/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once #include #include namespace ams::util { namespace impl { template constexpr inline size_t Log2 = Log2 + 1; template<> constexpr inline size_t Log2<1> = 0; } template constexpr inline T ReverseBits(T x, int sw_bits = 1, int swar_words = 1) { /* Check pre-conditions. */ AMS_ASSERT(0 <= swar_words && swar_words < (BITSIZEOF(T) + 1)); AMS_ASSERT(BITSIZEOF(T) % swar_words == 0); AMS_ASSERT(0 <= sw_bits && sw_bits < ((BITSIZEOF(T) / swar_words) + 1)); AMS_ASSERT((BITSIZEOF(T) / swar_words) % sw_bits == 0); using U = typename std::make_unsigned::type; const int word_size = BITSIZEOF(T) / swar_words; const int k = word_size - sw_bits; U u = std::bit_cast(x); for (int i = 1; i < BITSIZEOF(T); i <<= 1) { const U mask = static_cast(static_cast(-1) / ((static_cast(1) << i) + 1)); if (k & i) { u = static_cast(((u & mask) << i) | ((u & static_cast(~mask)) >> i)); } } return std::bit_cast(u); } template constexpr ALWAYS_INLINE T ReverseBytes(T x, int sw_bytes = 1, int swar_words = 1) { return ReverseBits(x, sw_bytes * BITSIZEOF(u8), swar_words); } template requires std::integral constexpr ALWAYS_INLINE T CombineBits(Args... args) { return (... | (T(1u) << args)); } template constexpr ALWAYS_INLINE T ResetLeastSignificantOneBit(T x) { return x & (x - 1); } template constexpr ALWAYS_INLINE T SetLeastSignificantZeroBit(T x) { return x | (x + 1); } template constexpr ALWAYS_INLINE T ResetTrailingOnes(T x) { return x & (x + 1); } template constexpr ALWAYS_INLINE T SetTrailingZeros(T x) { return x | (x - 1); } template constexpr ALWAYS_INLINE T LeastSignificantOneBit(T x) { return x & ~(x - 1); } template constexpr ALWAYS_INLINE T LeastSignificantZeroBit(T x) { return ~x & (x + 1); } template constexpr ALWAYS_INLINE T MaskTrailingZeros(T x) { return (~x) & (x - 1); } template constexpr ALWAYS_INLINE T MaskTrailingOnes(T x) { return x & ~(x + 1); } template constexpr ALWAYS_INLINE T MaskTrailingZerosAndLeastSignificantOneBit(T x) { return x ^ (x - 1); } template constexpr ALWAYS_INLINE T MaskTrailingOnesAndLeastSignificantZeroBit(T x) { return x ^ (x + 1); } template constexpr ALWAYS_INLINE int PopCount(T x) { using U = typename std::make_unsigned::type; U u = static_cast(x); if (std::is_constant_evaluated()) { /* https://en.wikipedia.org/wiki/Hamming_weight */ constexpr U m1 = U(-1) / 0x03; constexpr U m2 = U(-1) / 0x05; constexpr U m4 = U(-1) / 0x11; u = static_cast(u - ((u >> 1) & m1)); u = static_cast((u & m2) + ((u >> 2) & m2)); u = static_cast((u + (u >> 4)) & m4); for (size_t i = 0; i < impl::Log2; ++i) { const size_t shift = (0x1 << i) * BITSIZEOF(u8); u += u >> shift; } return static_cast(u & 0x7Fu); } else { if constexpr (std::is_same::value) { return __builtin_popcountll(u); } else if constexpr (std::is_same::value) { return __builtin_popcountl(u); } else { static_assert(sizeof(U) <= sizeof(unsigned int)); return __builtin_popcount(static_cast(u)); } } } template constexpr ALWAYS_INLINE int CountLeadingZeros(T x) { if (std::is_constant_evaluated()) { for (size_t i = 0; i < impl::Log2; ++i) { const size_t shift = (0x1 << i); x |= x >> shift; } return PopCount(static_cast(~x)); } else { using U = typename std::make_unsigned::type; if (const U u = static_cast(x); u != 0) { if constexpr (std::is_same::value) { return __builtin_clzll(u); } else if constexpr (std::is_same::value) { return __builtin_clzl(u); } else if constexpr(std::is_same::value) { return __builtin_clz(u); } else { static_assert(sizeof(U) < sizeof(unsigned int)); constexpr size_t BitDiff = BITSIZEOF(unsigned int) - BITSIZEOF(U); return __builtin_clz(static_cast(u)) - BitDiff; } } else { return BITSIZEOF(U); } } } static_assert(CountLeadingZeros(~static_cast(0)) == 0); static_assert(CountLeadingZeros(static_cast(1) << 5) == BITSIZEOF(u64) - 1 - 5); static_assert(CountLeadingZeros(static_cast(0)) == BITSIZEOF(u64)); template constexpr ALWAYS_INLINE int CountTrailingZeros(T x) { if (std::is_constant_evaluated()) { auto count = 0; for (size_t i = 0; i < BITSIZEOF(T) && (x & 1) == 0; ++i) { x >>= 1; ++count; } return count; } else { using U = typename std::make_unsigned::type; if (const U u = static_cast(x); u != 0) { if constexpr (std::is_same::value) { return __builtin_ctzll(u); } else if constexpr (std::is_same::value) { return __builtin_ctzl(u); } else if constexpr(std::is_same::value) { return __builtin_ctz(u); } else { static_assert(sizeof(U) < sizeof(unsigned int)); return __builtin_ctz(static_cast(u)); } } else { return BITSIZEOF(U); } } } static_assert(CountTrailingZeros(~static_cast(0)) == 0); static_assert(CountTrailingZeros(static_cast(1) << 5) == 5); static_assert(CountTrailingZeros(static_cast(0)) == BITSIZEOF(u64)); template constexpr ALWAYS_INLINE bool IsPowerOfTwo(T x) { return x > 0 && ResetLeastSignificantOneBit(x) == 0; } template constexpr ALWAYS_INLINE T CeilingPowerOfTwo(T x) { AMS_ASSERT(x > 0); return T(1) << (BITSIZEOF(T) - CountLeadingZeros(T(x - 1))); } template constexpr ALWAYS_INLINE T FloorPowerOfTwo(T x) { AMS_ASSERT(x > 0); return T(1) << (BITSIZEOF(T) - CountLeadingZeros(x) - 1); } template constexpr ALWAYS_INLINE T DivideUp(T v, U d) { using Unsigned = typename std::make_unsigned::type; using Sum = decltype(T{0} + U{0}); #if defined(ATMOSPHERE_IS_STRATOSPHERE) AMS_ASSERT(v >= 0); AMS_ASSERT(d > 0); AMS_ASSERT(static_cast(v) <= (std::numeric_limits::max() - static_cast(d) + static_cast(1))); #endif const Unsigned add = static_cast(d) - 1; return static_cast((static_cast(v) + static_cast(add)) / static_cast(d)); } template constexpr ALWAYS_INLINE T ScaleByConstantFactorUp(const T V) { /* Multiplying and dividing by large numerator/denominator can cause error to be introduced. */ /* This algorithm multiples/divides in stages, so as to mitigate this (particularly with large denominator). */ /* Justification for the algorithm. */ /* Calculate: (V * N) / D */ /* = (Quot_V * D + Rem_V) * (Quot_N * D + Rem_N) / D */ /* = (D^2 * (Quot_V * Quot_N) + D * (Quot_V * Rem_N + Rem_V * Quot_N) + Rem_V * Rem_N) / D */ /* = (D * Quot_V * Quot_N) + (Quot_V * Rem_N) + (Rem_V * Quot_N) + ((Rem_V * Rem_N) / D) */ /* Calculate quotients/remainders. */ const T Quot_V = V / D; const T Rem_V = V % D; constexpr T Quot_N = N / D; constexpr T Rem_N = N % D; /* Calculate the remainder multiplication, rounding up. */ const T rem_mult = ((Rem_V * Rem_N) + (D - 1)) / D; /* Calculate results. */ return (D * Quot_N * Quot_V) + (Quot_V * Rem_N) + (Rem_V * Quot_N) + rem_mult; } template constexpr ALWAYS_INLINE T RotateLeft(T v, int n) { using Unsigned = typename std::make_unsigned::type; static_assert(sizeof(Unsigned) == sizeof(T)); return static_cast(std::rotl(static_cast(v), n)); } template constexpr ALWAYS_INLINE T RotateRight(T v, int n) { using Unsigned = typename std::make_unsigned::type; static_assert(sizeof(Unsigned) == sizeof(T)); return static_cast(std::rotr(static_cast(v), n)); } }