/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
namespace ams::spl::smc {
Result SetConfig(spl::ConfigItem which, const void *address, const u64 *value, size_t num_qwords) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::SetConfig);
args.r[1] = static_cast(which);
args.r[2] = reinterpret_cast(address);
for (size_t i = 0; i < std::min(static_cast(4), num_qwords); i++) {
args.r[3 + i] = value[i];
}
svc::CallSecureMonitor(std::addressof(args));
return static_cast(args.r[0]);
}
Result GetConfig(u64 *out, size_t num_qwords, spl::ConfigItem which) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::GetConfig);
args.r[1] = static_cast(which);
svc::CallSecureMonitor(std::addressof(args));
for (size_t i = 0; i < std::min(static_cast(4), num_qwords); i++) {
out[i] = args.r[1 + i];
}
return static_cast(args.r[0]);
}
Result GetResult(Result *out, AsyncOperationKey op) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::GetResult);
args.r[1] = op.value;
svc::CallSecureMonitor(std::addressof(args));
*out = static_cast(args.r[1]);
return static_cast(args.r[0]);
}
Result GetResultData(Result *out, void *out_buf, size_t out_buf_size, AsyncOperationKey op) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::GetResultData);
args.r[1] = op.value;
args.r[2] = reinterpret_cast(out_buf);
args.r[3] = out_buf_size;
svc::CallSecureMonitor(std::addressof(args));
*out = static_cast(args.r[1]);
return static_cast(args.r[0]);
}
Result ModularExponentiate(AsyncOperationKey *out_op, const void *base, const void *exp, size_t exp_size, const void *mod) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::ModularExponentiate);
args.r[1] = reinterpret_cast(base);
args.r[2] = reinterpret_cast(exp);
args.r[3] = reinterpret_cast(mod);
args.r[4] = exp_size;
svc::CallSecureMonitor(std::addressof(args));
out_op->value = args.r[1];
return static_cast(args.r[0]);
}
Result GenerateRandomBytes(void *out, size_t size) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::GenerateRandomBytes);
args.r[1] = size;
svc::CallSecureMonitor(std::addressof(args));
if (args.r[0] == static_cast(Result::Success) && (size <= sizeof(args) - sizeof(args.r[0]))) {
std::memcpy(out, std::addressof(args.r[1]), size);
}
return static_cast(args.r[0]);
}
Result GenerateAesKek(AccessKey *out, const KeySource &source, u32 generation, u32 option) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::GenerateAesKek);
args.r[1] = source.data64[0];
args.r[2] = source.data64[1];
args.r[3] = generation;
args.r[4] = option;
svc::CallSecureMonitor(std::addressof(args));
out->data64[0] = args.r[1];
out->data64[1] = args.r[2];
return static_cast(args.r[0]);
}
Result LoadAesKey(u32 keyslot, const AccessKey &access_key, const KeySource &source) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::LoadAesKey);
args.r[1] = keyslot;
args.r[2] = access_key.data64[0];
args.r[3] = access_key.data64[1];
args.r[4] = source.data64[0];
args.r[5] = source.data64[1];
svc::CallSecureMonitor(std::addressof(args));
return static_cast(args.r[0]);
}
Result ComputeAes(AsyncOperationKey *out_op, u32 mode, const IvCtr &iv_ctr, u32 dst_addr, u32 src_addr, size_t size) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::ComputeAes);
args.r[1] = mode;
args.r[2] = iv_ctr.data64[0];
args.r[3] = iv_ctr.data64[1];
args.r[4] = src_addr;
args.r[5] = dst_addr;
args.r[6] = size;
svc::CallSecureMonitor(std::addressof(args));
out_op->value = args.r[1];
return static_cast(args.r[0]);
}
Result GenerateSpecificAesKey(AesKey *out_key, const KeySource &source, u32 generation, u32 which) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::GenerateSpecificAesKey);
args.r[1] = source.data64[0];
args.r[2] = source.data64[1];
args.r[3] = generation;
args.r[4] = which;
svc::CallSecureMonitor(std::addressof(args));
out_key->data64[0] = args.r[1];
out_key->data64[1] = args.r[2];
return static_cast(args.r[0]);
}
Result ComputeCmac(Cmac *out_mac, u32 keyslot, const void *data, size_t size) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::ComputeCmac);
args.r[1] = keyslot;
args.r[2] = reinterpret_cast(data);
args.r[3] = size;
svc::CallSecureMonitor(std::addressof(args));
out_mac->data64[0] = args.r[1];
out_mac->data64[1] = args.r[2];
return static_cast(args.r[0]);
}
Result ReencryptDeviceUniqueData(void *data, size_t size, const AccessKey &access_key_dec, const KeySource &source_dec, const AccessKey &access_key_enc, const KeySource &source_enc, u32 option) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::ReencryptDeviceUniqueData);
args.r[1] = reinterpret_cast(std::addressof(access_key_dec));
args.r[2] = reinterpret_cast(std::addressof(access_key_enc));
args.r[3] = option;
args.r[4] = reinterpret_cast(data);
args.r[5] = size;
args.r[6] = reinterpret_cast(std::addressof(source_dec));
args.r[7] = reinterpret_cast(std::addressof(source_enc));
svc::CallSecureMonitor(std::addressof(args));
return static_cast(args.r[0]);
}
Result DecryptDeviceUniqueData(void *data, size_t size, const AccessKey &access_key, const KeySource &source, DeviceUniqueDataMode mode) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::DecryptDeviceUniqueData);
args.r[1] = access_key.data64[0];
args.r[2] = access_key.data64[1];
args.r[3] = static_cast(mode);
args.r[4] = reinterpret_cast(data);
args.r[5] = size;
args.r[6] = source.data64[0];
args.r[7] = source.data64[1];
svc::CallSecureMonitor(std::addressof(args));
return static_cast(args.r[0]);
}
Result ModularExponentiateWithStorageKey(AsyncOperationKey *out_op, const void *base, const void *mod, ModularExponentiateWithStorageKeyMode mode) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::ModularExponentiateWithStorageKey);
args.r[1] = reinterpret_cast(base);
args.r[2] = reinterpret_cast(mod);
args.r[3] = static_cast(mode);
svc::CallSecureMonitor(std::addressof(args));
out_op->value = args.r[1];
return static_cast(args.r[0]);
}
Result PrepareEsDeviceUniqueKey(AsyncOperationKey *out_op, const void *base, const void *mod, const void *label_digest, size_t label_digest_size, u32 option) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::PrepareEsDeviceUniqueKey);
args.r[1] = reinterpret_cast(base);
args.r[2] = reinterpret_cast(mod);
std::memset(std::addressof(args.r[3]), 0, 4 * sizeof(args.r[3]));
std::memcpy(std::addressof(args.r[3]), label_digest, std::min(static_cast(4 * sizeof(args.r[3])), label_digest_size));
args.r[7] = option;
svc::CallSecureMonitor(std::addressof(args));
out_op->value = args.r[1];
return static_cast(args.r[0]);
}
Result LoadPreparedAesKey(u32 keyslot, const AccessKey &access_key) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::LoadPreparedAesKey);
args.r[1] = keyslot;
args.r[2] = access_key.data64[0];
args.r[3] = access_key.data64[1];
svc::CallSecureMonitor(std::addressof(args));
return static_cast(args.r[0]);
}
Result PrepareCommonEsTitleKey(AccessKey *out, const KeySource &source, u32 generation) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::PrepareCommonEsTitleKey);
args.r[1] = source.data64[0];
args.r[2] = source.data64[1];
args.r[3] = generation;
svc::CallSecureMonitor(std::addressof(args));
out->data64[0] = args.r[1];
out->data64[1] = args.r[2];
return static_cast(args.r[0]);
}
/* Deprecated functions. */
Result LoadEsDeviceKey(const void *data, size_t size, const AccessKey &access_key, const KeySource &source, u32 option) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::LoadEsDeviceKey);
args.r[1] = access_key.data64[0];
args.r[2] = access_key.data64[1];
args.r[3] = option;
args.r[4] = reinterpret_cast(data);
args.r[5] = size;
args.r[6] = source.data64[0];
args.r[7] = source.data64[1];
svc::CallSecureMonitor(std::addressof(args));
return static_cast(args.r[0]);
}
Result DecryptDeviceUniqueData(size_t *out_size, void *data, size_t size, const AccessKey &access_key, const KeySource &source, u32 option) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::DecryptDeviceUniqueData);
args.r[1] = access_key.data64[0];
args.r[2] = access_key.data64[1];
args.r[3] = option;
args.r[4] = reinterpret_cast(data);
args.r[5] = size;
args.r[6] = source.data64[0];
args.r[7] = source.data64[1];
svc::CallSecureMonitor(std::addressof(args));
*out_size = static_cast(args.r[1]);
return static_cast(args.r[0]);
}
Result DecryptAndStoreGcKey(const void *data, size_t size, const AccessKey &access_key, const KeySource &source, u32 option) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::DecryptAndStoreGcKey);
args.r[1] = access_key.data64[0];
args.r[2] = access_key.data64[1];
args.r[3] = option;
args.r[4] = reinterpret_cast(data);
args.r[5] = size;
args.r[6] = source.data64[0];
args.r[7] = source.data64[1];
svc::CallSecureMonitor(std::addressof(args));
return static_cast(args.r[0]);
}
/* Atmosphere functions. */
namespace {
enum class IramCopyDirection {
FromIram = 0,
ToIram = 1,
};
inline Result AtmosphereIramCopy(uintptr_t dram_address, uintptr_t iram_address, size_t size, IramCopyDirection direction) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::AtmosphereIramCopy);
args.r[1] = dram_address;
args.r[2] = iram_address;
args.r[3] = size;
args.r[4] = static_cast(direction);
svc::CallSecureMonitor(std::addressof(args));
return static_cast(args.r[0]);
}
}
Result AtmosphereCopyToIram(uintptr_t iram_dst, const void *dram_src, size_t size) {
return AtmosphereIramCopy(reinterpret_cast(dram_src), iram_dst, size, IramCopyDirection::ToIram);
}
Result AtmosphereCopyFromIram(void *dram_dst, uintptr_t iram_src, size_t size) {
return AtmosphereIramCopy(reinterpret_cast(dram_dst), iram_src, size, IramCopyDirection::FromIram);
}
Result AtmosphereReadWriteRegister(uint64_t address, uint32_t mask, uint32_t value, uint32_t *out_value) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast(FunctionId::AtmosphereReadWriteRegister);
args.r[1] = address;
args.r[2] = mask;
args.r[3] = value;
svc::CallSecureMonitor(std::addressof(args));
*out_value = static_cast(args.r[1]);
return static_cast(args.r[0]);
}
Result AtmosphereGetEmummcConfig(void *out_config, void *out_paths, u32 storage_id) {
const u64 paths = reinterpret_cast(out_paths);
AMS_ABORT_UNLESS(util::IsAligned(paths, os::MemoryPageSize));
svc::SecureMonitorArguments args = {};
args.r[0] = static_cast(FunctionId::AtmosphereGetEmummcConfig);
args.r[1] = storage_id;
args.r[2] = paths;
svc::CallSecureMonitor(std::addressof(args));
std::memcpy(out_config, std::addressof(args.r[1]), sizeof(args) - sizeof(args.r[0]));
return static_cast(args.r[0]);
}
}