/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include namespace ams::fssystem { AesXtsStorage::AesXtsStorage(IStorage *base, const void *key1, const void *key2, size_t key_size, const void *iv, size_t iv_size, size_t block_size) : base_storage(base), block_size(block_size), mutex(false) { AMS_ASSERT(base != nullptr); AMS_ASSERT(key1 != nullptr); AMS_ASSERT(key2 != nullptr); AMS_ASSERT(iv != nullptr); AMS_ASSERT(key_size == KeySize); AMS_ASSERT(iv_size == IvSize); AMS_ASSERT(util::IsAligned(this->block_size, AesBlockSize)); std::memcpy(this->key[0], key1, KeySize); std::memcpy(this->key[1], key2, KeySize); std::memcpy(this->iv, iv, IvSize); } Result AesXtsStorage::Read(s64 offset, void *buffer, size_t size) { /* Allow zero-size reads. */ R_SUCCEED_IF(size == 0); /* Ensure buffer is valid. */ R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument()); /* We can only read at block aligned offsets. */ R_UNLESS(util::IsAligned(offset, AesBlockSize), fs::ResultInvalidArgument()); R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultInvalidArgument()); /* Read the data. */ R_TRY(this->base_storage->Read(offset, buffer, size)); /* Prepare to decrypt the data, with temporarily increased priority. */ ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative); /* Setup the counter. */ char ctr[IvSize]; std::memcpy(ctr, this->iv, IvSize); AddCounter(ctr, IvSize, offset / this->block_size); /* Handle any unaligned data before the start. */ size_t processed_size = 0; if ((offset % this->block_size) != 0) { /* Determine the size of the pre-data read. */ const size_t skip_size = static_cast(offset - util::AlignDown(offset, this->block_size)); const size_t data_size = std::min(size, this->block_size - skip_size); /* Decrypt into a pooled buffer. */ { PooledBuffer tmp_buf(this->block_size, this->block_size); AMS_ASSERT(tmp_buf.GetSize() >= this->block_size); std::memset(tmp_buf.GetBuffer(), 0, skip_size); std::memcpy(tmp_buf.GetBuffer() + skip_size, buffer, data_size); const size_t dec_size = crypto::DecryptAes128Xts(tmp_buf.GetBuffer(), this->block_size, this->key[0], this->key[1], KeySize, ctr, IvSize, tmp_buf.GetBuffer(), this->block_size); R_UNLESS(dec_size == this->block_size, fs::ResultUnexpectedInAesXtsStorageA()); std::memcpy(buffer, tmp_buf.GetBuffer() + skip_size, data_size); } AddCounter(ctr, IvSize, 1); processed_size += data_size; AMS_ASSERT(processed_size == std::min(size, this->block_size - skip_size)); } /* Decrypt aligned chunks. */ char *cur = static_cast(buffer) + processed_size; size_t remaining = size - processed_size; while (remaining > 0) { const size_t cur_size = std::min(this->block_size, remaining); const size_t dec_size = crypto::DecryptAes128Xts(cur, cur_size, this->key[0], this->key[1], KeySize, ctr, IvSize, cur, cur_size); R_UNLESS(cur_size == dec_size, fs::ResultUnexpectedInAesXtsStorageA()); remaining -= cur_size; cur += cur_size; AddCounter(ctr, IvSize, 1); } return ResultSuccess(); } Result AesXtsStorage::Write(s64 offset, const void *buffer, size_t size) { /* Allow zero-size writes. */ R_SUCCEED_IF(size == 0); /* Ensure buffer is valid. */ R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument()); /* We can only read at block aligned offsets. */ R_UNLESS(util::IsAligned(offset, AesBlockSize), fs::ResultInvalidArgument()); R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultInvalidArgument()); /* Get a pooled buffer. */ PooledBuffer pooled_buffer; const bool use_work_buffer = !IsDeviceAddress(buffer); if (use_work_buffer) { pooled_buffer.Allocate(size, this->block_size); } /* Setup the counter. */ char ctr[IvSize]; std::memcpy(ctr, this->iv, IvSize); AddCounter(ctr, IvSize, offset / this->block_size); /* Handle any unaligned data before the start. */ size_t processed_size = 0; if ((offset % this->block_size) != 0) { /* Determine the size of the pre-data read. */ const size_t skip_size = static_cast(offset - util::AlignDown(offset, this->block_size)); const size_t data_size = std::min(size, this->block_size - skip_size); /* Create an encryptor. */ /* NOTE: This is completely unnecessary, because crypto::EncryptAes128Xts is used below. */ /* However, Nintendo does it, so we will too. */ crypto::Aes128XtsEncryptor xts; xts.Initialize(this->key[0], this->key[1], KeySize, ctr, IvSize); /* Encrypt into a pooled buffer. */ { /* NOTE: Nintendo allocates a second pooled buffer here despite having one already allocated above. */ PooledBuffer tmp_buf(this->block_size, this->block_size); AMS_ASSERT(tmp_buf.GetSize() >= this->block_size); std::memset(tmp_buf.GetBuffer(), 0, skip_size); std::memcpy(tmp_buf.GetBuffer() + skip_size, buffer, data_size); const size_t enc_size = crypto::EncryptAes128Xts(tmp_buf.GetBuffer(), this->block_size, this->key[0], this->key[1], KeySize, ctr, IvSize, tmp_buf.GetBuffer(), this->block_size); R_UNLESS(enc_size == this->block_size, fs::ResultUnexpectedInAesXtsStorageA()); R_TRY(this->base_storage->Write(offset, tmp_buf.GetBuffer() + skip_size, data_size)); } AddCounter(ctr, IvSize, 1); processed_size += data_size; AMS_ASSERT(processed_size == std::min(size, this->block_size - skip_size)); } /* Encrypt aligned chunks. */ size_t remaining = size - processed_size; s64 cur_offset = offset + processed_size; while (remaining > 0) { /* Determine data we're writing and where. */ const size_t write_size = use_work_buffer ? std::min(pooled_buffer.GetSize(), remaining) : remaining; /* Encrypt the data, with temporarily increased priority. */ { ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative); size_t remaining_write = write_size; size_t encrypt_offset = 0; while (remaining_write > 0) { const size_t cur_size = std::min(remaining_write, this->block_size); const void *src = static_cast(buffer) + processed_size + encrypt_offset; void *dst = use_work_buffer ? pooled_buffer.GetBuffer() + encrypt_offset : const_cast(src); const size_t enc_size = crypto::EncryptAes128Xts(dst, cur_size, this->key[0], this->key[1], KeySize, ctr, IvSize, src, cur_size); R_UNLESS(enc_size == cur_size, fs::ResultUnexpectedInAesXtsStorageA()); AddCounter(ctr, IvSize, 1); encrypt_offset += cur_size; remaining_write -= cur_size; } } /* Write the encrypted data. */ const void *write_buf = use_work_buffer ? pooled_buffer.GetBuffer() : static_cast(buffer) + processed_size; R_TRY(this->base_storage->Write(cur_offset, write_buf, write_size)); /* Advance. */ cur_offset += write_size; processed_size += write_size; remaining -= write_size; } return ResultSuccess(); } Result AesXtsStorage::Flush() { return this->base_storage->Flush(); } Result AesXtsStorage::SetSize(s64 size) { R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultUnexpectedInAesXtsStorageA()); return this->base_storage->SetSize(size); } Result AesXtsStorage::GetSize(s64 *out) { return this->base_storage->GetSize(out); } Result AesXtsStorage::OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) { /* Handle the zero size case. */ R_SUCCEED_IF(size == 0); /* Ensure alignment. */ R_UNLESS(util::IsAligned(offset, AesBlockSize), fs::ResultInvalidArgument()); R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultInvalidArgument()); return this->base_storage->OperateRange(dst, dst_size, op_id, offset, size, src, src_size); } }