/* * Copyright (c) 2018-2019 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "fatal_debug.hpp" #include "fatal_config.hpp" static bool IsAddressReadable(Handle debug_handle, u64 address, u64 size, MemoryInfo *o_mi) { MemoryInfo mi; u32 pi; if (o_mi == NULL) { o_mi = &mi; } if (R_FAILED(svcQueryDebugProcessMemory(o_mi, &pi, debug_handle, address))) { return false; } /* Must be readable */ if ((o_mi->perm & Perm_R) != Perm_R) { return false; } /* Must have space for both userdata address and userdata size. */ if (address < o_mi->addr || o_mi->addr + o_mi->size < address + size) { return false; } return true; } static bool CheckThreadIsFatalCaller(FatalThrowContext *ctx, u64 debug_handle, u64 thread_id, u64 thread_tls_addr, ThreadContext *thread_ctx) { /* Verify that the thread is running or waiting. */ { u64 _; u32 thread_state; if (R_FAILED(svcGetDebugThreadParam(&_, &thread_state, debug_handle, thread_id, DebugThreadParam_State))) { return false; } if (thread_state > 1) { return false; } } /* Get the thread context. */ if (R_FAILED(svcGetDebugThreadContext(thread_ctx, debug_handle, thread_id, 0xF))) { return false; } /* Check if PC is readable. */ if (!IsAddressReadable(debug_handle, thread_ctx->pc.x, sizeof(u32), NULL)) { return false; } /* Try to read the current instruction. */ u32 insn; if (R_FAILED(svcReadDebugProcessMemory(&insn, debug_handle, thread_ctx->pc.x, sizeof(insn)))) { return false; } /* If the instruction isn't svcSendSyncRequest, it's not the fatal caller. */ if (insn != 0xD4000421) { return false; } /* The fatal caller will have readable tls. */ if (!IsAddressReadable(debug_handle, thread_tls_addr, 0x100, NULL)) { return false; } /* Read in the fatal caller's tls. */ u8 thread_tls[0x100]; if (R_FAILED(svcReadDebugProcessMemory(thread_tls, debug_handle, thread_tls_addr, sizeof(thread_tls)))) { return false; } /* Replace our tls with the fatal caller's. */ std::memcpy(armGetTls(), thread_tls, sizeof(thread_tls)); /* Parse the command that the thread sent. */ { IpcParsedCommand r; if (R_FAILED(ipcParse(&r))) { return false; } /* Fatal command takes in a PID, only one buffer max. */ if (!r.HasPid || r.NumStatics || r.NumStaticsOut || r.NumHandles) { return false; } struct { u32 magic; u32 version; u64 cmd_id; u32 err_code; } *raw = (decltype(raw))(r.Raw); if (raw->magic != SFCI_MAGIC) { return false; } if (raw->cmd_id > 2) { return false; } if (raw->cmd_id != 2 && r.NumBuffers) { return false; } if (raw->err_code != ctx->error_code) { return false; } } /* We found our caller. */ return true; } void TryCollectDebugInformation(FatalThrowContext *ctx, u64 pid) { Handle debug_handle; if (R_SUCCEEDED(svcDebugActiveProcess(&debug_handle, pid))) { /* Ensure we close the debugged process. */ ON_SCOPE_EXIT { svcCloseHandle(debug_handle); }; /* First things first, check if process is 64 bits, and get list of thread infos. */ std::unordered_map thread_id_to_tls; { bool got_attach_process = false; DebugEventInfo d; while (R_SUCCEEDED(svcGetDebugEvent((u8 *)&d, debug_handle))) { if (d.type == DebugEventType::AttachProcess) { ctx->cpu_ctx.is_aarch32 = (d.info.attach_process.flags & 1) == 0; memcpy(ctx->proc_name, d.info.attach_process.name, sizeof(d.info.attach_process.name)); got_attach_process = true; } else if (d.type == DebugEventType::AttachThread) { thread_id_to_tls[d.info.attach_thread.thread_id] = d.info.attach_thread.tls_address; } } if (!got_attach_process) { return; } } /* TODO: Try to collect information on 32-bit fatals. This shouldn't really matter for any real use case. */ if (ctx->cpu_ctx.is_aarch32) { return; } /* Welcome to hell. */ bool found_fatal_caller = false; u64 thread_id = 0; ThreadContext thread_ctx; { /* We start by trying to get a list of threads. */ u32 thread_count; u64 thread_ids[0x60]; if (R_FAILED(svcGetThreadList(&thread_count, thread_ids, 0x60, debug_handle))) { return; } /* We need to locate the thread that's called fatal. */ for (u32 i = 0; i < thread_count; i++) { const u64 cur_thread_id = thread_ids[i]; if (thread_id_to_tls.find(cur_thread_id) == thread_id_to_tls.end()) { continue; } if (CheckThreadIsFatalCaller(ctx, debug_handle, cur_thread_id, thread_id_to_tls[cur_thread_id], &thread_ctx)) { thread_id = cur_thread_id; found_fatal_caller = true; break; } } if (!found_fatal_caller) { return; } } if (R_FAILED(svcGetDebugThreadContext(&thread_ctx, debug_handle, thread_id, 0xF))) { return; } /* So we found our caller. */ for (u32 i = 0; i < 29; i++) { /* GetDebugThreadContext won't give us any of these registers, because thread is in SVC :( */ ctx->has_gprs[i] = false; } for (u32 i = 29; i < NumAarch64Gprs; i++) { ctx->has_gprs[i] = true; } ctx->cpu_ctx.aarch64_ctx.fp = thread_ctx.fp; ctx->cpu_ctx.aarch64_ctx.lr = thread_ctx.lr; ctx->cpu_ctx.aarch64_ctx.sp = thread_ctx.sp; ctx->cpu_ctx.aarch64_ctx.pc = thread_ctx.pc.x; /* Parse a stack trace. */ u64 cur_fp = thread_ctx.fp; for (unsigned int i = 0; i < sizeof(ctx->cpu_ctx.aarch64_ctx.stack_trace)/sizeof(u64); i++) { /* Validate the current frame. */ if (cur_fp == 0 || (cur_fp & 0xF)) { break; } /* Read a new frame. */ StackFrame cur_frame; if (R_FAILED(svcReadDebugProcessMemory(&cur_frame, debug_handle, cur_fp, sizeof(StackFrame)))) { break; } /* Advance to the next frame. */ ctx->cpu_ctx.aarch64_ctx.stack_trace[ctx->cpu_ctx.aarch64_ctx.stack_trace_size++] = cur_frame.lr; cur_fp = cur_frame.fp; } /* Try to read up to 0x100 of stack. */ for (size_t sz = 0x100; sz > 0; sz -= 0x10) { if (IsAddressReadable(debug_handle, ctx->cpu_ctx.aarch64_ctx.sp, sz, nullptr)) { if (R_SUCCEEDED(svcReadDebugProcessMemory(ctx->stack_dump, debug_handle, ctx->cpu_ctx.aarch64_ctx.sp, sz))) { ctx->stack_dump_size = sz; } break; } } /* Helper to guess start address. */ auto TryGuessStartAddress = [&](u64 guess) { MemoryInfo mi; u32 pi; if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, guess)) || mi.perm != Perm_Rx) { return false; } /* Iterate backwards until we find the memory before the code region. */ while (mi.addr > 0) { if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, guess))) { return false; } if (mi.type == MemType_Unmapped) { /* Code region will be at the end of the unmapped region preceding it. */ ctx->cpu_ctx.aarch64_ctx.start_address = mi.addr + mi.size; return true; } guess -= 4; } return false; }; /* Parse the starting address. */ { if (TryGuessStartAddress(thread_ctx.pc.x)) { return; } if (TryGuessStartAddress(thread_ctx.lr)) { return; } for (size_t i = 0; i < ctx->cpu_ctx.aarch64_ctx.stack_trace_size; i++) { if (TryGuessStartAddress(ctx->cpu_ctx.aarch64_ctx.stack_trace[i])) { return; } } } } }