/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once #include #include #include #include #include #include #include #include namespace ams::kern { class KThreadQueue; class KProcess; class KConditionVariable; class KAddressArbiter; using KThreadFunction = void (*)(uintptr_t); class KThread final : public KAutoObjectWithSlabHeapAndContainer, public util::IntrusiveListBaseNode, public KTimerTask { MESOSPHERE_AUTOOBJECT_TRAITS(KThread, KSynchronizationObject); private: friend class KProcess; friend class KConditionVariable; friend class KAddressArbiter; friend class KThreadQueue; public: static constexpr s32 MainThreadPriority = 1; static constexpr s32 IdleThreadPriority = 64; enum ThreadType : u32 { ThreadType_Main = 0, ThreadType_Kernel = 1, ThreadType_HighPriority = 2, ThreadType_User = 3, }; enum SuspendType : u32 { SuspendType_Process = 0, SuspendType_Thread = 1, SuspendType_Debug = 2, SuspendType_Backtrace = 3, SuspendType_Init = 4, SuspendType_Count, }; enum ThreadState : u16 { ThreadState_Initialized = 0, ThreadState_Waiting = 1, ThreadState_Runnable = 2, ThreadState_Terminated = 3, ThreadState_SuspendShift = 4, ThreadState_Mask = (1 << ThreadState_SuspendShift) - 1, ThreadState_ProcessSuspended = (1 << (SuspendType_Process + ThreadState_SuspendShift)), ThreadState_ThreadSuspended = (1 << (SuspendType_Thread + ThreadState_SuspendShift)), ThreadState_DebugSuspended = (1 << (SuspendType_Debug + ThreadState_SuspendShift)), ThreadState_BacktraceSuspended = (1 << (SuspendType_Backtrace + ThreadState_SuspendShift)), ThreadState_InitSuspended = (1 << (SuspendType_Init + ThreadState_SuspendShift)), ThreadState_SuspendFlagMask = ((1 << SuspendType_Count) - 1) << ThreadState_SuspendShift, }; enum DpcFlag : u32 { DpcFlag_Terminating = (1 << 0), DpcFlag_Terminated = (1 << 1), DpcFlag_PerformDestruction = (1 << 2), }; enum ExceptionFlag : u32 { ExceptionFlag_IsCallingSvc = (1 << 0), ExceptionFlag_IsInExceptionHandler = (1 << 1), ExceptionFlag_IsFpuContextRestoreNeeded = (1 << 2), ExceptionFlag_IsFpu64Bit = (1 << 3), ExceptionFlag_IsInUsermodeExceptionHandler = (1 << 4), ExceptionFlag_IsInCacheMaintenanceOperation = (1 << 5), ExceptionFlag_IsInTlbMaintenanceOperation = (1 << 6), #if defined(MESOSPHERE_ENABLE_HARDWARE_SINGLE_STEP) ExceptionFlag_IsHardwareSingleStep = (1 << 7), #endif }; struct StackParameters { svc::SvcAccessFlagSet svc_access_flags; KThreadContext::CallerSaveFpuRegisters *caller_save_fpu_registers; KThread *cur_thread; s16 disable_count; util::Atomic dpc_flags; u8 current_svc_id; u8 reserved_2c; u8 exception_flags; bool is_pinned; u8 reserved_2f; KThreadContext context; }; static_assert(util::IsAligned(AMS_OFFSETOF(StackParameters, context), 0x10)); static_assert(AMS_OFFSETOF(StackParameters, svc_access_flags) == THREAD_STACK_PARAMETERS_SVC_PERMISSION); static_assert(AMS_OFFSETOF(StackParameters, caller_save_fpu_registers) == THREAD_STACK_PARAMETERS_CALLER_SAVE_FPU_REGISTERS); static_assert(AMS_OFFSETOF(StackParameters, cur_thread) == THREAD_STACK_PARAMETERS_CUR_THREAD); static_assert(AMS_OFFSETOF(StackParameters, disable_count) == THREAD_STACK_PARAMETERS_DISABLE_COUNT); static_assert(AMS_OFFSETOF(StackParameters, dpc_flags) == THREAD_STACK_PARAMETERS_DPC_FLAGS); static_assert(AMS_OFFSETOF(StackParameters, current_svc_id) == THREAD_STACK_PARAMETERS_CURRENT_SVC_ID); static_assert(AMS_OFFSETOF(StackParameters, reserved_2c) == THREAD_STACK_PARAMETERS_RESERVED_2C); static_assert(AMS_OFFSETOF(StackParameters, exception_flags) == THREAD_STACK_PARAMETERS_EXCEPTION_FLAGS); static_assert(AMS_OFFSETOF(StackParameters, is_pinned) == THREAD_STACK_PARAMETERS_IS_PINNED); static_assert(AMS_OFFSETOF(StackParameters, reserved_2f) == THREAD_STACK_PARAMETERS_RESERVED_2F); static_assert(AMS_OFFSETOF(StackParameters, context) == THREAD_STACK_PARAMETERS_THREAD_CONTEXT); static_assert(ExceptionFlag_IsCallingSvc == THREAD_EXCEPTION_FLAG_IS_CALLING_SVC); static_assert(ExceptionFlag_IsInExceptionHandler == THREAD_EXCEPTION_FLAG_IS_IN_EXCEPTION_HANDLER); static_assert(ExceptionFlag_IsFpuContextRestoreNeeded == THREAD_EXCEPTION_FLAG_IS_FPU_CONTEXT_RESTORE_NEEDED); static_assert(ExceptionFlag_IsFpu64Bit == THREAD_EXCEPTION_FLAG_IS_FPU_64_BIT); static_assert(ExceptionFlag_IsInUsermodeExceptionHandler == THREAD_EXCEPTION_FLAG_IS_IN_USERMODE_EXCEPTION_HANDLER); static_assert(ExceptionFlag_IsInCacheMaintenanceOperation == THREAD_EXCEPTION_FLAG_IS_IN_CACHE_MAINTENANCE_OPERATION); static_assert(ExceptionFlag_IsInTlbMaintenanceOperation == THREAD_EXCEPTION_FLAG_IS_IN_TLB_MAINTENANCE_OPERATION); #if defined(MESOSPHERE_ENABLE_HARDWARE_SINGLE_STEP) static_assert(ExceptionFlag_IsHardwareSingleStep == THREAD_EXCEPTION_FLAG_IS_HARDWARE_SINGLE_STEP); #endif struct QueueEntry { private: KThread *m_prev; KThread *m_next; public: constexpr void Initialize() { m_prev = nullptr; m_next = nullptr; } constexpr KThread *GetPrev() const { return m_prev; } constexpr KThread *GetNext() const { return m_next; } constexpr void SetPrev(KThread *t) { m_prev = t; } constexpr void SetNext(KThread *t) { m_next = t; } }; using WaiterList = util::IntrusiveListBaseTraits::ListType; private: static constexpr size_t PriorityInheritanceCountMax = 10; union SyncObjectBuffer { KSynchronizationObject *m_sync_objects[ams::svc::ArgumentHandleCountMax]; ams::svc::Handle m_handles[ams::svc::ArgumentHandleCountMax * (sizeof(KSynchronizationObject *) / sizeof(ams::svc::Handle))]; constexpr explicit SyncObjectBuffer(util::ConstantInitializeTag) : m_sync_objects() { /* ... */ } explicit SyncObjectBuffer() { /* ... */ } }; static_assert(sizeof(SyncObjectBuffer::m_sync_objects) == sizeof(SyncObjectBuffer::m_handles)); struct ConditionVariableComparator { struct RedBlackKeyType { uintptr_t m_cv_key; s32 m_priority; constexpr ALWAYS_INLINE uintptr_t GetConditionVariableKey() const { return m_cv_key; } constexpr ALWAYS_INLINE s32 GetPriority() const { return m_priority; } }; template requires (std::same_as || std::same_as) static constexpr ALWAYS_INLINE int Compare(const T &lhs, const KThread &rhs) { const uintptr_t l_key = lhs.GetConditionVariableKey(); const uintptr_t r_key = rhs.GetConditionVariableKey(); if (l_key < r_key) { /* Sort first by key */ return -1; } else if (l_key == r_key && lhs.GetPriority() < rhs.GetPriority()) { /* And then by priority. */ return -1; } else { return 1; } } }; static_assert(ams::util::HasRedBlackKeyType); static_assert(std::same_as, ConditionVariableComparator::RedBlackKeyType>); private: util::IntrusiveListNode m_process_list_node; util::IntrusiveRedBlackTreeNode m_condvar_arbiter_tree_node; s32 m_priority; using ConditionVariableThreadTreeTraits = util::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<&KThread::m_condvar_arbiter_tree_node>; using ConditionVariableThreadTree = ConditionVariableThreadTreeTraits::TreeType; ConditionVariableThreadTree *m_condvar_tree; uintptr_t m_condvar_key; alignas(16) KThreadContext::CallerSaveFpuRegisters m_caller_save_fpu_registers; u64 m_virtual_affinity_mask; KAffinityMask m_physical_affinity_mask; u64 m_thread_id; util::Atomic m_cpu_time; KProcessAddress m_address_key; KProcess *m_parent; void *m_kernel_stack_top; u32 *m_light_ipc_data; KProcessAddress m_tls_address; void *m_tls_heap_address; KLightLock m_activity_pause_lock; SyncObjectBuffer m_sync_object_buffer; s64 m_schedule_count; s64 m_last_scheduled_tick; QueueEntry m_per_core_priority_queue_entry[cpu::NumCores]; KThreadQueue *m_wait_queue; WaiterList m_waiter_list; WaiterList m_pinned_waiter_list; KThread *m_lock_owner; uintptr_t m_debug_params[3]; KAutoObject *m_closed_object; u32 m_address_key_value; u32 m_suspend_request_flags; u32 m_suspend_allowed_flags; s32 m_synced_index; Result m_wait_result; Result m_debug_exception_result; s32 m_base_priority; s32 m_base_priority_on_unpin; s32 m_physical_ideal_core_id; s32 m_virtual_ideal_core_id; s32 m_num_kernel_waiters; s32 m_current_core_id; s32 m_core_id; KAffinityMask m_original_physical_affinity_mask; s32 m_original_physical_ideal_core_id; s32 m_num_core_migration_disables; ThreadState m_thread_state; util::Atomic m_termination_requested; bool m_wait_cancelled; bool m_cancellable; bool m_signaled; bool m_initialized; bool m_debug_attached; s8 m_priority_inheritance_count; bool m_resource_limit_release_hint; public: constexpr explicit KThread(util::ConstantInitializeTag) : KAutoObjectWithSlabHeapAndContainer(util::ConstantInitialize), KTimerTask(util::ConstantInitialize), m_process_list_node{}, m_condvar_arbiter_tree_node{util::ConstantInitialize}, m_priority{-1}, m_condvar_tree{}, m_condvar_key{}, m_caller_save_fpu_registers{}, m_virtual_affinity_mask{}, m_physical_affinity_mask{}, m_thread_id{}, m_cpu_time{0}, m_address_key{Null}, m_parent{}, m_kernel_stack_top{}, m_light_ipc_data{}, m_tls_address{Null}, m_tls_heap_address{}, m_activity_pause_lock{}, m_sync_object_buffer{util::ConstantInitialize}, m_schedule_count{}, m_last_scheduled_tick{}, m_per_core_priority_queue_entry{}, m_wait_queue{}, m_waiter_list{}, m_pinned_waiter_list{}, m_lock_owner{}, m_debug_params{}, m_closed_object{}, m_address_key_value{}, m_suspend_request_flags{}, m_suspend_allowed_flags{}, m_synced_index{}, m_wait_result{svc::ResultNoSynchronizationObject()}, m_debug_exception_result{ResultSuccess()}, m_base_priority{}, m_base_priority_on_unpin{}, m_physical_ideal_core_id{}, m_virtual_ideal_core_id{}, m_num_kernel_waiters{}, m_current_core_id{}, m_core_id{}, m_original_physical_affinity_mask{}, m_original_physical_ideal_core_id{}, m_num_core_migration_disables{}, m_thread_state{}, m_termination_requested{false}, m_wait_cancelled{}, m_cancellable{}, m_signaled{}, m_initialized{}, m_debug_attached{}, m_priority_inheritance_count{}, m_resource_limit_release_hint{} { /* ... */ } explicit KThread() : m_priority(-1), m_condvar_tree(nullptr), m_condvar_key(0), m_parent(nullptr), m_initialized(false) { /* ... */ } Result Initialize(KThreadFunction func, uintptr_t arg, void *kern_stack_top, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner, ThreadType type); private: static Result InitializeThread(KThread *thread, KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner, ThreadType type); public: static Result InitializeKernelThread(KThread *thread, KThreadFunction func, uintptr_t arg, s32 prio, s32 virt_core) { R_RETURN(InitializeThread(thread, func, arg, Null, prio, virt_core, nullptr, ThreadType_Kernel)); } static Result InitializeHighPriorityThread(KThread *thread, KThreadFunction func, uintptr_t arg) { R_RETURN(InitializeThread(thread, func, arg, Null, 0, GetCurrentCoreId(), nullptr, ThreadType_HighPriority)); } static Result InitializeUserThread(KThread *thread, KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner) { R_RETURN(InitializeThread(thread, func, arg, user_stack_top, prio, virt_core, owner, ThreadType_User)); } static void ResumeThreadsSuspendedForInit(); private: ALWAYS_INLINE StackParameters &GetStackParameters() { return *(reinterpret_cast< StackParameters *>(m_kernel_stack_top) - 1); } ALWAYS_INLINE const StackParameters &GetStackParameters() const { return *(reinterpret_cast(m_kernel_stack_top) - 1); } public: ALWAYS_INLINE s16 GetDisableDispatchCount() const { MESOSPHERE_ASSERT_THIS(); return this->GetStackParameters().disable_count; } ALWAYS_INLINE void DisableDispatch() { MESOSPHERE_ASSERT_THIS(); MESOSPHERE_ASSERT(GetCurrentThread().GetDisableDispatchCount() >= 0); this->GetStackParameters().disable_count++; } ALWAYS_INLINE void EnableDispatch() { MESOSPHERE_ASSERT_THIS(); MESOSPHERE_ASSERT(GetCurrentThread().GetDisableDispatchCount() > 0); this->GetStackParameters().disable_count--; } void Pin(); void Unpin(); ALWAYS_INLINE void SaveDebugParams(uintptr_t param1, uintptr_t param2, uintptr_t param3) { m_debug_params[0] = param1; m_debug_params[1] = param2; m_debug_params[2] = param3; } ALWAYS_INLINE void RestoreDebugParams(uintptr_t *param1, uintptr_t *param2, uintptr_t *param3) { *param1 = m_debug_params[0]; *param2 = m_debug_params[1]; *param3 = m_debug_params[2]; } NOINLINE void DisableCoreMigration(); NOINLINE void EnableCoreMigration(); private: ALWAYS_INLINE void SetExceptionFlag(ExceptionFlag flag) { MESOSPHERE_ASSERT_THIS(); this->GetStackParameters().exception_flags |= flag; } ALWAYS_INLINE void ClearExceptionFlag(ExceptionFlag flag) { MESOSPHERE_ASSERT_THIS(); this->GetStackParameters().exception_flags &= ~flag; } ALWAYS_INLINE bool IsExceptionFlagSet(ExceptionFlag flag) const { MESOSPHERE_ASSERT_THIS(); return this->GetStackParameters().exception_flags & flag; } public: /* ALWAYS_INLINE void SetCallingSvc() { return this->SetExceptionFlag(ExceptionFlag_IsCallingSvc); } */ /* ALWAYS_INLINE void ClearCallingSvc() { return this->ClearExceptionFlag(ExceptionFlag_IsCallingSvc); } */ ALWAYS_INLINE bool IsCallingSvc() const { return this->IsExceptionFlagSet(ExceptionFlag_IsCallingSvc); } ALWAYS_INLINE void SetInExceptionHandler() { return this->SetExceptionFlag(ExceptionFlag_IsInExceptionHandler); } ALWAYS_INLINE void ClearInExceptionHandler() { return this->ClearExceptionFlag(ExceptionFlag_IsInExceptionHandler); } ALWAYS_INLINE bool IsInExceptionHandler() const { return this->IsExceptionFlagSet(ExceptionFlag_IsInExceptionHandler); } /* ALWAYS_INLINE void SetFpuContextRestoreNeeded() { return this->SetExceptionFlag(ExceptionFlag_IsFpuContextRestoreNeeded); } */ /* ALWAYS_INLINE void ClearFpuContextRestoreNeeded() { return this->ClearExceptionFlag(ExceptionFlag_IsFpuContextRestoreNeeded); } */ /* ALWAYS_INLINE bool IsFpuContextRestoreNeeded() const { return this->IsExceptionFlagSet(ExceptionFlag_IsFpuContextRestoreNeeded); } */ ALWAYS_INLINE void SetFpu64Bit() { return this->SetExceptionFlag(ExceptionFlag_IsFpu64Bit); } /* ALWAYS_INLINE void ClearFpu64Bit() { return this->ClearExceptionFlag(ExceptionFlag_IsFpu64Bit); } */ /* ALWAYS_INLINE bool IsFpu64Bit() const { return this->IsExceptionFlagSet(ExceptionFlag_IsFpu64Bit); } */ ALWAYS_INLINE void SetInUsermodeExceptionHandler() { return this->SetExceptionFlag(ExceptionFlag_IsInUsermodeExceptionHandler); } ALWAYS_INLINE void ClearInUsermodeExceptionHandler() { return this->ClearExceptionFlag(ExceptionFlag_IsInUsermodeExceptionHandler); } ALWAYS_INLINE bool IsInUsermodeExceptionHandler() const { return this->IsExceptionFlagSet(ExceptionFlag_IsInUsermodeExceptionHandler); } ALWAYS_INLINE void SetInCacheMaintenanceOperation() { return this->SetExceptionFlag(ExceptionFlag_IsInCacheMaintenanceOperation); } ALWAYS_INLINE void ClearInCacheMaintenanceOperation() { return this->ClearExceptionFlag(ExceptionFlag_IsInCacheMaintenanceOperation); } ALWAYS_INLINE bool IsInCacheMaintenanceOperation() const { return this->IsExceptionFlagSet(ExceptionFlag_IsInCacheMaintenanceOperation); } ALWAYS_INLINE void SetInTlbMaintenanceOperation() { return this->SetExceptionFlag(ExceptionFlag_IsInTlbMaintenanceOperation); } ALWAYS_INLINE void ClearInTlbMaintenanceOperation() { return this->ClearExceptionFlag(ExceptionFlag_IsInTlbMaintenanceOperation); } ALWAYS_INLINE bool IsInTlbMaintenanceOperation() const { return this->IsExceptionFlagSet(ExceptionFlag_IsInTlbMaintenanceOperation); } #if defined(MESOSPHERE_ENABLE_HARDWARE_SINGLE_STEP) ALWAYS_INLINE void SetHardwareSingleStep() { return this->SetExceptionFlag(ExceptionFlag_IsHardwareSingleStep); } ALWAYS_INLINE void ClearHardwareSingleStep() { return this->ClearExceptionFlag(ExceptionFlag_IsHardwareSingleStep); } ALWAYS_INLINE bool IsHardwareSingleStep() const { return this->IsExceptionFlagSet(ExceptionFlag_IsHardwareSingleStep); } #endif ALWAYS_INLINE u8 GetSvcId() const { MESOSPHERE_ASSERT_THIS(); return this->GetStackParameters().current_svc_id; } ALWAYS_INLINE void RegisterDpc(DpcFlag flag) { this->GetStackParameters().dpc_flags |= flag; } ALWAYS_INLINE void ClearDpc(DpcFlag flag) { this->GetStackParameters().dpc_flags &= ~flag; } ALWAYS_INLINE u8 GetDpc() const { return this->GetStackParameters().dpc_flags.Load(); } ALWAYS_INLINE bool HasDpc() const { MESOSPHERE_ASSERT_THIS(); return this->GetDpc() != 0; } private: void SetPinnedSvcPermissions(); void SetUnpinnedSvcPermissions(); void SetUsermodeExceptionSvcPermissions(); void ClearUsermodeExceptionSvcPermissions(); private: void UpdateState(); ALWAYS_INLINE void AddWaiterImpl(KThread *thread); ALWAYS_INLINE void RemoveWaiterImpl(KThread *thread); ALWAYS_INLINE static void RestorePriority(KThread *thread); void StartTermination(); void FinishTermination(); void IncreaseBasePriority(s32 priority); NOINLINE void SetState(ThreadState state); public: constexpr u64 GetThreadId() const { return m_thread_id; } const KThreadContext &GetContext() const { return this->GetStackParameters().context; } KThreadContext &GetContext() { return this->GetStackParameters().context; } const auto &GetCallerSaveFpuRegisters() const { return m_caller_save_fpu_registers; } auto &GetCallerSaveFpuRegisters() { return m_caller_save_fpu_registers; } constexpr u64 GetVirtualAffinityMask() const { return m_virtual_affinity_mask; } constexpr const KAffinityMask &GetAffinityMask() const { return m_physical_affinity_mask; } Result GetCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask); Result SetCoreMask(int32_t ideal_core, u64 affinity_mask); Result GetPhysicalCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask); constexpr ThreadState GetState() const { return static_cast(m_thread_state & ThreadState_Mask); } constexpr ThreadState GetRawState() const { return m_thread_state; } constexpr uintptr_t GetConditionVariableKey() const { return m_condvar_key; } constexpr uintptr_t GetAddressArbiterKey() const { return m_condvar_key; } constexpr void SetConditionVariable(ConditionVariableThreadTree *tree, KProcessAddress address, uintptr_t cv_key, u32 value) { m_condvar_tree = tree; m_condvar_key = cv_key; m_address_key = address; m_address_key_value = value; } constexpr void ClearConditionVariable() { m_condvar_tree = nullptr; } constexpr bool IsWaitingForConditionVariable() const { return m_condvar_tree != nullptr; } constexpr void SetAddressArbiter(ConditionVariableThreadTree *tree, uintptr_t address) { m_condvar_tree = tree; m_condvar_key = address; } constexpr void ClearAddressArbiter() { m_condvar_tree = nullptr; } constexpr bool IsWaitingForAddressArbiter() const { return m_condvar_tree != nullptr; } constexpr s32 GetIdealVirtualCore() const { return m_virtual_ideal_core_id; } constexpr s32 GetIdealPhysicalCore() const { return m_physical_ideal_core_id; } constexpr s32 GetActiveCore() const { return m_core_id; } constexpr void SetActiveCore(s32 core) { m_core_id = core; } constexpr ALWAYS_INLINE s32 GetCurrentCore() const { return m_current_core_id; } constexpr void SetCurrentCore(s32 core) { m_current_core_id = core; } constexpr s32 GetPriority() const { return m_priority; } constexpr void SetPriority(s32 prio) { m_priority = prio; } constexpr s32 GetBasePriority() const { return m_base_priority; } constexpr QueueEntry &GetPriorityQueueEntry(s32 core) { return m_per_core_priority_queue_entry[core]; } constexpr const QueueEntry &GetPriorityQueueEntry(s32 core) const { return m_per_core_priority_queue_entry[core]; } constexpr ConditionVariableThreadTree *GetConditionVariableTree() const { return m_condvar_tree; } constexpr s32 GetNumKernelWaiters() const { return m_num_kernel_waiters; } void AddWaiter(KThread *thread); void RemoveWaiter(KThread *thread); KThread *RemoveWaiterByKey(s32 *out_num_waiters, KProcessAddress key); constexpr KProcessAddress GetAddressKey() const { return m_address_key; } constexpr u32 GetAddressKeyValue() const { return m_address_key_value; } constexpr void SetAddressKey(KProcessAddress key) { m_address_key = key; } constexpr void SetAddressKey(KProcessAddress key, u32 val) { m_address_key = key; m_address_key_value = val; } constexpr void SetLockOwner(KThread *owner) { m_lock_owner = owner; } constexpr KThread *GetLockOwner() const { return m_lock_owner; } constexpr void ClearWaitQueue() { m_wait_queue = nullptr; } void BeginWait(KThreadQueue *queue); void NotifyAvailable(KSynchronizationObject *signaled_object, Result wait_result); void EndWait(Result wait_result); void CancelWait(Result wait_result, bool cancel_timer_task); constexpr void SetSyncedIndex(s32 index) { m_synced_index = index; } constexpr s32 GetSyncedIndex() const { return m_synced_index; } constexpr void SetWaitResult(Result wait_res) { m_wait_result = wait_res; } constexpr Result GetWaitResult() const { return m_wait_result; } constexpr void SetDebugExceptionResult(Result result) { m_debug_exception_result = result; } constexpr Result GetDebugExceptionResult() const { return m_debug_exception_result; } void WaitCancel(); bool IsWaitCancelled() const { return m_wait_cancelled; } void ClearWaitCancelled() { m_wait_cancelled = false; } void ClearCancellable() { m_cancellable = false; } void SetCancellable() { m_cancellable = true; } constexpr u32 *GetLightSessionData() const { return m_light_ipc_data; } constexpr void SetLightSessionData(u32 *data) { m_light_ipc_data = data; } bool HasWaiters() const { return !m_waiter_list.empty(); } constexpr s64 GetLastScheduledTick() const { return m_last_scheduled_tick; } constexpr void SetLastScheduledTick(s64 tick) { m_last_scheduled_tick = tick; } constexpr s64 GetYieldScheduleCount() const { return m_schedule_count; } constexpr void SetYieldScheduleCount(s64 count) { m_schedule_count = count; } constexpr KProcess *GetOwnerProcess() const { return m_parent; } constexpr bool IsUserThread() const { return m_parent != nullptr; } constexpr KProcessAddress GetThreadLocalRegionAddress() const { return m_tls_address; } constexpr void *GetThreadLocalRegionHeapAddress() const { return m_tls_heap_address; } constexpr KSynchronizationObject **GetSynchronizationObjectBuffer() { return std::addressof(m_sync_object_buffer.m_sync_objects[0]); } constexpr ams::svc::Handle *GetHandleBuffer() { return std::addressof(m_sync_object_buffer.m_handles[sizeof(m_sync_object_buffer.m_sync_objects) / (sizeof(ams::svc::Handle)) - ams::svc::ArgumentHandleCountMax]); } u16 GetUserDisableCount() const { return static_cast(m_tls_heap_address)->disable_count; } void SetInterruptFlag() const { static_cast(m_tls_heap_address)->interrupt_flag = 1; } void ClearInterruptFlag() const { static_cast(m_tls_heap_address)->interrupt_flag = 0; } bool IsInUserCacheMaintenanceOperation() const { return static_cast(m_tls_heap_address)->cache_maintenance_flag != 0; } ALWAYS_INLINE KAutoObject *GetClosedObject() { return m_closed_object; } ALWAYS_INLINE void SetClosedObject(KAutoObject *object) { MESOSPHERE_ASSERT(object != nullptr); /* Set the object to destroy. */ m_closed_object = object; /* Schedule destruction DPC. */ if ((this->GetStackParameters().dpc_flags.Load() & DpcFlag_PerformDestruction) == 0) { this->RegisterDpc(DpcFlag_PerformDestruction); } } ALWAYS_INLINE void DestroyClosedObjects() { /* Destroy all objects that have been closed. */ if (KAutoObject *cur = m_closed_object; cur != nullptr) { do { /* Set our closed object as the next to close. */ m_closed_object = cur->GetNextClosedObject(); /* Destroy the current object. */ cur->Destroy(); /* Advance. */ cur = m_closed_object; } while (cur != nullptr); /* Clear the pending DPC. */ this->ClearDpc(DpcFlag_PerformDestruction); } } constexpr void SetDebugAttached() { m_debug_attached = true; } constexpr bool IsAttachedToDebugger() const { return m_debug_attached; } void AddCpuTime(s32 core_id, s64 amount) { m_cpu_time += amount; /* TODO: Debug kernels track per-core tick counts. Should we? */ MESOSPHERE_UNUSED(core_id); } s64 GetCpuTime() const { return m_cpu_time.Load(); } s64 GetCpuTime(s32 core_id) const { MESOSPHERE_ABORT_UNLESS(0 <= core_id && core_id < static_cast(cpu::NumCores)); /* TODO: Debug kernels track per-core tick counts. Should we? */ return 0; } constexpr u32 GetSuspendFlags() const { return m_suspend_allowed_flags & m_suspend_request_flags; } constexpr bool IsSuspended() const { return this->GetSuspendFlags() != 0; } constexpr bool IsSuspendRequested(SuspendType type) const { return (m_suspend_request_flags & (1u << (util::ToUnderlying(ThreadState_SuspendShift) + util::ToUnderlying(type)))) != 0; } constexpr bool IsSuspendRequested() const { return m_suspend_request_flags != 0; } void RequestSuspend(SuspendType type); void Resume(SuspendType type); void TrySuspend(); void Continue(); Result SetActivity(ams::svc::ThreadActivity activity); Result GetThreadContext3(ams::svc::ThreadContext *out); void ContinueIfHasKernelWaiters() { if (this->GetNumKernelWaiters() > 0) { this->Continue(); } } void SetBasePriority(s32 priority); Result SetPriorityToIdle(); Result Run(); void Exit(); Result Terminate(); ThreadState RequestTerminate(); Result Sleep(s64 timeout); ALWAYS_INLINE void *GetStackTop() const { return reinterpret_cast(m_kernel_stack_top) - 1; } ALWAYS_INLINE void *GetKernelStackTop() const { return m_kernel_stack_top; } ALWAYS_INLINE bool IsTerminationRequested() const { return m_termination_requested.Load() || this->GetRawState() == ThreadState_Terminated; } size_t GetKernelStackUsage() const; void OnEnterUsermodeException(); void OnLeaveUsermodeException(); public: /* Overridden parent functions. */ ALWAYS_INLINE u64 GetIdImpl() const { return this->GetThreadId(); } ALWAYS_INLINE u64 GetId() const { return this->GetIdImpl(); } bool IsInitialized() const { return m_initialized; } uintptr_t GetPostDestroyArgument() const { return reinterpret_cast(m_parent) | (m_resource_limit_release_hint ? 1 : 0); } static void PostDestroy(uintptr_t arg); void Finalize(); virtual bool IsSignaled() const override; void OnTimer(); void DoWorkerTaskImpl(); public: static consteval bool IsKThreadStructurallyValid(); static KThread *GetThreadFromId(u64 thread_id); static Result GetThreadList(s32 *out_num_threads, ams::kern::svc::KUserPointer out_thread_ids, s32 max_out_count); using ConditionVariableThreadTreeType = ConditionVariableThreadTree; }; static_assert(alignof(KThread) == 0x10); consteval bool KThread::IsKThreadStructurallyValid() { /* Check that the condition variable tree is valid. */ static_assert(ConditionVariableThreadTreeTraits::IsValid()); /* Check that the assembly offsets are valid. */ static_assert(AMS_OFFSETOF(KThread, m_kernel_stack_top) == THREAD_KERNEL_STACK_TOP); return true; } static_assert(KThread::IsKThreadStructurallyValid()); class KScopedDisableDispatch { public: explicit ALWAYS_INLINE KScopedDisableDispatch() { GetCurrentThread().DisableDispatch(); } ~KScopedDisableDispatch(); }; ALWAYS_INLINE KExceptionContext *GetExceptionContext(KThread *thread) { return reinterpret_cast(reinterpret_cast(thread->GetKernelStackTop()) - sizeof(KThread::StackParameters) - sizeof(KExceptionContext)); } ALWAYS_INLINE const KExceptionContext *GetExceptionContext(const KThread *thread) { return reinterpret_cast(reinterpret_cast(thread->GetKernelStackTop()) - sizeof(KThread::StackParameters) - sizeof(KExceptionContext)); } ALWAYS_INLINE KProcess *GetCurrentProcessPointer() { return GetCurrentThread().GetOwnerProcess(); } ALWAYS_INLINE KProcess &GetCurrentProcess() { return *GetCurrentProcessPointer(); } ALWAYS_INLINE s32 GetCurrentCoreId() { return GetCurrentThread().GetCurrentCore(); } ALWAYS_INLINE void KTimerTask::OnTimer() { static_cast(this)->OnTimer(); } }