/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include namespace ams::kern::arch::arm64 { namespace { class AlignedMemoryBlock { private: uintptr_t m_before_start; uintptr_t m_before_end; uintptr_t m_after_start; uintptr_t m_after_end; size_t m_current_alignment; public: constexpr AlignedMemoryBlock(uintptr_t start, size_t num_pages, size_t alignment) : m_before_start(0), m_before_end(0), m_after_start(0), m_after_end(0), m_current_alignment(0) { MESOSPHERE_ASSERT(util::IsAligned(start, PageSize)); MESOSPHERE_ASSERT(num_pages > 0); /* Find an alignment that allows us to divide into at least two regions.*/ uintptr_t start_page = start / PageSize; alignment /= PageSize; while (util::AlignUp(start_page, alignment) >= util::AlignDown(start_page + num_pages, alignment)) { alignment = KPageTable::GetSmallerAlignment(alignment * PageSize) / PageSize; } m_before_start = start_page; m_before_end = util::AlignUp(start_page, alignment); m_after_start = m_before_end; m_after_end = start_page + num_pages; m_current_alignment = alignment; MESOSPHERE_ASSERT(m_current_alignment > 0); } constexpr void SetAlignment(size_t alignment) { /* We can only ever decrease the granularity. */ MESOSPHERE_ASSERT(m_current_alignment >= alignment / PageSize); m_current_alignment = alignment / PageSize; } constexpr size_t GetAlignment() const { return m_current_alignment * PageSize; } constexpr void FindBlock(uintptr_t &out, size_t &num_pages) { if ((m_after_end - m_after_start) >= m_current_alignment) { /* Select aligned memory from after block. */ const size_t available_pages = util::AlignDown(m_after_end, m_current_alignment) - m_after_start; if (num_pages == 0 || available_pages < num_pages) { num_pages = available_pages; } out = m_after_start * PageSize; m_after_start += num_pages; } else if ((m_before_end - m_before_start) >= m_current_alignment) { /* Select aligned memory from before block. */ const size_t available_pages = m_before_end - util::AlignUp(m_before_start, m_current_alignment); if (num_pages == 0 || available_pages < num_pages) { num_pages = available_pages; } m_before_end -= num_pages; out = m_before_end * PageSize; } else { /* Neither after or before can get an aligned bit of memory. */ out = 0; num_pages = 0; } } }; constexpr u64 EncodeTtbr(KPhysicalAddress table, u8 asid) { return (static_cast(asid) << 48) | (static_cast(GetInteger(table))); } } ALWAYS_INLINE void KPageTable::NoteUpdated() const { cpu::DataSynchronizationBarrierInnerShareableStore(); /* Mark ourselves as in a tlb maintenance operation. */ GetCurrentThread().SetInTlbMaintenanceOperation(); ON_SCOPE_EXIT { GetCurrentThread().ClearInTlbMaintenanceOperation(); __asm__ __volatile__("" ::: "memory"); }; if (this->IsKernel()) { this->OnKernelTableUpdated(); } else { this->OnTableUpdated(); } } ALWAYS_INLINE void KPageTable::NoteSingleKernelPageUpdated(KProcessAddress virt_addr) const { MESOSPHERE_ASSERT(this->IsKernel()); cpu::DataSynchronizationBarrierInnerShareableStore(); /* Mark ourselves as in a tlb maintenance operation. */ GetCurrentThread().SetInTlbMaintenanceOperation(); ON_SCOPE_EXIT { GetCurrentThread().ClearInTlbMaintenanceOperation(); __asm__ __volatile__("" ::: "memory"); }; this->OnKernelTableSinglePageUpdated(virt_addr); } void KPageTable::Initialize(s32 core_id) { /* Nothing actually needed here. */ MESOSPHERE_UNUSED(core_id); } Result KPageTable::InitializeForKernel(void *table, KVirtualAddress start, KVirtualAddress end) { /* Initialize basic fields. */ m_asid = 0; m_manager = Kernel::GetSystemSystemResource().GetPageTableManagerPointer(); /* Initialize the base page table. */ MESOSPHERE_R_ABORT_UNLESS(KPageTableBase::InitializeForKernel(true, table, start, end)); R_SUCCEED(); } Result KPageTable::InitializeForProcess(ams::svc::CreateProcessFlag flags, bool from_back, KMemoryManager::Pool pool, KProcessAddress code_address, size_t code_size, KSystemResource *system_resource, KResourceLimit *resource_limit, size_t process_index) { /* Determine our ASID */ m_asid = process_index + 1; MESOSPHERE_ABORT_UNLESS(0 < m_asid && m_asid < util::size(s_ttbr0_entries)); /* Set our manager. */ m_manager = system_resource->GetPageTableManagerPointer(); /* Get the virtual address of our L1 table. */ const KPhysicalAddress ttbr0_phys = KPhysicalAddress(s_ttbr0_entries[m_asid] & UINT64_C(0xFFFFFFFFFFFE)); const KVirtualAddress ttbr0_virt = KMemoryLayout::GetLinearVirtualAddress(ttbr0_phys); /* Initialize our base table. */ const size_t as_width = GetAddressSpaceWidth(flags); const KProcessAddress as_start = 0; const KProcessAddress as_end = (1ul << as_width); R_TRY(KPageTableBase::InitializeForProcess(flags, from_back, pool, GetVoidPointer(ttbr0_virt), as_start, as_end, code_address, code_size, system_resource, resource_limit)); /* Note that we've updated the table (since we created it). */ this->NoteUpdated(); R_SUCCEED(); } Result KPageTable::Finalize() { /* Only process tables should be finalized. */ MESOSPHERE_ASSERT(!this->IsKernel()); /* NOTE: Here Nintendo calls an unknown OnFinalize function. */ /* this->OnFinalize(); */ /* Note that we've updated (to ensure we're synchronized). */ this->NoteUpdated(); /* NOTE: Here Nintendo calls a second unknown OnFinalize function. */ /* this->OnFinalize2(); */ /* Free all pages in the table. */ { /* Get implementation objects. */ auto &impl = this->GetImpl(); auto &mm = Kernel::GetMemoryManager(); /* Traverse, freeing all pages. */ { /* Begin the traversal. */ TraversalContext context; TraversalEntry entry; KPhysicalAddress cur_phys_addr = Null; size_t cur_size = 0; u8 has_attr = 0; bool cur_valid = impl.BeginTraversal(std::addressof(entry), std::addressof(context), this->GetAddressSpaceStart()); while (true) { if (cur_valid) { /* Free the actual pages, if there are any. */ if (IsHeapPhysicalAddressForFinalize(entry.phys_addr)) { if (cur_size > 0) { /* NOTE: Nintendo really does check next_entry.attr == (cur_entry.attr != 0)...but attr is always zero as of 18.0.0, and this is "probably" for the new console or debug-only anyway, */ /* so we'll implement the weird logic verbatim even though it doesn't match the GetContiguousRange logic. */ if (entry.phys_addr == cur_phys_addr + cur_size && entry.attr == has_attr) { /* Just extend the block, since we can. */ cur_size += entry.block_size; } else { /* Close the block, and begin tracking anew. */ mm.Close(cur_phys_addr, cur_size / PageSize); cur_phys_addr = entry.phys_addr; cur_size = entry.block_size; has_attr = entry.attr != 0; } } else { cur_phys_addr = entry.phys_addr; cur_size = entry.block_size; has_attr = entry.attr != 0; } } /* Clean up the page table entries. */ bool freeing_table = false; while (true) { /* Clear the entries. */ const size_t num_to_clear = (!freeing_table && context.is_contiguous) ? BlocksPerContiguousBlock : 1; auto *pte = reinterpret_cast(context.is_contiguous ? util::AlignDown(reinterpret_cast(context.level_entries[context.level]), BlocksPerContiguousBlock * sizeof(PageTableEntry)) : reinterpret_cast(context.level_entries[context.level])); for (size_t i = 0; i < num_to_clear; ++i) { pte[i] = InvalidPageTableEntry; } /* Remove the entries from the previous table. */ if (context.level != KPageTableImpl::EntryLevel_L1) { context.level_entries[context.level + 1]->RemoveTableEntries(num_to_clear); } /* If we cleared a table, we need to note that we updated and free the table. */ if (freeing_table) { KVirtualAddress table = KVirtualAddress(util::AlignDown(reinterpret_cast(context.level_entries[context.level - 1]), PageSize)); ClearPageTable(table); this->GetPageTableManager().Free(table); } /* Advance; we're no longer contiguous. */ context.is_contiguous = false; context.level_entries[context.level] = pte + num_to_clear - 1; /* We may have removed the last entries in a table, in which case we can free and unmap the tables. */ if (context.level >= KPageTableImpl::EntryLevel_L1 || context.level_entries[context.level + 1]->GetTableNumEntries() != 0) { break; } /* Advance; we will not be working with blocks any more. */ context.level = static_cast(util::ToUnderlying(context.level) + 1); freeing_table = true; } } /* Continue the traversal. */ cur_valid = impl.ContinueTraversal(std::addressof(entry), std::addressof(context)); } /* Free any remaining pages. */ if (cur_size > 0) { mm.Close(cur_phys_addr, cur_size / PageSize); } } /* Clear the L1 table. */ { const KVirtualAddress l1_table = reinterpret_cast(impl.Finalize()); ClearPageTable(l1_table); } /* Perform inherited finalization. */ KPageTableBase::Finalize(); } R_SUCCEED(); } Result KPageTable::OperateImpl(PageLinkedList *page_list, KProcessAddress virt_addr, size_t num_pages, KPhysicalAddress phys_addr, bool is_pa_valid, const KPageProperties properties, OperationType operation, bool reuse_ll) { /* Check validity of parameters. */ MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); MESOSPHERE_ASSERT(num_pages > 0); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize)); MESOSPHERE_ASSERT(this->ContainsPages(virt_addr, num_pages)); if (operation == OperationType_Map) { MESOSPHERE_ABORT_UNLESS(is_pa_valid); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize)); } else { MESOSPHERE_ABORT_UNLESS(!is_pa_valid); } if (operation == OperationType_Unmap) { R_RETURN(this->Unmap(virt_addr, num_pages, page_list, false, reuse_ll)); } else if (operation == OperationType_Separate) { R_RETURN(this->SeparatePages(virt_addr, num_pages, page_list, reuse_ll)); } else { auto entry_template = this->GetEntryTemplate(properties); switch (operation) { case OperationType_Map: /* If mapping io or uncached pages, ensure that there is no pending reschedule. */ if (properties.io || properties.uncached) { KScopedSchedulerLock sl; } R_RETURN(this->MapContiguous(virt_addr, phys_addr, num_pages, entry_template, properties.disable_merge_attributes == DisableMergeAttribute_DisableHead, page_list, reuse_ll)); case OperationType_ChangePermissions: R_RETURN(this->ChangePermissions(virt_addr, num_pages, entry_template, properties.disable_merge_attributes, false, false, page_list, reuse_ll)); case OperationType_ChangePermissionsAndRefresh: R_RETURN(this->ChangePermissions(virt_addr, num_pages, entry_template, properties.disable_merge_attributes, true, false, page_list, reuse_ll)); case OperationType_ChangePermissionsAndRefreshAndFlush: R_RETURN(this->ChangePermissions(virt_addr, num_pages, entry_template, properties.disable_merge_attributes, true, true, page_list, reuse_ll)); MESOSPHERE_UNREACHABLE_DEFAULT_CASE(); } } } Result KPageTable::OperateImpl(PageLinkedList *page_list, KProcessAddress virt_addr, size_t num_pages, const KPageGroup &page_group, const KPageProperties properties, OperationType operation, bool reuse_ll) { /* Check validity of parameters. */ MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize)); MESOSPHERE_ASSERT(num_pages > 0); MESOSPHERE_ASSERT(num_pages == page_group.GetNumPages()); /* Map the page group. */ auto entry_template = this->GetEntryTemplate(properties); switch (operation) { case OperationType_MapGroup: case OperationType_MapFirstGroup: /* If mapping io or uncached pages, ensure that there is no pending reschedule. */ if (properties.io || properties.uncached) { KScopedSchedulerLock sl; } R_RETURN(this->MapGroup(virt_addr, page_group, num_pages, entry_template, properties.disable_merge_attributes == DisableMergeAttribute_DisableHead, operation != OperationType_MapFirstGroup, page_list, reuse_ll)); MESOSPHERE_UNREACHABLE_DEFAULT_CASE(); } } Result KPageTable::Unmap(KProcessAddress virt_addr, size_t num_pages, PageLinkedList *page_list, bool force, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); /* Ensure there are no pending data writes. */ cpu::DataSynchronizationBarrier(); auto &impl = this->GetImpl(); /* If we're not forcing an unmap, separate pages immediately. */ if (!force) { R_TRY(this->SeparatePages(virt_addr, num_pages, page_list, reuse_ll)); } /* Cache initial addresses for use on cleanup. */ const KProcessAddress orig_virt_addr = virt_addr; size_t remaining_pages = num_pages; /* Ensure that any pages we track close on exit. */ KPageGroup pages_to_close(this->GetBlockInfoManager()); ON_SCOPE_EXIT { pages_to_close.CloseAndReset(); }; /* Begin traversal. */ TraversalContext context; TraversalEntry next_entry; bool next_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), virt_addr); while (remaining_pages > 0) { /* Handle the case where we're not valid. */ if (!next_valid) { MESOSPHERE_ABORT_UNLESS(force); const size_t cur_size = std::min(next_entry.block_size - (GetInteger(virt_addr) & (next_entry.block_size - 1)), remaining_pages * PageSize); remaining_pages -= cur_size / PageSize; virt_addr += cur_size; next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)); continue; } /* Handle the case where the block is bigger than it should be. */ if (next_entry.block_size > remaining_pages * PageSize) { MESOSPHERE_ABORT_UNLESS(force); MESOSPHERE_R_ABORT_UNLESS(this->SeparatePagesImpl(std::addressof(next_entry), std::addressof(context), virt_addr, remaining_pages * PageSize, page_list, reuse_ll)); } /* Check that our state is coherent. */ MESOSPHERE_ASSERT((next_entry.block_size / PageSize) <= remaining_pages); MESOSPHERE_ASSERT(util::IsAligned(GetInteger(next_entry.phys_addr), next_entry.block_size)); /* Unmap the block. */ bool freeing_table = false; while (true) { /* Clear the entries. */ const size_t num_to_clear = (!freeing_table && context.is_contiguous) ? BlocksPerContiguousBlock : 1; auto *pte = reinterpret_cast(context.is_contiguous ? util::AlignDown(reinterpret_cast(context.level_entries[context.level]), BlocksPerContiguousBlock * sizeof(PageTableEntry)) : reinterpret_cast(context.level_entries[context.level])); for (size_t i = 0; i < num_to_clear; ++i) { pte[i] = InvalidPageTableEntry; } /* Remove the entries from the previous table. */ if (context.level != KPageTableImpl::EntryLevel_L1) { context.level_entries[context.level + 1]->RemoveTableEntries(num_to_clear); } /* If we cleared a table, we need to note that we updated and free the table. */ if (freeing_table) { this->NoteUpdated(); this->FreePageTable(page_list, KVirtualAddress(util::AlignDown(reinterpret_cast(context.level_entries[context.level - 1]), PageSize))); } /* Advance; we're no longer contiguous. */ context.is_contiguous = false; context.level_entries[context.level] = pte + num_to_clear - 1; /* We may have removed the last entries in a table, in which case we can free and unmap the tables. */ if (context.level >= KPageTableImpl::EntryLevel_L1 || context.level_entries[context.level + 1]->GetTableNumEntries() != 0) { break; } /* Advance; we will not be working with blocks any more. */ context.level = static_cast(util::ToUnderlying(context.level) + 1); freeing_table = true; } /* Close the blocks. */ if (!force && IsHeapPhysicalAddress(next_entry.phys_addr)) { const size_t block_num_pages = next_entry.block_size / PageSize; if (R_FAILED(pages_to_close.AddBlock(next_entry.phys_addr, block_num_pages))) { this->NoteUpdated(); Kernel::GetMemoryManager().Close(next_entry.phys_addr, block_num_pages); pages_to_close.CloseAndReset(); } } /* Advance. */ size_t freed_size = next_entry.block_size; if (freeing_table) { /* We advanced more than by the block, so we need to calculate the actual advanced size. */ const KProcessAddress new_virt_addr = util::AlignUp(GetInteger(virt_addr), impl.GetBlockSize(context.level, context.is_contiguous)); MESOSPHERE_ABORT_UNLESS(new_virt_addr >= virt_addr + next_entry.block_size); freed_size = std::min(new_virt_addr - virt_addr, remaining_pages * PageSize); } /* We can just advance by the block size. */ virt_addr += freed_size; remaining_pages -= freed_size / PageSize; next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)); } /* Ensure we remain coherent. */ if (this->IsKernel() && num_pages == 1) { this->NoteSingleKernelPageUpdated(orig_virt_addr); } else { this->NoteUpdated(); } R_SUCCEED(); } Result KPageTable::Map(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, size_t page_size, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); /* MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize)); */ /* MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize)); */ auto &impl = this->GetImpl(); u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false); /* Begin traversal. */ TraversalContext context; TraversalEntry entry; bool valid = impl.BeginTraversal(std::addressof(entry), std::addressof(context), virt_addr); /* Iterate, mapping each page. */ while (num_pages > 0) { /* If we're mapping at the address, there must be nothing there. */ MESOSPHERE_ABORT_UNLESS(!valid); /* If we fail, clean up any empty tables we may have allocated. */ ON_RESULT_FAILURE { /* Remove entries for and free any tables. */ while (context.level < KPageTableImpl::EntryLevel_L1) { /* If the higher-level table has entries, we don't need to do a free. */ if (context.level_entries[context.level + 1]->GetTableNumEntries() != 0) { break; } /* If there's no table, we also don't need to do a free. */ const KVirtualAddress table = KVirtualAddress(util::AlignDown(reinterpret_cast(context.level_entries[context.level]), PageSize)); if (table == Null) { break; } /* Clear the entry for the table we're removing. */ *context.level_entries[context.level + 1] = InvalidPageTableEntry; /* Remove the entry for the table one level higher. */ if (context.level + 1 < KPageTableImpl::EntryLevel_L1) { context.level_entries[context.level + 2]->RemoveTableEntries(1); } /* Advance our level. */ context.level = static_cast(util::ToUnderlying(context.level) + 1); /* Note that we performed an update and free the table. */ this->NoteUpdated(); this->FreePageTable(page_list, table); } }; /* If necessary, allocate page tables for the entry. */ size_t mapping_size = entry.block_size; while (mapping_size > page_size) { /* Allocate the table. */ const auto table = AllocatePageTable(page_list, reuse_ll); R_UNLESS(table != Null, svc::ResultOutOfResource()); /* Wait for pending stores to complete. */ cpu::DataSynchronizationBarrierInnerShareableStore(); /* Update the block entry to be a table entry. */ *context.level_entries[context.level] = PageTableEntry(PageTableEntry::TableTag{}, KPageTable::GetPageTablePhysicalAddress(table), this->IsKernel(), true, 0); /* Add the entry to the table containing this one. */ if (context.level != KPageTableImpl::EntryLevel_L1) { context.level_entries[context.level + 1]->AddTableEntries(1); } /* Decrease our level. */ context.level = static_cast(util::ToUnderlying(context.level) - 1); /* Add our new entry to the context. */ context.level_entries[context.level] = GetPointer(table) + impl.GetLevelIndex(virt_addr, context.level); /* Update our mapping size. */ mapping_size = impl.GetBlockSize(context.level); } /* Determine how many pages we can set up on this iteration. */ const size_t block_size = impl.GetBlockSize(context.level); const size_t max_ptes = (context.level == KPageTableImpl::EntryLevel_L1 ? impl.GetNumL1Entries() : BlocksPerTable) - ((reinterpret_cast(context.level_entries[context.level]) / sizeof(PageTableEntry)) & (BlocksPerTable - 1)); const size_t max_pages = (block_size * max_ptes) / PageSize; const size_t cur_pages = std::min(max_pages, num_pages); /* Determine the new base attribute. */ const bool contig = page_size >= BlocksPerContiguousBlock * mapping_size; const size_t num_ptes = cur_pages / (block_size / PageSize); auto *pte = context.level_entries[context.level]; for (size_t i = 0; i < num_ptes; ++i) { *pte = PageTableEntry(PageTableEntry::BlockTag{}, phys_addr + i * block_size, entry_template, sw_reserved_bits, contig, context.level == KPageTableImpl::EntryLevel_L3); sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead); } /* Add the entries to the table containing this one. */ if (context.level != KPageTableImpl::EntryLevel_L1) { context.level_entries[context.level + 1]->AddTableEntries(num_ptes); } /* Update our context. */ context.is_contiguous = contig; context.level_entries[context.level] = pte + num_ptes - (contig ? BlocksPerContiguousBlock : 1); /* Advance our addresses. */ phys_addr += cur_pages * PageSize; virt_addr += cur_pages * PageSize; num_pages -= cur_pages; /* Continue traversal. */ valid = impl.ContinueTraversal(std::addressof(entry), std::addressof(context)); } /* We mapped, so wait for our writes to take. */ cpu::DataSynchronizationBarrierInnerShareableStore(); R_SUCCEED(); } Result KPageTable::MapContiguous(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); /* Cache initial addresses for use on cleanup. */ const KProcessAddress orig_virt_addr = virt_addr; const KPhysicalAddress orig_phys_addr = phys_addr; size_t remaining_pages = num_pages; /* Map the pages, using a guard to ensure we don't leak. */ { ON_RESULT_FAILURE { MESOSPHERE_R_ABORT_UNLESS(this->Unmap(orig_virt_addr, num_pages, page_list, true, true)); }; if (num_pages < ContiguousPageSize / PageSize) { R_TRY(this->Map(virt_addr, phys_addr, num_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, L3BlockSize, page_list, reuse_ll)); remaining_pages -= num_pages; virt_addr += num_pages * PageSize; phys_addr += num_pages * PageSize; } else { /* Map the fractional part of the pages. */ size_t alignment; for (alignment = ContiguousPageSize; (virt_addr & (alignment - 1)) == (phys_addr & (alignment - 1)); alignment = GetLargerAlignment(alignment)) { /* Check if this would be our last map. */ const size_t pages_to_map = ((alignment - (virt_addr & (alignment - 1))) & (alignment - 1)) / PageSize; if (pages_to_map + (alignment / PageSize) > remaining_pages) { break; } /* Map pages, if we should. */ if (pages_to_map > 0) { R_TRY(this->Map(virt_addr, phys_addr, pages_to_map, entry_template, disable_head_merge && virt_addr == orig_virt_addr, GetSmallerAlignment(alignment), page_list, reuse_ll)); remaining_pages -= pages_to_map; virt_addr += pages_to_map * PageSize; phys_addr += pages_to_map * PageSize; } /* Don't go further than L1 block. */ if (alignment == L1BlockSize) { break; } } while (remaining_pages > 0) { /* Select the next smallest alignment. */ alignment = GetSmallerAlignment(alignment); MESOSPHERE_ASSERT((virt_addr & (alignment - 1)) == 0); MESOSPHERE_ASSERT((phys_addr & (alignment - 1)) == 0); /* Map pages, if we should. */ const size_t pages_to_map = util::AlignDown(remaining_pages, alignment / PageSize); if (pages_to_map > 0) { R_TRY(this->Map(virt_addr, phys_addr, pages_to_map, entry_template, disable_head_merge && virt_addr == orig_virt_addr, alignment, page_list, reuse_ll)); remaining_pages -= pages_to_map; virt_addr += pages_to_map * PageSize; phys_addr += pages_to_map * PageSize; } } } } /* Perform what coalescing we can. */ this->MergePages(orig_virt_addr, num_pages, page_list); /* Open references to the pages, if we should. */ if (IsHeapPhysicalAddress(orig_phys_addr)) { Kernel::GetMemoryManager().Open(orig_phys_addr, num_pages); } R_SUCCEED(); } Result KPageTable::MapGroup(KProcessAddress virt_addr, const KPageGroup &pg, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, bool not_first, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); /* We want to maintain a new reference to every page in the group. */ KScopedPageGroup spg(pg, not_first); /* Cache initial address for use on cleanup. */ const KProcessAddress orig_virt_addr = virt_addr; size_t mapped_pages = 0; /* Map the pages, using a guard to ensure we don't leak. */ { ON_RESULT_FAILURE { MESOSPHERE_R_ABORT_UNLESS(this->Unmap(orig_virt_addr, num_pages, page_list, true, true)); }; if (num_pages < ContiguousPageSize / PageSize) { for (const auto &block : pg) { const KPhysicalAddress block_phys_addr = block.GetAddress(); const size_t cur_pages = block.GetNumPages(); R_TRY(this->Map(virt_addr, block_phys_addr, cur_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, L3BlockSize, page_list, reuse_ll)); virt_addr += cur_pages * PageSize; mapped_pages += cur_pages; } } else { /* Create a block representing our virtual space. */ AlignedMemoryBlock virt_block(GetInteger(virt_addr), num_pages, L1BlockSize); for (const auto &block : pg) { /* Create a block representing this physical group, synchronize its alignment to our virtual block. */ const KPhysicalAddress block_phys_addr = block.GetAddress(); size_t cur_pages = block.GetNumPages(); AlignedMemoryBlock phys_block(GetInteger(block_phys_addr), cur_pages, virt_block.GetAlignment()); virt_block.SetAlignment(phys_block.GetAlignment()); while (cur_pages > 0) { /* Find a physical region for us to map at. */ uintptr_t phys_choice = 0; size_t phys_pages = 0; phys_block.FindBlock(phys_choice, phys_pages); /* If we didn't find a region, try decreasing our alignment. */ if (phys_pages == 0) { const size_t next_alignment = KPageTable::GetSmallerAlignment(phys_block.GetAlignment()); MESOSPHERE_ASSERT(next_alignment >= PageSize); phys_block.SetAlignment(next_alignment); virt_block.SetAlignment(next_alignment); continue; } /* Begin choosing virtual blocks to map at the region we chose. */ while (phys_pages > 0) { /* Find a virtual region for us to map at. */ uintptr_t virt_choice = 0; size_t virt_pages = phys_pages; virt_block.FindBlock(virt_choice, virt_pages); /* If we didn't find a region, try decreasing our alignment. */ if (virt_pages == 0) { const size_t next_alignment = KPageTable::GetSmallerAlignment(virt_block.GetAlignment()); MESOSPHERE_ASSERT(next_alignment >= PageSize); phys_block.SetAlignment(next_alignment); virt_block.SetAlignment(next_alignment); continue; } /* Map! */ R_TRY(this->Map(virt_choice, phys_choice, virt_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, virt_block.GetAlignment(), page_list, reuse_ll)); /* Advance. */ phys_choice += virt_pages * PageSize; phys_pages -= virt_pages; cur_pages -= virt_pages; mapped_pages += virt_pages; } } } } } MESOSPHERE_ASSERT(mapped_pages == num_pages); /* Perform what coalescing we can. */ this->MergePages(orig_virt_addr, num_pages, page_list); /* We succeeded! We want to persist the reference to the pages. */ spg.CancelClose(); R_SUCCEED(); } bool KPageTable::MergePages(TraversalContext *context, PageLinkedList *page_list) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); auto &impl = this->GetImpl(); /* Iteratively merge, until we can't. */ bool merged = false; while (true) { /* Try to merge. */ KVirtualAddress freed_table = Null; if (!impl.MergePages(std::addressof(freed_table), context)) { break; } /* Note that we updated. */ this->NoteUpdated(); /* Free the page. */ if (freed_table != Null) { ClearPageTable(freed_table); this->FreePageTable(page_list, freed_table); } /* We performed at least one merge. */ merged = true; } return merged; } void KPageTable::MergePages(KProcessAddress virt_addr, size_t num_pages, PageLinkedList *page_list) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); auto &impl = this->GetImpl(); /* Begin traversal. */ TraversalContext context; TraversalEntry entry; MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(entry), std::addressof(context), virt_addr)); /* Merge start of the range. */ this->MergePages(std::addressof(context), page_list); /* If we have more than one page, do the same for the end of the range. */ if (num_pages > 1) { /* Begin traversal for end of range. */ const size_t size = num_pages * PageSize; const auto end_page = virt_addr + size; const auto last_page = end_page - PageSize; MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(entry), std::addressof(context), last_page)); /* Merge. */ this->MergePages(std::addressof(context), page_list); } } Result KPageTable::SeparatePagesImpl(TraversalEntry *entry, TraversalContext *context, KProcessAddress virt_addr, size_t block_size, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); auto &impl = this->GetImpl(); /* If at any point we fail, we want to merge. */ ON_RESULT_FAILURE { this->MergePages(context, page_list); }; /* Iterate, separating until our block size is small enough. */ while (entry->block_size > block_size) { /* If necessary, allocate a table. */ KVirtualAddress table = Null; if (!context->is_contiguous) { table = this->AllocatePageTable(page_list, reuse_ll); R_UNLESS(table != Null, svc::ResultOutOfResource()); } /* Separate. */ impl.SeparatePages(entry, context, virt_addr, nullptr); this->NoteUpdated(); } R_SUCCEED(); } Result KPageTable::SeparatePages(KProcessAddress virt_addr, size_t num_pages, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); auto &impl = this->GetImpl(); /* Begin traversal. */ TraversalContext start_context; TraversalEntry entry; MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(entry), std::addressof(start_context), virt_addr)); /* Separate pages at the start of the range. */ const size_t size = num_pages * PageSize; R_TRY(this->SeparatePagesImpl(std::addressof(entry), std::addressof(start_context), virt_addr, std::min(util::GetAlignment(GetInteger(virt_addr)), size), page_list, reuse_ll)); /* If necessary, separate pages at the end of the range. */ if (num_pages > 1) { const auto end_page = virt_addr + size; const auto last_page = end_page - PageSize; /* Begin traversal. */ TraversalContext end_context; MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(entry), std::addressof(end_context), last_page)); ON_RESULT_FAILURE { this->MergePages(std::addressof(start_context), page_list); }; R_TRY(this->SeparatePagesImpl(std::addressof(entry), std::addressof(end_context), last_page, std::min(util::GetAlignment(GetInteger(end_page)), size), page_list, reuse_ll)); } R_SUCCEED(); } Result KPageTable::ChangePermissions(KProcessAddress virt_addr, size_t num_pages, PageTableEntry entry_template, DisableMergeAttribute disable_merge_attr, bool refresh_mapping, bool flush_mapping, PageLinkedList *page_list, bool reuse_ll) { MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); /* Ensure there are no pending data writes. */ cpu::DataSynchronizationBarrier(); /* Separate pages before we change permissions. */ R_TRY(this->SeparatePages(virt_addr, num_pages, page_list, reuse_ll)); /* ===================================================== */ /* Define a helper function which will apply our template to entries. */ enum ApplyOption : u32 { ApplyOption_None = 0, ApplyOption_FlushDataCache = (1u << 0), ApplyOption_MergeMappings = (1u << 1), }; auto ApplyEntryTemplate = [this, virt_addr, disable_merge_attr, num_pages, page_list](PageTableEntry entry_template, u32 apply_option) -> void { /* Create work variables for us to use. */ const KProcessAddress orig_virt_addr = virt_addr; const KProcessAddress end_virt_addr = orig_virt_addr + (num_pages * PageSize); KProcessAddress cur_virt_addr = virt_addr; size_t remaining_pages = num_pages; auto &impl = this->GetImpl(); /* Parse the disable merge attrs. */ const bool attr_disable_head = (disable_merge_attr & DisableMergeAttribute_DisableHead) != 0; const bool attr_disable_head_body = (disable_merge_attr & DisableMergeAttribute_DisableHeadAndBody) != 0; const bool attr_enable_head_body = (disable_merge_attr & DisableMergeAttribute_EnableHeadAndBody) != 0; const bool attr_disable_tail = (disable_merge_attr & DisableMergeAttribute_DisableTail) != 0; const bool attr_enable_tail = (disable_merge_attr & DisableMergeAttribute_EnableTail) != 0; const bool attr_enable_and_merge = (disable_merge_attr & DisableMergeAttribute_EnableAndMergeHeadBodyTail) != 0; /* Begin traversal. */ TraversalContext context; TraversalEntry next_entry; MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), cur_virt_addr)); /* Continue changing properties until we've changed them for all pages. */ bool cleared_disable_merge_bits = false; while (remaining_pages > 0) { MESOSPHERE_ABORT_UNLESS(util::IsAligned(GetInteger(next_entry.phys_addr), next_entry.block_size)); MESOSPHERE_ABORT_UNLESS(next_entry.block_size <= remaining_pages * PageSize); /* Determine if we're at the start. */ const bool is_start = (cur_virt_addr == orig_virt_addr); const bool is_end = ((cur_virt_addr + next_entry.block_size) == end_virt_addr); /* Determine the relevant merge attributes. */ bool disable_head_merge, disable_head_body_merge, disable_tail_merge; if (next_entry.IsHeadMergeDisabled()) { disable_head_merge = true; } else if (attr_disable_head) { disable_head_merge = is_start; } else { disable_head_merge = false; } if (is_start) { if (attr_disable_head_body) { disable_head_body_merge = true; } else if (attr_enable_head_body) { disable_head_body_merge = false; } else { disable_head_body_merge = (!attr_enable_and_merge && next_entry.IsHeadAndBodyMergeDisabled()); } } else { disable_head_body_merge = (!attr_enable_and_merge && next_entry.IsHeadAndBodyMergeDisabled()); cleared_disable_merge_bits |= (attr_enable_and_merge && next_entry.IsHeadAndBodyMergeDisabled()); } if (is_end) { if (attr_disable_tail) { disable_tail_merge = true; } else if (attr_enable_tail) { disable_tail_merge = false; } else { disable_tail_merge = (!attr_enable_and_merge && next_entry.IsTailMergeDisabled()); } } else { disable_tail_merge = (!attr_enable_and_merge && next_entry.IsTailMergeDisabled()); cleared_disable_merge_bits |= (attr_enable_and_merge && next_entry.IsTailMergeDisabled()); } /* Encode the merge disable flags into the software reserved bits. */ u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, disable_head_body_merge, disable_tail_merge); /* If we should flush entries, do so. */ if ((apply_option & ApplyOption_FlushDataCache) != 0) { if (IsHeapPhysicalAddress(next_entry.phys_addr)) { cpu::FlushDataCache(GetVoidPointer(GetHeapVirtualAddress(next_entry.phys_addr)), next_entry.block_size); } } /* Apply the entry template. */ { const size_t num_entries = context.is_contiguous ? BlocksPerContiguousBlock : 1; auto * const pte = context.level_entries[context.level]; const size_t block_size = impl.GetBlockSize(context.level); for (size_t i = 0; i < num_entries; ++i) { pte[i] = PageTableEntry(PageTableEntry::BlockTag{}, next_entry.phys_addr + i * block_size, entry_template, sw_reserved_bits, context.is_contiguous, context.level == KPageTableImpl::EntryLevel_L3); sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead); } } /* If our option asks us to, try to merge mappings. */ bool merge = ((apply_option & ApplyOption_MergeMappings) != 0 || cleared_disable_merge_bits) && next_entry.block_size < L1BlockSize; if (merge) { const size_t larger_align = GetLargerAlignment(next_entry.block_size); if (util::IsAligned(GetInteger(cur_virt_addr) + next_entry.block_size, larger_align)) { const uintptr_t aligned_start = util::AlignDown(GetInteger(cur_virt_addr), larger_align); if (orig_virt_addr <= aligned_start && aligned_start + larger_align - 1 < GetInteger(orig_virt_addr) + (num_pages * PageSize) - 1) { merge = this->MergePages(std::addressof(context), page_list); } else { merge = false; } } else { merge = false; } } /* If we merged, correct the traversal to a sane state. */ if (merge) { /* NOTE: Begin a new traversal, now that we've merged. */ MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), cur_virt_addr)); /* The actual size needs to not take into account the portion of the block before our virtual address. */ const size_t actual_size = next_entry.block_size - (GetInteger(next_entry.phys_addr) & (next_entry.block_size - 1)); remaining_pages -= std::min(remaining_pages, actual_size / PageSize); cur_virt_addr += actual_size; } else { /* If we didn't merge, just advance. */ remaining_pages -= next_entry.block_size / PageSize; cur_virt_addr += next_entry.block_size; } /* Continue our traversal. */ if (remaining_pages == 0) { break; } MESOSPHERE_ABORT_UNLESS(impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context))); } }; /* ===================================================== */ /* If we don't need to refresh the pages, we can just apply the mappings. */ if (!refresh_mapping) { ApplyEntryTemplate(entry_template, ApplyOption_None); this->NoteUpdated(); } else { /* We need to refresh the mappings. */ /* First, apply the changes without the mapped bit. This will cause all entries to page fault if accessed. */ { PageTableEntry unmapped_template = entry_template; unmapped_template.SetMapped(false); ApplyEntryTemplate(unmapped_template, ApplyOption_MergeMappings); this->NoteUpdated(); } /* Next, take and immediately release the scheduler lock. This will force a reschedule. */ { KScopedSchedulerLock sl; } /* Finally, apply the changes as directed, flushing the mappings before they're applied (if we should). */ ApplyEntryTemplate(entry_template, flush_mapping ? ApplyOption_FlushDataCache : ApplyOption_None); } /* We've succeeded, now perform what coalescing we can. */ this->MergePages(virt_addr, num_pages, page_list); R_SUCCEED(); } void KPageTable::FinalizeUpdateImpl(PageLinkedList *page_list) { while (page_list->Peek()) { KVirtualAddress page = KVirtualAddress(page_list->Pop()); MESOSPHERE_ASSERT(this->GetPageTableManager().IsInPageTableHeap(page)); MESOSPHERE_ASSERT(this->GetPageTableManager().GetRefCount(page) == 0); this->GetPageTableManager().Free(page); } } }