/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include "fssystem_read_only_block_cache_storage.hpp"
#include "fssystem_hierarchical_sha256_storage.hpp"
#include "fssystem_memory_resource_buffer_hold_storage.hpp"
namespace ams::fssystem {
namespace {
constexpr inline s32 AesCtrExTableCacheBlockSize = AesCtrCounterExtendedStorage::NodeSize;
constexpr inline s32 AesCtrExTableCacheCount = 8;
constexpr inline s32 IndirectTableCacheBlockSize = IndirectStorage::NodeSize;
constexpr inline s32 IndirectTableCacheCount = 8;
constexpr inline s32 IndirectDataCacheBlockSize = 32_KB;
constexpr inline s32 IndirectDataCacheCount = 16;
constexpr inline s32 SparseTableCacheBlockSize = SparseStorage::NodeSize;
constexpr inline s32 SparseTableCacheCount = 4;
//TODO: Better names for these?
//constexpr inline s32 CompressedDataBlockSize = 64_KB;
//constexpr inline s32 CompressedContinuousReadingSizeMax = 640_KB;
//constexpr inline s32 CompressedCacheBlockSize = 16_KB;
//constexpr inline s32 CompressedCacheCount = 32;
constexpr inline s32 AesCtrStorageCacheBlockSize = 0x200;
constexpr inline s32 AesCtrStorageCacheCount = 9;
class SharedNcaBodyStorage : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(SharedNcaBodyStorage);
NON_MOVEABLE(SharedNcaBodyStorage);
private:
std::shared_ptr m_storage;
std::shared_ptr m_nca_reader;
public:
SharedNcaBodyStorage(std::shared_ptr s, std::shared_ptr r) : m_storage(std::move(s)), m_nca_reader(std::move(r)) {
/* ... */
}
virtual Result Read(s64 offset, void *buffer, size_t size) override {
/* Validate pre-conditions. */
AMS_ASSERT(m_storage != nullptr);
/* Read from the base storage. */
return m_storage->Read(offset, buffer, size);
}
virtual Result GetSize(s64 *out) override {
/* Validate pre-conditions. */
AMS_ASSERT(m_storage != nullptr);
return m_storage->GetSize(out);
}
virtual Result Flush() override {
/* Validate pre-conditions. */
AMS_ASSERT(m_storage != nullptr);
return m_storage->Flush();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
/* Validate pre-conditions. */
AMS_ASSERT(m_storage != nullptr);
/* Read from the base storage. */
return m_storage->Write(offset, buffer, size);
}
virtual Result SetSize(s64 size) override {
/* Validate pre-conditions. */
AMS_ASSERT(m_storage != nullptr);
return m_storage->SetSize(size);
}
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override {
/* Validate pre-conditions. */
AMS_ASSERT(m_storage != nullptr);
return m_storage->OperateRange(dst, dst_size, op_id, offset, size, src, src_size);
}
};
class AesCtrStorageExternal : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(AesCtrStorageExternal);
NON_MOVEABLE(AesCtrStorageExternal);
public:
static constexpr size_t BlockSize = crypto::Aes128CtrEncryptor::BlockSize;
static constexpr size_t KeySize = crypto::Aes128CtrEncryptor::KeySize;
static constexpr size_t IvSize = crypto::Aes128CtrEncryptor::IvSize;
private:
std::shared_ptr m_base_storage;
u8 m_iv[IvSize];
DecryptAesCtrFunction m_decrypt_function;
s32 m_key_index;
u8 m_encrypted_key[KeySize];
public:
AesCtrStorageExternal(std::shared_ptr bs, const void *enc_key, size_t enc_key_size, const void *iv, size_t iv_size, DecryptAesCtrFunction df, s32 kidx) : m_base_storage(std::move(bs)), m_decrypt_function(df), m_key_index(kidx) {
AMS_ASSERT(bs != nullptr);
AMS_ASSERT(enc_key_size == KeySize);
AMS_ASSERT(iv != nullptr);
AMS_ASSERT(iv_size == IvSize);
AMS_UNUSED(iv_size);
std::memcpy(m_iv, iv, IvSize);
std::memcpy(m_encrypted_key, enc_key, enc_key_size);
}
virtual Result Read(s64 offset, void *buffer, size_t size) override {
/* Allow zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
/* NOTE: For some reason, Nintendo uses InvalidArgument instead of InvalidOffset/InvalidSize here. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
R_UNLESS(util::IsAligned(offset, BlockSize), fs::ResultInvalidArgument());
R_UNLESS(util::IsAligned(size, BlockSize), fs::ResultInvalidArgument());
/* Read the data. */
R_TRY(m_base_storage->Read(offset, buffer, size));
/* Temporarily increase our thread priority. */
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
/* Allocate a pooled buffer for decryption. */
PooledBuffer pooled_buffer;
pooled_buffer.AllocateParticularlyLarge(size, BlockSize);
AMS_ASSERT(pooled_buffer.GetSize() >= BlockSize);
/* Setup the counter. */
u8 ctr[IvSize];
std::memcpy(ctr, m_iv, IvSize);
AddCounter(ctr, IvSize, offset / BlockSize);
/* Setup tracking. */
size_t remaining_size = size;
s64 cur_offset = 0;
while (remaining_size > 0) {
/* Get the current size to process. */
size_t cur_size = std::min(pooled_buffer.GetSize(), remaining_size);
char *dst = static_cast(buffer) + cur_offset;
/* Decrypt into the temporary buffer */
m_decrypt_function(pooled_buffer.GetBuffer(), cur_size, m_key_index, m_encrypted_key, KeySize, ctr, IvSize, dst, cur_size);
/* Copy to the destination. */
std::memcpy(dst, pooled_buffer.GetBuffer(), cur_size);
/* Update tracking. */
cur_offset += cur_size;
remaining_size -= cur_size;
if (remaining_size > 0) {
AddCounter(ctr, IvSize, cur_size / BlockSize);
}
}
return ResultSuccess();
}
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override {
switch (op_id) {
case fs::OperationId::QueryRange:
{
/* Validate that we have an output range info. */
R_UNLESS(dst != nullptr, fs::ResultNullptrArgument());
R_UNLESS(dst_size == sizeof(fs::QueryRangeInfo), fs::ResultInvalidSize());
/* Operate on our base storage. */
R_TRY(m_base_storage->OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
/* Add in new flags. */
fs::QueryRangeInfo new_info;
new_info.Clear();
new_info.aes_ctr_key_type = static_cast(m_key_index >= 0 ? fs::AesCtrKeyTypeFlag::InternalKeyForHardwareAes : fs::AesCtrKeyTypeFlag::ExternalKeyForHardwareAes);
/* Merge the new info in. */
reinterpret_cast(dst)->Merge(new_info);
return ResultSuccess();
}
default:
{
/* Operate on our base storage. */
R_TRY(m_base_storage->OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
return ResultSuccess();
}
}
}
virtual Result GetSize(s64 *out) override {
return m_base_storage->GetSize(out);
}
virtual Result Flush() override {
return ResultSuccess();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
AMS_UNUSED(offset, buffer, size);
return fs::ResultUnsupportedOperationInAesCtrStorageExternalA();
}
virtual Result SetSize(s64 size) override {
AMS_UNUSED(size);
return fs::ResultUnsupportedOperationInAesCtrStorageExternalB();
}
};
template
class SwitchStorage : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(SwitchStorage);
NON_MOVEABLE(SwitchStorage);
private:
std::shared_ptr m_true_storage;
std::shared_ptr m_false_storage;
F m_truth_function;
private:
ALWAYS_INLINE std::shared_ptr &SelectStorage() {
return m_truth_function() ? m_true_storage : m_false_storage;
}
public:
SwitchStorage(std::shared_ptr t, std::shared_ptr f, F func) : m_true_storage(std::move(t)), m_false_storage(std::move(f)), m_truth_function(func) { /* ... */ }
virtual Result Read(s64 offset, void *buffer, size_t size) override {
return this->SelectStorage()->Read(offset, buffer, size);
}
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override {
switch (op_id) {
case fs::OperationId::Invalidate:
{
R_TRY(m_true_storage->OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
R_TRY(m_false_storage->OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
return ResultSuccess();
}
case fs::OperationId::QueryRange:
{
R_TRY(this->SelectStorage()->OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
return ResultSuccess();
}
default:
return fs::ResultUnsupportedOperationInSwitchStorageA();
}
}
virtual Result GetSize(s64 *out) override {
return this->SelectStorage()->GetSize(out);
}
virtual Result Flush() override {
return this->SelectStorage()->Flush();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return this->SelectStorage()->Write(offset, buffer, size);
}
virtual Result SetSize(s64 size) override {
return this->SelectStorage()->SetSize(size);
}
};
inline s64 GetFsOffset(const NcaReader &reader, s32 fs_index) {
return static_cast(reader.GetFsOffset(fs_index));
}
inline s64 GetFsEndOffset(const NcaReader &reader, s32 fs_index) {
return static_cast(reader.GetFsEndOffset(fs_index));
}
inline bool IsUsingHwAesCtrForSpeedEmulation() {
auto mode = fssystem::SpeedEmulationConfiguration::GetSpeedEmulationMode();
return mode == fs::SpeedEmulationMode::None || mode == fs::SpeedEmulationMode::Slower;
}
using Sha256DataRegion = NcaFsHeader::Region;
using IntegrityLevelInfo = NcaFsHeader::HashData::IntegrityMetaInfo::LevelHashInfo;
using IntegrityDataInfo = IntegrityLevelInfo::HierarchicalIntegrityVerificationLevelInformation;
// inline const Sha256DataRegion &GetSha256DataRegion(const NcaFsHeader::HashData &hash_data) {
// return hash_data.hierarchical_sha256_data.hash_layer_region[1];
// }
// inline const IntegrityDataInfo &GetIntegrityDataInfo(const NcaFsHeader::HashData &hash_data) {
// return hash_data.integrity_meta_info.level_hash_info.info[hash_data.integrity_meta_info.level_hash_info.max_layers - 2];
// }
}
Result NcaFileSystemDriver::OpenStorageWithContext(std::shared_ptr *out, std::shared_ptr *out_splitter, NcaFsHeaderReader *out_header_reader, s32 fs_index, StorageContext *ctx) {
/* Open storage. */
R_TRY(this->OpenStorageImpl(out, out_header_reader, fs_index, ctx));
/* If we have a compressed storage, use it as splitter. */
if (ctx->compressed_storage != nullptr) {
*out_splitter = std::move(ctx->compressed_storage);
} else {
/* Otherwise, allocate a default splitter. */
*out_splitter = fssystem::AllocateShared();
R_UNLESS(*out_splitter != nullptr, fs::ResultAllocationFailureInAllocateShared());
}
return ResultSuccess();
}
Result NcaFileSystemDriver::OpenStorageImpl(std::shared_ptr *out, NcaFsHeaderReader *out_header_reader, s32 fs_index, StorageContext *ctx) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(out_header_reader != nullptr);
AMS_ASSERT(0 <= fs_index && fs_index < NcaHeader::FsCountMax);
/* Validate the fs index. */
R_UNLESS(m_reader->HasFsInfo(fs_index), fs::ResultPartitionNotFound());
/* Initialize our header reader for the fs index. */
R_TRY(out_header_reader->Initialize(*m_reader, fs_index));
/* Declare the storage we're opening. */
std::shared_ptr storage;
/* Process sparse layer. */
s64 fs_data_offset = 0;
if (out_header_reader->ExistsSparseLayer()) {
/* Create the sparse storage. */
R_TRY(this->CreateSparseStorage(std::addressof(storage), std::addressof(fs_data_offset), ctx != nullptr ? std::addressof(ctx->current_sparse_storage) : nullptr, ctx != nullptr ? std::addressof(ctx->sparse_storage_meta_storage) : nullptr, fs_index, out_header_reader->GetAesCtrUpperIv(), out_header_reader->GetSparseInfo()));
} else {
/* Get the data offsets. */
fs_data_offset = GetFsOffset(*m_reader, fs_index);
const auto fs_end_offset = GetFsEndOffset(*m_reader, fs_index);
/* Validate that we're within range. */
const auto data_size = fs_end_offset - fs_data_offset;
R_UNLESS(data_size > 0, fs::ResultInvalidNcaHeader());
/* Create the body substorage. */
R_TRY(this->CreateBodySubStorage(std::addressof(storage), fs_data_offset, data_size));
/* Potentially save the body substorage to our context. */
if (ctx != nullptr) {
ctx->body_substorage = storage;
}
}
/* Process patch layer. */
const auto &patch_info = out_header_reader->GetPatchInfo();
if (patch_info.HasAesCtrExTable()) {
/* Check the encryption type. */
AMS_ASSERT(out_header_reader->GetEncryptionType() == NcaFsHeader::EncryptionType::AesCtrEx);
/* Create the ex meta storage. */
std::shared_ptr aes_ctr_ex_storage_meta_storage;
R_TRY(this->CreateAesCtrExMetaStorage(std::addressof(aes_ctr_ex_storage_meta_storage), storage, fs_data_offset, out_header_reader->GetAesCtrUpperIv(), patch_info));
/* Create the ex storage. */
std::shared_ptr aes_ctr_ex_storage;
R_TRY(this->CreateAesCtrExStorage(std::addressof(aes_ctr_ex_storage), ctx != nullptr ? std::addressof(ctx->aes_ctr_ex_storage) : nullptr, std::move(storage), aes_ctr_ex_storage_meta_storage, fs_data_offset, out_header_reader->GetAesCtrUpperIv(), patch_info));
/* Set the base storage as the ex storage. */
storage = std::move(aes_ctr_ex_storage);
/* Potentially save storages to our context. */
if (ctx != nullptr) {
ctx->aes_ctr_ex_storage_meta_storage = aes_ctr_ex_storage_meta_storage;
ctx->aes_ctr_ex_storage_data_storage = storage;
ctx->fs_data_storage = storage;
}
} else {
/* Create the appropriate storage for the encryption type. */
switch (out_header_reader->GetEncryptionType()) {
case NcaFsHeader::EncryptionType::None:
/* If there's no encryption, use the base storage we made previously. */
break;
case NcaFsHeader::EncryptionType::AesXts:
R_TRY(this->CreateAesXtsStorage(std::addressof(storage), std::move(storage), fs_data_offset));
break;
case NcaFsHeader::EncryptionType::AesCtr:
R_TRY(this->CreateAesCtrStorage(std::addressof(storage), std::move(storage), fs_data_offset, out_header_reader->GetAesCtrUpperIv(), AlignmentStorageRequirement_None));
break;
default:
return fs::ResultInvalidNcaFsHeaderEncryptionType();
}
/* Potentially save storages to our context. */
if (ctx != nullptr) {
ctx->fs_data_storage = storage;
}
}
/* Process indirect layer. */
if (patch_info.HasIndirectTable()) {
/* Create the indirect meta storage */
std::shared_ptr indirect_storage_meta_storage;
R_TRY(this->CreateIndirectStorageMetaStorage(std::addressof(indirect_storage_meta_storage), storage, patch_info));
/* Potentially save the indirect meta storage to our context. */
if (ctx != nullptr) {
ctx->indirect_storage_meta_storage = indirect_storage_meta_storage;
}
/* Get the original indirectable storage. */
std::shared_ptr original_indirectable_storage;
if (m_original_reader != nullptr && m_original_reader->HasFsInfo(fs_index)) {
/* Create a driver for the original. */
NcaFileSystemDriver original_driver(m_original_reader, m_allocator, m_buffer_manager, m_hash_generator_factory_selector);
/* Create a header reader for the original. */
NcaFsHeaderReader original_header_reader;
R_TRY(original_header_reader.Initialize(*m_original_reader, fs_index));
/* Open original indirectable storage. */
R_TRY(original_driver.OpenIndirectableStorageAsOriginal(std::addressof(original_indirectable_storage), std::addressof(original_header_reader), ctx));
} else if (ctx != nullptr && ctx->external_original_storage != nullptr) {
/* Use the external original storage. */
original_indirectable_storage = ctx->external_original_storage;
} else {
/* Allocate a dummy memory storage as original storage. */
original_indirectable_storage = fssystem::AllocateShared(nullptr, 0);
R_UNLESS(original_indirectable_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
}
/* Create the indirect storage. */
std::shared_ptr indirect_storage;
R_TRY(this->CreateIndirectStorage(std::addressof(indirect_storage), ctx != nullptr ? std::addressof(ctx->indirect_storage) : nullptr, std::move(storage), std::move(original_indirectable_storage), std::move(indirect_storage_meta_storage), patch_info));
/* Set storage as the indirect storage. */
storage = std::move(indirect_storage);
}
/* Check if we're sparse or requested to skip the integrity layer. */
if (out_header_reader->ExistsSparseLayer() || (ctx != nullptr && ctx->open_raw_storage)) {
*out = std::move(storage);
return ResultSuccess();
}
/* Process hash/integrity layer. */
switch (out_header_reader->GetHashType()) {
case NcaFsHeader::HashType::HierarchicalSha256Hash:
R_TRY(this->CreateSha256Storage(std::addressof(storage), std::move(storage), out_header_reader->GetHashData().hierarchical_sha256_data));
break;
case NcaFsHeader::HashType::HierarchicalIntegrityHash:
R_TRY(this->CreateIntegrityVerificationStorage(std::addressof(storage), std::move(storage), out_header_reader->GetHashData().integrity_meta_info));
break;
default:
return fs::ResultInvalidNcaFsHeaderHashType();
}
/* Process compression layer. */
if (out_header_reader->ExistsCompressionLayer()) {
R_TRY(this->CreateCompressedStorage(std::addressof(storage), ctx != nullptr ? std::addressof(ctx->compressed_storage) : nullptr, ctx != nullptr ? std::addressof(ctx->compressed_storage_meta_storage) : nullptr, std::move(storage), out_header_reader->GetCompressionInfo()));
}
/* Set output storage. */
*out = std::move(storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::OpenIndirectableStorageAsOriginal(std::shared_ptr *out, const NcaFsHeaderReader *header_reader, StorageContext *ctx) {
/* Get the fs index. */
const auto fs_index = header_reader->GetFsIndex();
/* Declare the storage we're opening. */
std::shared_ptr storage;
/* Process sparse layer. */
s64 fs_data_offset = 0;
if (header_reader->ExistsSparseLayer()) {
/* Create the sparse storage. */
R_TRY(this->CreateSparseStorage(std::addressof(storage), std::addressof(fs_data_offset), ctx != nullptr ? std::addressof(ctx->original_sparse_storage) : nullptr, ctx != nullptr ? std::addressof(ctx->sparse_storage_meta_storage) : nullptr, fs_index, header_reader->GetAesCtrUpperIv(), header_reader->GetSparseInfo()));
} else {
/* Get the data offsets. */
fs_data_offset = GetFsOffset(*m_reader, fs_index);
const auto fs_end_offset = GetFsEndOffset(*m_reader, fs_index);
/* Validate that we're within range. */
const auto data_size = fs_end_offset - fs_data_offset;
R_UNLESS(data_size > 0, fs::ResultInvalidNcaHeader());
/* Create the body substorage. */
R_TRY(this->CreateBodySubStorage(std::addressof(storage), fs_data_offset, data_size));
}
/* Create the appropriate storage for the encryption type. */
switch (header_reader->GetEncryptionType()) {
case NcaFsHeader::EncryptionType::None:
/* If there's no encryption, use the base storage we made previously. */
break;
case NcaFsHeader::EncryptionType::AesXts:
R_TRY(this->CreateAesXtsStorage(std::addressof(storage), std::move(storage), fs_data_offset));
break;
case NcaFsHeader::EncryptionType::AesCtr:
R_TRY(this->CreateAesCtrStorage(std::addressof(storage), std::move(storage), fs_data_offset, header_reader->GetAesCtrUpperIv(), AlignmentStorageRequirement_CacheBlockSize));
break;
default:
return fs::ResultInvalidNcaFsHeaderEncryptionType();
}
/* Set output storage. */
*out = std::move(storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateBodySubStorage(std::shared_ptr *out, s64 offset, s64 size) {
/* Create the body storage. */
auto body_storage = fssystem::AllocateShared(m_reader->GetSharedBodyStorage(), m_reader);
R_UNLESS(body_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Get the body storage size. */
s64 body_size = 0;
R_TRY(body_storage->GetSize(std::addressof(body_size)));
/* Check that we're within range. */
R_UNLESS(offset + size <= body_size, fs::ResultNcaBaseStorageOutOfRangeB());
/* Create substorage. */
auto body_substorage = fssystem::AllocateShared(std::move(body_storage), offset, size);
R_UNLESS(body_substorage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Set the output storage. */
*out = std::move(body_substorage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateAesCtrStorage(std::shared_ptr *out, std::shared_ptr base_storage, s64 offset, const NcaAesCtrUpperIv &upper_iv, AlignmentStorageRequirement alignment_storage_requirement) {
/* Check pre-conditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
/* Enforce alignment of accesses to base storage. */
switch (alignment_storage_requirement) {
case AlignmentStorageRequirement_CacheBlockSize:
{
/* Get the base storage's size. */
s64 base_size;
R_TRY(base_storage->GetSize(std::addressof(base_size)));
/* Create buffered storage. */
auto buffered_storage = fssystem::AllocateShared();
R_UNLESS(buffered_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the buffered storage. */
R_TRY(buffered_storage->Initialize(fs::SubStorage(std::move(base_storage), 0, base_size), m_buffer_manager, AesCtrStorageCacheBlockSize, AesCtrStorageCacheCount));
/* Enable bulk read in the buffered storage. */
buffered_storage->EnableBulkRead();
/* Use the buffered storage in place of our base storage. */
base_storage = std::move(buffered_storage);
}
break;
case AlignmentStorageRequirement_None:
default:
/* No alignment enforcing is required. */
break;
}
/* Create the iv. */
u8 iv[AesCtrStorageBySharedPointer::IvSize] = {};
AesCtrStorageBySharedPointer::MakeIv(iv, sizeof(iv), upper_iv.value, offset);
/* Create the ctr storage. */
std::shared_ptr aes_ctr_storage;
if (m_reader->HasExternalDecryptionKey()) {
aes_ctr_storage = fssystem::AllocateShared(std::move(base_storage), m_reader->GetExternalDecryptionKey(), AesCtrStorageExternal::KeySize, iv, AesCtrStorageExternal::IvSize, m_reader->GetExternalDecryptAesCtrFunctionForExternalKey(), -1);
R_UNLESS(aes_ctr_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
} else {
/* Create software decryption storage. */
auto sw_storage = fssystem::AllocateShared(base_storage, m_reader->GetDecryptionKey(NcaHeader::DecryptionKey_AesCtr), AesCtrStorageBySharedPointer::KeySize, iv, AesCtrStorageBySharedPointer::IvSize);
R_UNLESS(sw_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* If we have a hardware key and should use it, make the hardware decryption storage. */
if (m_reader->HasInternalDecryptionKeyForAesHw() && !m_reader->IsSoftwareAesPrioritized()) {
auto hw_storage = fssystem::AllocateShared(base_storage, m_reader->GetDecryptionKey(NcaHeader::DecryptionKey_AesCtrHw), AesCtrStorageExternal::KeySize, iv, AesCtrStorageExternal::IvSize, m_reader->GetExternalDecryptAesCtrFunction(), GetKeyTypeValue(m_reader->GetKeyIndex(), m_reader->GetKeyGeneration()));
R_UNLESS(hw_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Create the selection storage. */
auto switch_storage = fssystem::AllocateShared>(std::move(hw_storage), std::move(sw_storage), IsUsingHwAesCtrForSpeedEmulation);
R_UNLESS(switch_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Use the selection storage. */
aes_ctr_storage = std::move(switch_storage);
} else {
/* Otherwise, just use the software decryption storage. */
aes_ctr_storage = std::move(sw_storage);
}
}
/* Create alignment matching storage. */
auto aligned_storage = fssystem::AllocateShared>(std::move(aes_ctr_storage));
R_UNLESS(aligned_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Set the out storage. */
*out = std::move(aligned_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateAesXtsStorage(std::shared_ptr *out, std::shared_ptr base_storage, s64 offset) {
/* Check pre-conditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
/* Create the iv. */
u8 iv[AesXtsStorageBySharedPointer::IvSize] = {};
AesXtsStorageBySharedPointer::MakeAesXtsIv(iv, sizeof(iv), offset, NcaHeader::XtsBlockSize);
/* Make the aes xts storage. */
const auto * const key1 = m_reader->GetDecryptionKey(NcaHeader::DecryptionKey_AesXts1);
const auto * const key2 = m_reader->GetDecryptionKey(NcaHeader::DecryptionKey_AesXts2);
auto xts_storage = fssystem::AllocateShared(std::move(base_storage), key1, key2, AesXtsStorageBySharedPointer::KeySize, iv, AesXtsStorageBySharedPointer::IvSize, NcaHeader::XtsBlockSize);
R_UNLESS(xts_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Create alignment matching storage. */
auto aligned_storage = fssystem::AllocateShared>(std::move(xts_storage));
R_UNLESS(aligned_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Set the out storage. */
*out = std::move(aligned_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateSparseStorageMetaStorage(std::shared_ptr *out, std::shared_ptr base_storage, s64 offset, const NcaAesCtrUpperIv &upper_iv, const NcaSparseInfo &sparse_info) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
/* Get the base storage size. */
s64 base_size = 0;
R_TRY(base_storage->GetSize(std::addressof(base_size)));
/* Get the meta extents. */
const auto meta_offset = sparse_info.bucket.offset;
const auto meta_size = sparse_info.bucket.size;
R_UNLESS(meta_offset + meta_size - offset <= base_size, fs::ResultNcaBaseStorageOutOfRangeB());
/* Create the encrypted storage. */
auto enc_storage = fssystem::AllocateShared(std::move(base_storage), meta_offset, meta_size);
R_UNLESS(enc_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Create the decrypted storage. */
std::shared_ptr decrypted_storage;
R_TRY(this->CreateAesCtrStorage(std::addressof(decrypted_storage), std::move(enc_storage), offset + meta_offset, sparse_info.MakeAesCtrUpperIv(upper_iv), AlignmentStorageRequirement_None));
/* Create meta storage. */
auto meta_storage = fssystem::AllocateShared();
R_UNLESS(meta_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the meta storage. */
R_TRY(meta_storage->Initialize(fs::SubStorage(std::move(decrypted_storage), 0, meta_size), m_buffer_manager, SparseTableCacheBlockSize, SparseTableCacheCount));
/* Set the output. */
*out = std::move(meta_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateSparseStorageCore(std::shared_ptr *out, std::shared_ptr base_storage, s64 base_size, std::shared_ptr meta_storage, const NcaSparseInfo &sparse_info, bool external_info) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
AMS_ASSERT(meta_storage != nullptr);
/* Read and verify the bucket tree header. */
BucketTree::Header header;
std::memcpy(std::addressof(header), sparse_info.bucket.header, sizeof(header));
R_TRY(header.Verify());
/* Determine storage extents. */
const auto node_offset = 0;
const auto node_size = SparseStorage::QueryNodeStorageSize(header.entry_count);
const auto entry_offset = node_offset + node_size;
const auto entry_size = SparseStorage::QueryEntryStorageSize(header.entry_count);
/* Create the sparse storage. */
auto sparse_storage = fssystem::AllocateShared();
R_UNLESS(sparse_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Sanity check that we can be doing this. */
AMS_ASSERT(header.entry_count != 0);
/* Initialize the sparse storage. */
R_TRY(sparse_storage->Initialize(m_allocator, fs::SubStorage(meta_storage, node_offset, node_size), fs::SubStorage(meta_storage, entry_offset, entry_size), header.entry_count));
/* If not external, set the data storage. */
if (!external_info) {
sparse_storage->SetDataStorage(fs::SubStorage(std::move(base_storage), 0, base_size));
}
/* Set the output. */
*out = std::move(sparse_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateSparseStorage(std::shared_ptr *out, s64 *out_fs_data_offset, std::shared_ptr *out_sparse_storage, std::shared_ptr *out_meta_storage, s32 index, const NcaAesCtrUpperIv &upper_iv, const NcaSparseInfo &sparse_info) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(out_fs_data_offset != nullptr);
/* Check the sparse info generation. */
R_UNLESS(sparse_info.generation != 0, fs::ResultInvalidNcaHeader());
/* Read and verify the bucket tree header. */
BucketTree::Header header;
std::memcpy(std::addressof(header), sparse_info.bucket.header, sizeof(header));
R_TRY(header.Verify());
/* Determine the storage extents. */
const auto fs_offset = GetFsOffset(*m_reader, index);
const auto fs_end_offset = GetFsEndOffset(*m_reader, index);
const auto fs_size = fs_end_offset - fs_offset;
/* Create the sparse storage. */
std::shared_ptr sparse_storage;
if (header.entry_count != 0) {
/* Create the body substorage. */
std::shared_ptr body_substorage;
R_TRY(this->CreateBodySubStorage(std::addressof(body_substorage), sparse_info.physical_offset, sparse_info.GetPhysicalSize()));
/* Create the meta storage. */
std::shared_ptr meta_storage;
R_TRY(this->CreateSparseStorageMetaStorage(std::addressof(meta_storage), body_substorage, sparse_info.physical_offset, upper_iv, sparse_info));
/* Potentially set the output meta storage. */
if (out_meta_storage != nullptr) {
*out_meta_storage = meta_storage;
}
/* Create the sparse storage. */
R_TRY(this->CreateSparseStorageCore(std::addressof(sparse_storage), body_substorage, sparse_info.GetPhysicalSize(), std::move(meta_storage), sparse_info, false));
} else {
/* If there are no entries, there's nothing to actually do. */
sparse_storage = fssystem::AllocateShared();
R_UNLESS(sparse_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
sparse_storage->Initialize(fs_size);
}
/* Potentially set the output sparse storage. */
if (out_sparse_storage != nullptr) {
*out_sparse_storage = sparse_storage;
}
/* Set the output fs data offset. */
*out_fs_data_offset = fs_offset;
/* Set the output storage. */
*out = std::move(sparse_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateAesCtrExMetaStorage(std::shared_ptr *out, std::shared_ptr base_storage, s64 offset, const NcaAesCtrUpperIv &upper_iv, const NcaPatchInfo &patch_info) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
AMS_ASSERT(patch_info.HasAesCtrExTable());
/* Validate patch info extents. */
R_UNLESS(patch_info.indirect_size > 0, fs::ResultInvalidNcaPatchInfoIndirectSize());
R_UNLESS(patch_info.aes_ctr_ex_size > 0, fs::ResultInvalidNcaPatchInfoAesCtrExSize());
R_UNLESS(patch_info.indirect_size + patch_info.indirect_offset <= patch_info.aes_ctr_ex_offset, fs::ResultInvalidNcaPatchInfoAesCtrExOffset());
/* Get the base storage size. */
s64 base_size;
R_TRY(base_storage->GetSize(std::addressof(base_size)));
/* Get and validate the meta extents. */
const s64 meta_offset = patch_info.aes_ctr_ex_offset;
const s64 meta_size = util::AlignUp(static_cast(patch_info.aes_ctr_ex_size), NcaHeader::XtsBlockSize);
R_UNLESS(meta_offset + meta_size <= base_size, fs::ResultNcaBaseStorageOutOfRangeB());
/* Create the encrypted storage. */
auto enc_storage = fssystem::AllocateShared(std::move(base_storage), meta_offset, meta_size);
R_UNLESS(enc_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Create the decrypted storage. */
std::shared_ptr decrypted_storage;
R_TRY(this->CreateAesCtrStorage(std::addressof(decrypted_storage), std::move(enc_storage), offset + meta_offset, upper_iv, AlignmentStorageRequirement_None));
/* Create meta storage. */
auto meta_storage = fssystem::AllocateShared();
R_UNLESS(meta_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the meta storage. */
R_TRY(meta_storage->Initialize(fs::SubStorage(std::move(decrypted_storage), 0, meta_size), m_buffer_manager, AesCtrExTableCacheBlockSize, AesCtrExTableCacheCount));
/* Create an alignment-matching storage. */
using AlignedStorage = AlignmentMatchingStorage;
auto aligned_storage = fssystem::AllocateShared(std::move(meta_storage));
R_UNLESS(aligned_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Set the output. */
*out = std::move(aligned_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateAesCtrExStorage(std::shared_ptr *out, std::shared_ptr *out_ext, std::shared_ptr base_storage, std::shared_ptr meta_storage, s64 counter_offset, const NcaAesCtrUpperIv &upper_iv, const NcaPatchInfo &patch_info) {
/* Validate pre-conditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
AMS_ASSERT(meta_storage != nullptr);
AMS_ASSERT(patch_info.HasAesCtrExTable());
/* Read the bucket tree header. */
BucketTree::Header header;
std::memcpy(std::addressof(header), patch_info.aes_ctr_ex_header, sizeof(header));
R_TRY(header.Verify());
/* Determine the bucket extents. */
const auto entry_count = header.entry_count;
const s64 data_offset = 0;
const s64 data_size = patch_info.aes_ctr_ex_offset;
const s64 node_offset = 0;
const s64 node_size = AesCtrCounterExtendedStorage::QueryNodeStorageSize(entry_count);
const s64 entry_offset = node_offset + node_size;
const s64 entry_size = AesCtrCounterExtendedStorage::QueryEntryStorageSize(entry_count);
/* Create bucket storages. */
fs::SubStorage data_storage(std::move(base_storage), data_offset, data_size);
fs::SubStorage node_storage(meta_storage, node_offset, node_size);
fs::SubStorage entry_storage(meta_storage, entry_offset, entry_size);
/* Get the secure value. */
const auto secure_value = upper_iv.part.secure_value;
/* Create the aes ctr ex storage. */
std::shared_ptr aes_ctr_ex_storage;
if (m_reader->HasExternalDecryptionKey()) {
/* Create the decryptor. */
std::unique_ptr decryptor;
R_TRY(AesCtrCounterExtendedStorage::CreateExternalDecryptor(std::addressof(decryptor), m_reader->GetExternalDecryptAesCtrFunctionForExternalKey(), -1));
/* Create the aes ctr ex storage. */
auto impl_storage = fssystem::AllocateShared();
R_UNLESS(impl_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the aes ctr ex storage. */
R_TRY(impl_storage->Initialize(m_allocator, m_reader->GetExternalDecryptionKey(), AesCtrStorageBySharedPointer::KeySize, secure_value, counter_offset, data_storage, node_storage, entry_storage, entry_count, std::move(decryptor)));
/* Potentially set the output implementation storage. */
if (out_ext != nullptr) {
*out_ext = impl_storage;
}
/* Set the implementation storage. */
aes_ctr_ex_storage = std::move(impl_storage);
} else {
/* Create the software decryptor. */
std::unique_ptr sw_decryptor;
R_TRY(AesCtrCounterExtendedStorage::CreateSoftwareDecryptor(std::addressof(sw_decryptor)));
/* Make the software storage. */
auto sw_storage = fssystem::AllocateShared();
R_UNLESS(sw_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the software storage. */
R_TRY(sw_storage->Initialize(m_allocator, m_reader->GetDecryptionKey(NcaHeader::DecryptionKey_AesCtr), AesCtrStorageBySharedPointer::KeySize, secure_value, counter_offset, data_storage, node_storage, entry_storage, entry_count, std::move(sw_decryptor)));
/* Potentially set the output implementation storage. */
if (out_ext != nullptr) {
*out_ext = sw_storage;
}
/* If we have a hardware key and should use it, make the hardware decryption storage. */
if (m_reader->HasInternalDecryptionKeyForAesHw() && !m_reader->IsSoftwareAesPrioritized()) {
/* Create the hardware decryptor. */
std::unique_ptr hw_decryptor;
R_TRY(AesCtrCounterExtendedStorage::CreateExternalDecryptor(std::addressof(hw_decryptor), m_reader->GetExternalDecryptAesCtrFunction(), GetKeyTypeValue(m_reader->GetKeyIndex(), m_reader->GetKeyGeneration())));
/* Create the hardware storage. */
auto hw_storage = fssystem::AllocateShared();
R_UNLESS(hw_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the hardware storage. */
R_TRY(hw_storage->Initialize(m_allocator, m_reader->GetDecryptionKey(NcaHeader::DecryptionKey_AesCtrHw), AesCtrStorageBySharedPointer::KeySize, secure_value, counter_offset, data_storage, node_storage, entry_storage, entry_count, std::move(hw_decryptor)));
/* Create the selection storage. */
auto switch_storage = fssystem::AllocateShared>(std::move(hw_storage), std::move(sw_storage), IsUsingHwAesCtrForSpeedEmulation);
R_UNLESS(switch_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Set the implementation storage. */
aes_ctr_ex_storage = std::move(switch_storage);
} else {
/* Set the implementation storage. */
aes_ctr_ex_storage = std::move(sw_storage);
}
}
/* Create an alignment-matching storage. */
using AlignedStorage = AlignmentMatchingStorage;
auto aligned_storage = fssystem::AllocateShared(std::move(aes_ctr_ex_storage));
R_UNLESS(aligned_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Set the output. */
*out = std::move(aligned_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateIndirectStorageMetaStorage(std::shared_ptr *out, std::shared_ptr base_storage, const NcaPatchInfo &patch_info) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
AMS_ASSERT(patch_info.HasIndirectTable());
/* Get the base storage size. */
s64 base_size = 0;
R_TRY(base_storage->GetSize(std::addressof(base_size)));
/* Check that we're within range. */
R_UNLESS(patch_info.indirect_offset + patch_info.indirect_size <= base_size, fs::ResultNcaBaseStorageOutOfRangeE());
/* Allocate the meta storage. */
auto meta_storage = fssystem::AllocateShared();
R_UNLESS(meta_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the meta storage. */
R_TRY(meta_storage->Initialize(fs::SubStorage(base_storage, patch_info.indirect_offset, patch_info.indirect_size), m_buffer_manager, IndirectTableCacheBlockSize, IndirectTableCacheCount));
/* Set the output. */
*out = std::move(meta_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateIndirectStorage(std::shared_ptr *out, std::shared_ptr *out_ind, std::shared_ptr base_storage, std::shared_ptr original_data_storage, std::shared_ptr meta_storage, const NcaPatchInfo &patch_info) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
AMS_ASSERT(meta_storage != nullptr);
AMS_ASSERT(patch_info.HasIndirectTable());
/* Read the bucket tree header. */
BucketTree::Header header;
std::memcpy(std::addressof(header), patch_info.indirect_header, sizeof(header));
R_TRY(header.Verify());
/* Determine the storage sizes. */
const auto node_size = IndirectStorage::QueryNodeStorageSize(header.entry_count);
const auto entry_size = IndirectStorage::QueryEntryStorageSize(header.entry_count);
R_UNLESS(node_size + entry_size <= patch_info.indirect_size, fs::ResultInvalidIndirectStorageSize());
/* Get the indirect data size. */
const s64 indirect_data_size = patch_info.indirect_offset;
AMS_ASSERT(util::IsAligned(indirect_data_size, NcaHeader::XtsBlockSize));
/* Create the indirect data storage. */
auto indirect_data_storage = fssystem::AllocateShared();
R_UNLESS(indirect_data_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the indirect data storage. */
R_TRY(indirect_data_storage->Initialize(fs::SubStorage(base_storage, 0, indirect_data_size), m_buffer_manager, IndirectDataCacheBlockSize, IndirectDataCacheCount));
/* Enable bulk read on the data storage. */
indirect_data_storage->EnableBulkRead();
/* Create the indirect storage. */
auto indirect_storage = fssystem::AllocateShared();
R_UNLESS(indirect_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the indirect storage. */
R_TRY(indirect_storage->Initialize(m_allocator, fs::SubStorage(meta_storage, 0, node_size), fs::SubStorage(meta_storage, node_size, entry_size), header.entry_count));
/* Get the original data size. */
s64 original_data_size;
R_TRY(original_data_storage->GetSize(std::addressof(original_data_size)));
/* Set the indirect storages. */
indirect_storage->SetStorage(0, fs::SubStorage(original_data_storage, 0, original_data_size));
indirect_storage->SetStorage(1, fs::SubStorage(indirect_data_storage, 0, indirect_data_size));
/* If necessary, set the output indirect storage. */
if (out_ind != nullptr) {
*out_ind = indirect_storage;
}
/* Set the output. */
*out = std::move(indirect_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateSha256Storage(std::shared_ptr *out, std::shared_ptr base_storage, const NcaFsHeader::HashData::HierarchicalSha256Data &hash_data) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
/* Define storage types. */
using VerificationStorage = HierarchicalSha256Storage;
using CacheStorage = ReadOnlyBlockCacheStorage;
using AlignedStorage = AlignmentMatchingStoragePooledBuffer, 1>;
/* Validate the hash data. */
R_UNLESS(util::IsPowerOfTwo(hash_data.hash_block_size), fs::ResultInvalidHierarchicalSha256BlockSize());
R_UNLESS(hash_data.hash_layer_count == VerificationStorage::LayerCount - 1, fs::ResultInvalidHierarchicalSha256LayerCount());
/* Get the regions. */
const auto &hash_region = hash_data.hash_layer_region[0];
const auto &data_region = hash_data.hash_layer_region[1];
/* Determine buffer sizes. */
constexpr s32 CacheBlockCount = 2;
const auto hash_buffer_size = static_cast(hash_region.size);
const auto cache_buffer_size = CacheBlockCount * hash_data.hash_block_size;
const auto total_buffer_size = hash_buffer_size + cache_buffer_size;
/* Make a buffer holder storage. */
auto buffer_hold_storage = fssystem::AllocateShared(std::move(base_storage), m_allocator, total_buffer_size);
R_UNLESS(buffer_hold_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
R_UNLESS(buffer_hold_storage->IsValid(), fs::ResultAllocationFailureInNcaFileSystemDriverI());
/* Get storage size. */
s64 base_size;
R_TRY(buffer_hold_storage->GetSize(std::addressof(base_size)));
/* Check that we're within range. */
R_UNLESS(hash_region.offset + hash_region.size <= base_size, fs::ResultNcaBaseStorageOutOfRangeC());
R_UNLESS(data_region.offset + data_region.size <= base_size, fs::ResultNcaBaseStorageOutOfRangeC());
/* Create the master hash storage. */
fs::MemoryStorage master_hash_storage(const_cast(std::addressof(hash_data.fs_data_master_hash)), sizeof(Hash));
/* Make the verification storage. */
auto verification_storage = fssystem::AllocateShared();
R_UNLESS(verification_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Make layer storages. */
fs::SubStorage layer_storages[VerificationStorage::LayerCount] = {
fs::SubStorage(std::addressof(master_hash_storage), 0, sizeof(Hash)),
fs::SubStorage(buffer_hold_storage.get(), hash_region.offset, hash_region.size),
fs::SubStorage(buffer_hold_storage, data_region.offset, data_region.size)
};
/* Initialize the verification storage. */
R_TRY(verification_storage->Initialize(layer_storages, util::size(layer_storages), hash_data.hash_block_size, buffer_hold_storage->GetBuffer(), hash_buffer_size, m_hash_generator_factory_selector->GetFactory()));
/* Make the cache storage. */
auto cache_storage = fssystem::AllocateShared(std::move(verification_storage), hash_data.hash_block_size, static_cast(buffer_hold_storage->GetBuffer()) + hash_buffer_size, cache_buffer_size, CacheBlockCount);
R_UNLESS(cache_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Make the aligned storage. */
auto aligned_storage = fssystem::AllocateShared(std::move(cache_storage), hash_data.hash_block_size);
R_UNLESS(aligned_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Set the output. */
*out = std::move(aligned_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateIntegrityVerificationStorage(std::shared_ptr *out, std::shared_ptr base_storage, const NcaFsHeader::HashData::IntegrityMetaInfo &meta_info) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
/* Define storage types. */
using VerificationStorage = save::HierarchicalIntegrityVerificationStorage;
using StorageInfo = VerificationStorage::HierarchicalStorageInformation;
/* Validate the meta info. */
save::HierarchicalIntegrityVerificationInformation level_hash_info;
std::memcpy(std::addressof(level_hash_info), std::addressof(meta_info.level_hash_info), sizeof(level_hash_info));
R_UNLESS(save::IntegrityMinLayerCount <= level_hash_info.max_layers, fs::ResultInvalidHierarchicalIntegrityVerificationLayerCount());
R_UNLESS(level_hash_info.max_layers <= save::IntegrityMaxLayerCount, fs::ResultInvalidHierarchicalIntegrityVerificationLayerCount());
/* Get the base storage size. */
s64 base_storage_size;
R_TRY(base_storage->GetSize(std::addressof(base_storage_size)));
/* Create storage info. */
StorageInfo storage_info;
for (s32 i = 0; i < static_cast(level_hash_info.max_layers - 2); ++i) {
const auto &layer_info = level_hash_info.info[i];
R_UNLESS(layer_info.offset + layer_info.size <= base_storage_size, fs::ResultNcaBaseStorageOutOfRangeD());
storage_info[i + 1] = fs::SubStorage(base_storage, layer_info.offset, layer_info.size);
}
/* Set the last layer info. */
const auto &layer_info = level_hash_info.info[level_hash_info.max_layers - 2];
R_UNLESS(layer_info.offset + layer_info.size <= base_storage_size, fs::ResultNcaBaseStorageOutOfRangeD());
storage_info.SetDataStorage(fs::SubStorage(std::move(base_storage), layer_info.offset, layer_info.size));
/* Make the integrity romfs storage. */
auto integrity_storage = fssystem::AllocateShared();
R_UNLESS(integrity_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the integrity storage. */
R_TRY(integrity_storage->Initialize(level_hash_info, meta_info.master_hash, storage_info, m_buffer_manager, m_hash_generator_factory_selector->GetFactory()));
/* Set the output. */
*out = std::move(integrity_storage);
return ResultSuccess();
}
Result NcaFileSystemDriver::CreateCompressedStorage(std::shared_ptr *out, std::shared_ptr *out_cmp, std::shared_ptr *out_meta, std::shared_ptr base_storage, const NcaCompressionInfo &compression_info) {
return this->CreateCompressedStorage(out, out_cmp, out_meta, std::move(base_storage), compression_info, m_reader->GetDecompressor(), m_allocator, m_buffer_manager);
}
Result NcaFileSystemDriver::CreateCompressedStorage(std::shared_ptr *out, std::shared_ptr *out_cmp, std::shared_ptr *out_meta, std::shared_ptr base_storage, const NcaCompressionInfo &compression_info, GetDecompressorFunction get_decompressor, MemoryResource *allocator, IBufferManager *buffer_manager) {
/* Check pre-conditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT(base_storage != nullptr);
AMS_ASSERT(get_decompressor != nullptr);
/* Read and verify the bucket tree header. */
BucketTree::Header header;
std::memcpy(std::addressof(header), compression_info.bucket.header, sizeof(header));
R_TRY(header.Verify());
/* Determine the storage extents. */
const auto table_offset = compression_info.bucket.offset;
const auto table_size = compression_info.bucket.size;
const auto node_size = CompressedStorage::QueryNodeStorageSize(header.entry_count);
const auto entry_size = CompressedStorage::QueryEntryStorageSize(header.entry_count);
R_UNLESS(node_size + entry_size <= table_size, fs::ResultInvalidCompressedStorageSize());
/* If we should, set the output meta storage. */
if (out_meta != nullptr) {
auto meta_storage = fssystem::AllocateShared(base_storage, table_offset, table_size);
R_UNLESS(meta_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
*out_meta = std::move(meta_storage);
}
/* Allocate the compressed storage. */
auto compressed_storage = fssystem::AllocateShared();
R_UNLESS(compressed_storage != nullptr, fs::ResultAllocationFailureInAllocateShared());
/* Initialize the compressed storage. */
R_TRY(compressed_storage->Initialize(allocator, buffer_manager, fs::SubStorage(base_storage, 0, table_offset), fs::SubStorage(base_storage, table_offset, node_size), fs::SubStorage(base_storage, table_offset + node_size, entry_size), header.entry_count, 64_KB, 640_KB, get_decompressor, 16_KB, 16_KB, 32));
/* Potentially set the output compressed storage. */
if (out_cmp) {
*out_cmp = compressed_storage;
}
/* Set the output. */
*out = std::move(compressed_storage);
return ResultSuccess();
}
}