullptr; } const KMemoryRegion *FindFirstDerived(u32 type_id) const { for (auto it = this->cbegin(); it != this->cend(); it++) { if (it->IsDerivedFrom(type_id)) { return std::addressof(*it); } } return nullptr; } const KMemoryRegion *FindLastDerived(u32 type_id) const { const KMemoryRegion *region = nullptr; for (auto it = this->begin(); it != this->end(); it++) { if (it->IsDerivedFrom(type_id)) { region = std::addressof(*it); } } return region; } DerivedRegionExtents GetDerivedRegionExtents(u32 type_id) const { DerivedRegionExtents extents; MESOSPHERE_INIT_ABORT_UNLESS(extents.first_region == nullptr); MESOSPHERE_INIT_ABORT_UNLESS(extents.last_region == nullptr); for (auto it = this->cbegin(); it != this->cend(); it++) { if (it->IsDerivedFrom(type_id)) { if (extents.first_region == nullptr) { extents.first_region = std::addressof(*it); } extents.last_region = std::addressof(*it); } } MESOSPHERE_INIT_ABORT_UNLESS(extents.first_region != nullptr); MESOSPHERE_INIT_ABORT_UNLESS(extents.last_region != nullptr); return extents; } public: NOINLINE void InsertDirectly(uintptr_t address, size_t size, u32 attr = 0, u32 type_id = 0); NOINLINE bool Insert(uintptr_t address, size_t size, u32 type_id, u32 new_attr = 0, u32 old_attr = 0); NOINLINE KVirtualAddress GetRandomAlignedRegion(size_t size, size_t alignment, u32 type_id); ALWAYS_INLINE KVirtualAddress GetRandomAlignedRegionWithGuard(size_t size, size_t alignment, u32 type_id, size_t guard_size) { return this->GetRandomAlignedRegion(size + 2 * guard_size, alignment, type_id) + guard_size; } public: /* Iterator accessors. */ iterator begin() { return this->tree.begin(); } const_iterator begin() const { return this->tree.begin(); } iterator end() { return this->tree.end(); } const_iterator end() const { return this->tree.end(); } const_iterator cbegin() const { return this->begin(); } const_iterator cend() const { return this->end(); } iterator iterator_to(reference ref) { return this->tree.iterator_to(ref); } const_iterator iterator_to(const_reference ref) const { return this->tree.iterator_to(ref); } /* Content management. */ bool empty() const { return this->tree.empty(); } reference back() { return this->tree.back(); } const_reference back() const { return this->tree.back(); } reference front() { return this->tree.front(); } const_reference front() const { return this->tree.front(); } /* GCC over-eagerly inlines this operation. */ NOINLINE iterator insert(reference ref) { return this->tree.insert(ref); } NOINLINE iterator erase(iterator it) { return this->tree.erase(it); } iterator find(const_reference ref) const { return this->tree.find(ref); } iterator nfind(const_reference ref) const { return this->tree.nfind(ref); } }; class KMemoryLayout { private: static /* constinit */ inline uintptr_t s_linear_phys_to_virt_diff; static /* constinit */ inline uintptr_t s_linear_virt_to_phys_diff; static /* constinit */ inline KMemoryRegionTree s_virtual_tree; static /* constinit */ inline KMemoryRegionTree s_physical_tree; static /* constinit */ inline KMemoryRegionTree s_virtual_linear_tree; static /* constinit */ inline KMemoryRegionTree s_physical_linear_tree; private: template requires IsKTypedAddress static ALWAYS_INLINE bool IsTypedAddress(const KMemoryRegion *®ion, AddressType address, KMemoryRegionTree &tree, KMemoryRegionType type) { /* Check if the cached region already contains the address. */ if (region != nullptr && region->Contains(GetInteger(address))) { return true; } /* Find the containing region, and update the cache. */ if (const KMemoryRegion *found = tree.Find(GetInteger(address)); found != nullptr && found->IsDerivedFrom(type)) { region = found; return true; } else { return false; } } template requires IsKTypedAddress static ALWAYS_INLINE bool IsTypedAddress(const KMemoryRegion *®ion, AddressType address, size_t size, KMemoryRegionTree &tree, KMemoryRegionType type) { /* Get the end of the checked region. */ const uintptr_t last_address = GetInteger(address) + size - 1; /* Walk the tree to verify the region is correct. */ const KMemoryRegion *cur = (region != nullptr && region->Contains(GetInteger(address))) ? region : tree.Find(GetInteger(address)); while (cur != nullptr && cur->IsDerivedFrom(type)) { if (last_address <= cur->GetLastAddress()) { region = cur; return true; } cur = cur->GetNext(); } return false; } template requires IsKTypedAddress static ALWAYS_INLINE const KMemoryRegion *Find(AddressType address, const KMemoryRegionTree &tree) { return tree.Find(GetInteger(address)); } static ALWAYS_INLINE KMemoryRegion &Dereference(KMemoryRegion *region) { MESOSPHERE_INIT_ABORT_UNLESS(region != nullptr); return *region; } static ALWAYS_INLINE const KMemoryRegion &Dereference(const KMemoryRegion *region) { MESOSPHERE_INIT_ABORT_UNLESS(region != nullptr); return *region; } static ALWAYS_INLINE KVirtualAddress GetStackTopAddress(s32 core_id, KMemoryRegionType type) { return Dereference(GetVirtualMemoryRegionTree().FindByTypeAndAttribute(type, static_cast(core_id))).GetEndAddress(); } public: static ALWAYS_INLINE KMemoryRegionTree &GetVirtualMemoryRegionTree() { return s_virtual_tree; } static ALWAYS_INLINE KMemoryRegionTree &GetPhysicalMemoryRegionTree() { return s_physical_tree; } static ALWAYS_INLINE KMemoryRegionTree &GetVirtualLinearMemoryRegionTree() { return s_virtual_linear_tree; } static ALWAYS_INLINE KMemoryRegionTree &GetPhysicalLinearMemoryRegionTree() { return s_physical_linear_tree; } static ALWAYS_INLINE KVirtualAddress GetLinearVirtualAddress(KPhysicalAddress address) { return GetInteger(address) + s_linear_phys_to_virt_diff; } static ALWAYS_INLINE KPhysicalAddress GetLinearPhysicalAddress(KVirtualAddress address) { return GetInteger(address) + s_linear_virt_to_phys_diff; } static NOINLINE const KMemoryRegion *Find(KVirtualAddress address) { return Find(address, GetVirtualMemoryRegionTree()); } static NOINLINE const KMemoryRegion *Find(KPhysicalAddress address) { return Find(address, GetPhysicalMemoryRegionTree()); } static NOINLINE const KMemoryRegion *FindLinear(KVirtualAddress address) { return Find(address, GetVirtualLinearMemoryRegionTree()); } static NOINLINE const KMemoryRegion *FindLinear(KPhysicalAddress address) { return Find(address, GetPhysicalLinearMemoryRegionTree()); } static NOINLINE KVirtualAddress GetMainStackTopAddress(s32 core_id) { return GetStackTopAddress(core_id, KMemoryRegionType_KernelMiscMainStack); } static NOINLINE KVirtualAddress GetIdleStackTopAddress(s32 core_id) { return GetStackTopAddress(core_id, KMemoryRegionType_KernelMiscIdleStack); } static NOINLINE KVirtualAddress GetExceptionStackTopAddress(s32 core_id) { return GetStackTopAddress(core_id, KMemoryRegionType_KernelMiscExceptionStack); } static NOINLINE KVirtualAddress GetSlabRegionAddress() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelSlab)).GetAddress(); } static NOINLINE KVirtualAddress GetCoreLocalRegionAddress() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_CoreLocal)).GetAddress(); } static NOINLINE KVirtualAddress GetInterruptDistributorAddress() { return Dereference(GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_InterruptDistributor)).GetPairAddress(); } static NOINLINE KVirtualAddress GetInterruptCpuInterfaceAddress() { return Dereference(GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_InterruptCpuInterface)).GetPairAddress(); } static NOINLINE KVirtualAddress GetUartAddress() { return Dereference(GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_Uart)).GetPairAddress(); } static NOINLINE const KMemoryRegion &GetMemoryControllerRegion() { return Dereference(GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_MemoryController)); } static NOINLINE const KMemoryRegion &GetMetadataPoolRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_VirtualDramMetadataPool)); } static NOINLINE const KMemoryRegion &GetPageTableHeapRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_VirtualKernelPtHeap)); } static NOINLINE const KMemoryRegion &GetKernelStackRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelStack)); } static NOINLINE const KMemoryRegion &GetTempRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelTemp)); } static NOINLINE const KMemoryRegion &GetCoreLocalRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_CoreLocal)); } static NOINLINE const KMemoryRegion &GetKernelTraceBufferRegion() { return Dereference(GetVirtualLinearMemoryRegionTree().FindByType(KMemoryRegionType_VirtualKernelTraceBuffer)); } static NOINLINE const KMemoryRegion &GetVirtualLinearRegion(KVirtualAddress address) { return Dereference(FindLinear(address)); } static NOINLINE const KMemoryRegion *GetPhysicalKernelTraceBufferRegion() { return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_KernelTraceBuffer); } static NOINLINE const KMemoryRegion *GetPhysicalOnMemoryBootImageRegion() { return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_OnMemoryBootImage); } static NOINLINE const KMemoryRegion *GetPhysicalDTBRegion() { return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_DTB); } static NOINLINE bool IsHeapPhysicalAddress(const KMemoryRegion *®ion, KPhysicalAddress address) { return IsTypedAddress(region, address, GetPhysicalLinearMemoryRegionTree(), KMemoryRegionType_DramNonKernel); } static NOINLINE bool IsHeapVirtualAddress(const KMemoryRegion *®ion, KVirtualAddress address) { return IsTypedAddress(region, address, GetVirtualLinearMemoryRegionTree(), KMemoryRegionType_VirtualDramManagedPool); } static NOINLINE bool IsHeapPhysicalAddress(const KMemoryRegion *®ion, KPhysicalAddress address, size_t size) { return IsTypedAddress(region, address, size, GetPhysicalLinearMemoryRegionTree(), KMemoryRegionType_DramNonKernel); } static NOINLINE bool IsHeapVirtualAddress(const KMemoryRegion *®ion, KVirtualAddress address, size_t size) { return IsTypedAddress(region, address, size, GetVirtualLinearMemoryRegionTree(), KMemoryRegionType_VirtualDramManagedPool); } static NOINLINE bool IsLinearMappedPhysicalAddress(const KMemoryRegion *®ion, KPhysicalAddress address) { return IsTypedAddress(region, address, GetPhysicalLinearMemoryRegionTree(), KMemoryRegionAttr_LinearMapped); } static NOINLINE bool IsLinearMappedPhysicalAddress(const KMemoryRegion *®ion, KPhysicalAddress address, size_t size) { return IsTypedAddress(region, address, size, GetPhysicalLinearMemoryRegionTree(), KMemoryRegionAttr_LinearMapped); } static NOINLINE std::tuple GetTotalAndKernelMemorySizes() { size_t total_size = 0, kernel_size = 0; for (const auto ®ion : GetPhysicalMemoryRegionTree()) { if (region.IsDerivedFrom(KMemoryRegionType_Dram)) { total_size += region.GetSize(); if (!region.IsDerivedFrom(KMemoryRegionType_DramNonKernel)) { kernel_size += region.GetSize(); } } } return std::make_tuple(total_size, kernel_size); } static void InitializeLinearMemoryRegionTrees(KPhysicalAddress aligned_linear_phys_start, KVirtualAddress linear_virtual_start); static size_t GetResourceRegionSizeForInit(); static NOINLINE auto GetKernelRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_Kernel); } static NOINLINE auto GetKernelCodeRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelCode); } static NOINLINE auto GetKernelStackRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelStack); } static NOINLINE auto GetKernelMiscRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelMisc); } static NOINLINE auto GetKernelSlabRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelSlab); } static NOINLINE auto GetLinearRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionAttr_LinearMapped); } static NOINLINE auto GetLinearRegionVirtualExtents() { auto physical = GetLinearRegionPhysicalExtents(); return KMemoryRegion(GetInteger(GetLinearVirtualAddress(physical.GetAddress())), physical.GetSize(), 0, KMemoryRegionType_None); } static NOINLINE auto GetMainMemoryPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_Dram); } static NOINLINE auto GetCarveoutRegionExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionAttr_CarveoutProtected); } static NOINLINE auto GetKernelRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernel); } static NOINLINE auto GetKernelCodeRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelCode); } static NOINLINE auto GetKernelSlabRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelSlab); } static NOINLINE auto GetKernelPageTableHeapRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelPtHeap); } static NOINLINE auto GetKernelInitPageTableRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelInitPt); } static NOINLINE auto GetKernelPoolPartitionRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramPoolPartition); } static NOINLINE auto GetKernelMetadataPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramMetadataPool); } static NOINLINE auto GetKernelSystemPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramSystemPool); } static NOINLINE auto GetKernelSystemNonSecurePoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramSystemNonSecurePool); } static NOINLINE auto GetKernelAppletPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramAppletPool); } static NOINLINE auto GetKernelApplicationPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramApplicationPool); } static NOINLINE auto GetKernelTraceBufferRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelTraceBuffer); } }; namespace init { /* These should be generic, regardless of board. */ void SetupCoreLocalRegionMemoryRegions(KInitialPageTable &page_table, KInitialPageAllocator &page_allocator); void SetupPoolPartitionMemoryRegions(); /* These may be implemented in a board-specific manner. */ void SetupDevicePhysicalMemoryRegions(); void SetupDramPhysicalMemoryRegions(); } }