kern: support dynamic resource expansion for system heaps/events/sessions.

This commit is contained in:
Michael Scire 2021-09-17 22:01:58 -07:00
parent dfd57b09a3
commit f8fd072349
37 changed files with 856 additions and 328 deletions

View file

@ -37,8 +37,9 @@ namespace ams::secmon::smc {
using EnableUserExceptionHandlers = util::BitPack32::Field<DebugFillMemory::Next, 1, bool>; using EnableUserExceptionHandlers = util::BitPack32::Field<DebugFillMemory::Next, 1, bool>;
using EnableUserPmuAccess = util::BitPack32::Field<EnableUserExceptionHandlers::Next, 1, bool>; using EnableUserPmuAccess = util::BitPack32::Field<EnableUserExceptionHandlers::Next, 1, bool>;
using IncreaseThreadResourceLimit = util::BitPack32::Field<EnableUserPmuAccess::Next, 1, bool>; using IncreaseThreadResourceLimit = util::BitPack32::Field<EnableUserPmuAccess::Next, 1, bool>;
using Reserved4 = util::BitPack32::Field<IncreaseThreadResourceLimit::Next, 4, u32>; using DisableDynamicResourceLimits = util::BitPack32::Field<IncreaseThreadResourceLimit::Next, 1, bool>;
using UseSecureMonitorPanicCall = util::BitPack32::Field<Reserved4::Next, 1, bool>; using Reserved5 = util::BitPack32::Field<DisableDynamicResourceLimits::Next, 3, u32>;
using UseSecureMonitorPanicCall = util::BitPack32::Field<Reserved5::Next, 1, bool>;
using Reserved9 = util::BitPack32::Field<UseSecureMonitorPanicCall::Next, 7, u32>; using Reserved9 = util::BitPack32::Field<UseSecureMonitorPanicCall::Next, 7, u32>;
using MemorySize = util::BitPack32::Field<Reserved9::Next, 2, u32>; /* smc::MemorySize = pkg1::MemorySize */ using MemorySize = util::BitPack32::Field<Reserved9::Next, 2, u32>; /* smc::MemorySize = pkg1::MemorySize */
}; };

View file

@ -16,6 +16,7 @@
#pragma once #pragma once
#include <vapours.hpp> #include <vapours.hpp>
#include <mesosphere/kern_select_cpu.hpp> #include <mesosphere/kern_select_cpu.hpp>
#include <mesosphere/kern_select_interrupt_manager.hpp>
namespace ams::kern::arch::arm64 { namespace ams::kern::arch::arm64 {
@ -24,6 +25,32 @@ namespace ams::kern::arch::arm64 {
{ t.next } -> std::convertible_to<T *>; { t.next } -> std::convertible_to<T *>;
}; };
ALWAYS_INLINE bool IsSlabAtomicValid() {
/* Without careful consideration, slab heaps atomics are vulnerable to */
/* the ABA problem, when doing compare and swap of node pointers. */
/* We resolve this by using the ARM exclusive monitor; we bundle the */
/* load and store of the relevant values into a single exclusive monitor */
/* hold, preventing the ABA problem. */
/* However, our assembly must do both a load and a store under a single */
/* hold, at different memory addresses. Considering the case where the */
/* addresses are distinct but resolve to the same cache set (by chance), */
/* we can note that under a 1-way associative (direct-mapped) cache */
/* we would have as a guarantee that the second access would evict the */
/* cache line from the first access, invalidating our exclusive monitor */
/* hold. Thus, we require that the cache is not 1-way associative, for */
/* our implementation to be correct. */
{
/* Disable interrupts. */
KScopedInterruptDisable di;
/* Select L1 cache. */
cpu::SetCsselrEl1(0);
/* Check that the L1 cache is not direct-mapped. */
return cpu::CacheSizeIdRegisterAccessor().GetAssociativity() != 0;
}
}
template<typename T> requires SlabHeapNode<T> template<typename T> requires SlabHeapNode<T>
ALWAYS_INLINE T *AllocateFromSlabAtomic(T **head) { ALWAYS_INLINE T *AllocateFromSlabAtomic(T **head) {
u32 tmp; u32 tmp;
@ -36,10 +63,7 @@ namespace ams::kern::arch::arm64 {
" ldr %[next], [%[node]]\n" " ldr %[next], [%[node]]\n"
" stlxr %w[tmp], %[next], [%[head]]\n" " stlxr %w[tmp], %[next], [%[head]]\n"
" cbnz %w[tmp], 1b\n" " cbnz %w[tmp], 1b\n"
" b 3f\n"
"2:\n" "2:\n"
" clrex\n"
"3:\n"
: [tmp]"=&r"(tmp), [node]"=&r"(node), [next]"=&r"(next), [head]"+&r"(head) : [tmp]"=&r"(tmp), [node]"=&r"(node), [next]"=&r"(next), [head]"+&r"(head)
: :
: "cc", "memory" : "cc", "memory"
@ -59,7 +83,6 @@ namespace ams::kern::arch::arm64 {
" str %[next], [%[node]]\n" " str %[next], [%[node]]\n"
" stlxr %w[tmp], %[node], [%[head]]\n" " stlxr %w[tmp], %[node], [%[head]]\n"
" cbnz %w[tmp], 1b\n" " cbnz %w[tmp], 1b\n"
"2:\n"
: [tmp]"=&r"(tmp), [node]"+&r"(node), [next]"=&r"(next), [head]"+&r"(head) : [tmp]"=&r"(tmp), [node]"+&r"(node), [next]"=&r"(next), [head]"+&r"(head)
: :
: "cc", "memory" : "cc", "memory"

View file

@ -0,0 +1,60 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_k_dynamic_slab_heap.hpp>
namespace ams::kern {
template<typename T, bool ClearNode = false>
class KDynamicResourceManager {
NON_COPYABLE(KDynamicResourceManager);
NON_MOVEABLE(KDynamicResourceManager);
public:
using DynamicSlabType = KDynamicSlabHeap<T, ClearNode>;
private:
KDynamicPageManager *m_page_allocator{};
DynamicSlabType *m_slab_heap{};
public:
constexpr KDynamicResourceManager() = default;
constexpr ALWAYS_INLINE KVirtualAddress GetAddress() const { return m_slab_heap->GetAddress(); }
constexpr ALWAYS_INLINE size_t GetSize() const { return m_slab_heap->GetSize(); }
constexpr ALWAYS_INLINE size_t GetUsed() const { return m_slab_heap->GetUsed(); }
constexpr ALWAYS_INLINE size_t GetPeak() const { return m_slab_heap->GetPeak(); }
constexpr ALWAYS_INLINE size_t GetCount() const { return m_slab_heap->GetCount(); }
ALWAYS_INLINE void Initialize(KDynamicPageManager *page_allocator, DynamicSlabType *slab_heap) {
m_page_allocator = page_allocator;
m_slab_heap = slab_heap;
}
T *Allocate() const {
return m_slab_heap->Allocate(m_page_allocator);
}
void Free(T *t) const {
m_slab_heap->Free(t);
}
};
class KBlockInfoManager : public KDynamicResourceManager<KBlockInfo>{};
class KMemoryBlockSlabManager : public KDynamicResourceManager<KMemoryBlock>{};
using KBlockInfoSlabHeap = typename KBlockInfoManager::DynamicSlabType;
using KMemoryBlockSlabHeap = typename KMemoryBlockSlabManager::DynamicSlabType;
}

View file

@ -23,95 +23,71 @@
namespace ams::kern { namespace ams::kern {
template<typename T, bool ClearNode = false> template<typename T, bool ClearNode = false>
class KDynamicSlabHeap { class KDynamicSlabHeap : protected impl::KSlabHeapImpl {
NON_COPYABLE(KDynamicSlabHeap); NON_COPYABLE(KDynamicSlabHeap);
NON_MOVEABLE(KDynamicSlabHeap); NON_MOVEABLE(KDynamicSlabHeap);
private: private:
using Impl = impl::KSlabHeapImpl;
using PageBuffer = KDynamicPageManager::PageBuffer; using PageBuffer = KDynamicPageManager::PageBuffer;
private: private:
Impl m_impl; std::atomic<size_t> m_used{};
KDynamicPageManager *m_page_allocator; std::atomic<size_t> m_peak{};
std::atomic<size_t> m_used; std::atomic<size_t> m_count{};
std::atomic<size_t> m_peak; KVirtualAddress m_address{};
std::atomic<size_t> m_count; size_t m_size{};
KVirtualAddress m_address;
size_t m_size;
private:
ALWAYS_INLINE Impl *GetImpl() {
return std::addressof(m_impl);
}
ALWAYS_INLINE const Impl *GetImpl() const {
return std::addressof(m_impl);
}
public: public:
constexpr KDynamicSlabHeap() : m_impl(), m_page_allocator(), m_used(), m_peak(), m_count(), m_address(), m_size() { /* ... */ } constexpr KDynamicSlabHeap() = default;
constexpr KVirtualAddress GetAddress() const { return m_address; } constexpr ALWAYS_INLINE KVirtualAddress GetAddress() const { return m_address; }
constexpr size_t GetSize() const { return m_size; } constexpr ALWAYS_INLINE size_t GetSize() const { return m_size; }
constexpr size_t GetUsed() const { return m_used.load(); } constexpr ALWAYS_INLINE size_t GetUsed() const { return m_used.load(); }
constexpr size_t GetPeak() const { return m_peak.load(); } constexpr ALWAYS_INLINE size_t GetPeak() const { return m_peak.load(); }
constexpr size_t GetCount() const { return m_count.load(); } constexpr ALWAYS_INLINE size_t GetCount() const { return m_count.load(); }
constexpr bool IsInRange(KVirtualAddress addr) const { constexpr ALWAYS_INLINE bool IsInRange(KVirtualAddress addr) const {
return this->GetAddress() <= addr && addr <= this->GetAddress() + this->GetSize() - 1; return this->GetAddress() <= addr && addr <= this->GetAddress() + this->GetSize() - 1;
} }
void Initialize(KVirtualAddress memory, size_t sz) { ALWAYS_INLINE void Initialize(KDynamicPageManager *page_allocator, size_t num_objects) {
/* Set tracking fields. */
m_address = memory;
m_count = sz / sizeof(T);
m_size = m_count * sizeof(T);
/* Free blocks to memory. */
u8 *cur = GetPointer<u8>(m_address + m_size);
for (size_t i = 0; i < sz / sizeof(T); i++) {
cur -= sizeof(T);
this->GetImpl()->Free(cur);
}
}
void Initialize(KDynamicPageManager *page_allocator) {
m_page_allocator = page_allocator;
m_address = m_page_allocator->GetAddress();
m_size = m_page_allocator->GetSize();
}
void Initialize(KDynamicPageManager *page_allocator, size_t num_objects) {
MESOSPHERE_ASSERT(page_allocator != nullptr); MESOSPHERE_ASSERT(page_allocator != nullptr);
/* Initialize members. */ /* Initialize members. */
this->Initialize(page_allocator); m_address = page_allocator->GetAddress();
m_size = page_allocator->GetSize();
/* Initialize the base allocator. */
KSlabHeapImpl::Initialize();
/* Allocate until we have the correct number of objects. */ /* Allocate until we have the correct number of objects. */
while (m_count.load() < num_objects) { while (m_count.load() < num_objects) {
auto *allocated = reinterpret_cast<T *>(m_page_allocator->Allocate()); auto *allocated = reinterpret_cast<T *>(page_allocator->Allocate());
MESOSPHERE_ABORT_UNLESS(allocated != nullptr); MESOSPHERE_ABORT_UNLESS(allocated != nullptr);
for (size_t i = 0; i < sizeof(PageBuffer) / sizeof(T); i++) { for (size_t i = 0; i < sizeof(PageBuffer) / sizeof(T); i++) {
this->GetImpl()->Free(allocated + i); KSlabHeapImpl::Free(allocated + i);
} }
m_count.fetch_add(sizeof(PageBuffer) / sizeof(T)); m_count.fetch_add(sizeof(PageBuffer) / sizeof(T));
} }
} }
T *Allocate() { ALWAYS_INLINE T *Allocate(KDynamicPageManager *page_allocator) {
T *allocated = reinterpret_cast<T *>(this->GetImpl()->Allocate()); T *allocated = static_cast<T *>(KSlabHeapImpl::Allocate());
/* If we successfully allocated and we should clear the node, do so. */ /* If we successfully allocated and we should clear the node, do so. */
if constexpr (ClearNode) { if constexpr (ClearNode) {
if (AMS_LIKELY(allocated != nullptr)) { if (AMS_LIKELY(allocated != nullptr)) {
reinterpret_cast<Impl::Node *>(allocated)->next = nullptr; reinterpret_cast<KSlabHeapImpl::Node *>(allocated)->next = nullptr;
} }
} }
/* If we fail to allocate, try to get a new page from our next allocator. */ /* If we fail to allocate, try to get a new page from our next allocator. */
if (AMS_UNLIKELY(allocated == nullptr)) { if (AMS_UNLIKELY(allocated == nullptr) ) {
if (m_page_allocator != nullptr) { if (page_allocator != nullptr) {
allocated = reinterpret_cast<T *>(m_page_allocator->Allocate()); allocated = reinterpret_cast<T *>(page_allocator->Allocate());
if (allocated != nullptr) { if (allocated != nullptr) {
/* If we succeeded in getting a page, free the rest to our slab. */ /* If we succeeded in getting a page, free the rest to our slab. */
for (size_t i = 1; i < sizeof(PageBuffer) / sizeof(T); i++) { for (size_t i = 1; i < sizeof(PageBuffer) / sizeof(T); i++) {
this->GetImpl()->Free(allocated + i); KSlabHeapImpl::Free(allocated + i);
} }
m_count.fetch_add(sizeof(PageBuffer) / sizeof(T)); m_count.fetch_add(sizeof(PageBuffer) / sizeof(T));
} }
@ -135,13 +111,10 @@ namespace ams::kern {
return allocated; return allocated;
} }
void Free(T *t) { ALWAYS_INLINE void Free(T *t) {
this->GetImpl()->Free(t); KSlabHeapImpl::Free(t);
m_used.fetch_sub(1); m_used.fetch_sub(1);
} }
}; };
class KBlockInfoManager : public KDynamicSlabHeap<KBlockInfo>{};
class KMemoryBlockSlabManager : public KDynamicSlabHeap<KMemoryBlock>{};
} }

View file

@ -21,7 +21,7 @@
namespace ams::kern { namespace ams::kern {
class KEvent final : public KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObjectWithList> { class KEvent final : public KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObjectWithList, true> {
MESOSPHERE_AUTOOBJECT_TRAITS(KEvent, KAutoObject); MESOSPHERE_AUTOOBJECT_TRAITS(KEvent, KAutoObject);
private: private:
KReadableEvent m_readable_event; KReadableEvent m_readable_event;

View file

@ -25,7 +25,7 @@ namespace ams::kern {
class KClientPort; class KClientPort;
class KProcess; class KProcess;
class KLightSession final : public KAutoObjectWithSlabHeapAndContainer<KLightSession, KAutoObjectWithList> { class KLightSession final : public KAutoObjectWithSlabHeapAndContainer<KLightSession, KAutoObjectWithList, true> {
MESOSPHERE_AUTOOBJECT_TRAITS(KLightSession, KAutoObject); MESOSPHERE_AUTOOBJECT_TRAITS(KLightSession, KAutoObject);
private: private:
enum class State : u8 { enum class State : u8 {

View file

@ -144,6 +144,7 @@ namespace ams::kern {
static NOINLINE const KMemoryRegion &GetPageTableHeapRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_VirtualDramKernelPtHeap)); } static NOINLINE const KMemoryRegion &GetPageTableHeapRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_VirtualDramKernelPtHeap)); }
static NOINLINE const KMemoryRegion &GetKernelStackRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelStack)); } static NOINLINE const KMemoryRegion &GetKernelStackRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelStack)); }
static NOINLINE const KMemoryRegion &GetTempRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelTemp)); } static NOINLINE const KMemoryRegion &GetTempRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelTemp)); }
static NOINLINE const KMemoryRegion &GetSlabRegion() { return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelSlab)); }
static NOINLINE const KMemoryRegion &GetKernelTraceBufferRegion() { return Dereference(GetVirtualLinearMemoryRegionTree().FindByType(KMemoryRegionType_VirtualDramKernelTraceBuffer)); } static NOINLINE const KMemoryRegion &GetKernelTraceBufferRegion() { return Dereference(GetVirtualLinearMemoryRegionTree().FindByType(KMemoryRegionType_VirtualDramKernelTraceBuffer)); }

View file

@ -15,58 +15,27 @@
*/ */
#pragma once #pragma once
#include <mesosphere/kern_common.hpp> #include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_slab_helpers.hpp> #include <mesosphere/kern_k_page_table_slab_heap.hpp>
#include <mesosphere/kern_k_dynamic_slab_heap.hpp> #include <mesosphere/kern_k_dynamic_resource_manager.hpp>
namespace ams::kern { namespace ams::kern {
namespace impl { class KPageTableManager : public KDynamicResourceManager<impl::PageTablePage, true> {
public:
class PageTablePage { using RefCount = KPageTableSlabHeap::RefCount;
static constexpr size_t PageTableSize = KPageTableSlabHeap::PageTableSize;
private: private:
u8 m_buffer[PageSize]; using BaseHeap = KDynamicResourceManager<impl::PageTablePage, true>;
public:
ALWAYS_INLINE PageTablePage() { /* Do not initialize anything. */ }
};
static_assert(sizeof(PageTablePage) == PageSize);
}
class KPageTableManager : public KDynamicSlabHeap<impl::PageTablePage, true> {
public:
using RefCount = u16;
static constexpr size_t PageTableSize = sizeof(impl::PageTablePage);
static_assert(PageTableSize == PageSize);
private: private:
using BaseHeap = KDynamicSlabHeap<impl::PageTablePage, true>; KPageTableSlabHeap *m_pt_heap{};
private:
RefCount *m_ref_counts;
public: public:
static constexpr size_t CalculateReferenceCountSize(size_t size) { constexpr KPageTableManager() = default;
return (size / PageSize) * sizeof(RefCount);
}
public:
constexpr KPageTableManager() : BaseHeap(), m_ref_counts() { /* ... */ }
private:
void Initialize(RefCount *rc) {
m_ref_counts = rc;
for (size_t i = 0; i < this->GetSize() / PageSize; i++) {
m_ref_counts[i] = 0;
}
}
constexpr RefCount *GetRefCountPointer(KVirtualAddress addr) const { ALWAYS_INLINE void Initialize(KDynamicPageManager *page_allocator, KPageTableSlabHeap *pt_heap) {
return std::addressof(m_ref_counts[(addr - this->GetAddress()) / PageSize]); m_pt_heap = pt_heap;
}
public:
void Initialize(KDynamicPageManager *page_allocator, RefCount *rc) {
BaseHeap::Initialize(page_allocator);
this->Initialize(rc);
}
void Initialize(KDynamicPageManager *page_allocator, size_t object_count, RefCount *rc) { static_assert(std::derived_from<KPageTableSlabHeap, DynamicSlabType>);
BaseHeap::Initialize(page_allocator, object_count); BaseHeap::Initialize(page_allocator, pt_heap);
this->Initialize(rc);
} }
KVirtualAddress Allocate() { KVirtualAddress Allocate() {
@ -74,33 +43,23 @@ namespace ams::kern {
} }
void Free(KVirtualAddress addr) { void Free(KVirtualAddress addr) {
/* Free the page. */ return BaseHeap::Free(GetPointer<impl::PageTablePage>(addr));
BaseHeap::Free(GetPointer<impl::PageTablePage>(addr));
} }
RefCount GetRefCount(KVirtualAddress addr) const { ALWAYS_INLINE RefCount GetRefCount(KVirtualAddress addr) const {
MESOSPHERE_ASSERT(this->IsInRange(addr)); return m_pt_heap->GetRefCount(addr);
return *this->GetRefCountPointer(addr);
} }
void Open(KVirtualAddress addr, int count) { ALWAYS_INLINE void Open(KVirtualAddress addr, int count) {
MESOSPHERE_ASSERT(this->IsInRange(addr)); return m_pt_heap->Open(addr, count);
*this->GetRefCountPointer(addr) += count;
MESOSPHERE_ABORT_UNLESS(this->GetRefCount(addr) > 0);
} }
bool Close(KVirtualAddress addr, int count) { ALWAYS_INLINE bool Close(KVirtualAddress addr, int count) {
MESOSPHERE_ASSERT(this->IsInRange(addr)); return m_pt_heap->Close(addr, count);
MESOSPHERE_ABORT_UNLESS(this->GetRefCount(addr) >= count);
*this->GetRefCountPointer(addr) -= count;
return this->GetRefCount(addr) == 0;
} }
constexpr bool IsInPageTableHeap(KVirtualAddress addr) const { constexpr ALWAYS_INLINE bool IsInPageTableHeap(KVirtualAddress addr) const {
return this->IsInRange(addr); return m_pt_heap->IsInRange(addr);
} }
}; };

View file

@ -0,0 +1,93 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_slab_helpers.hpp>
#include <mesosphere/kern_k_dynamic_slab_heap.hpp>
namespace ams::kern {
namespace impl {
class PageTablePage {
private:
u8 m_buffer[PageSize];
public:
ALWAYS_INLINE PageTablePage() { /* Do not initialize anything. */ }
};
static_assert(sizeof(PageTablePage) == PageSize);
}
class KPageTableSlabHeap : public KDynamicSlabHeap<impl::PageTablePage, true> {
public:
using RefCount = u16;
static constexpr size_t PageTableSize = sizeof(impl::PageTablePage);
static_assert(PageTableSize == PageSize);
private:
using BaseHeap = KDynamicSlabHeap<impl::PageTablePage, true>;
private:
RefCount *m_ref_counts{};
public:
static constexpr ALWAYS_INLINE size_t CalculateReferenceCountSize(size_t size) {
return (size / PageSize) * sizeof(RefCount);
}
public:
constexpr KPageTableSlabHeap() = default;
private:
ALWAYS_INLINE void Initialize(RefCount *rc) {
m_ref_counts = rc;
for (size_t i = 0; i < this->GetSize() / PageSize; i++) {
m_ref_counts[i] = 0;
}
}
constexpr ALWAYS_INLINE RefCount *GetRefCountPointer(KVirtualAddress addr) const {
return m_ref_counts + ((addr - this->GetAddress()) / PageSize);
}
public:
ALWAYS_INLINE void Initialize(KDynamicPageManager *page_allocator, size_t object_count, RefCount *rc) {
BaseHeap::Initialize(page_allocator, object_count);
this->Initialize(rc);
}
ALWAYS_INLINE RefCount GetRefCount(KVirtualAddress addr) const {
MESOSPHERE_ASSERT(this->IsInRange(addr));
return *this->GetRefCountPointer(addr);
}
ALWAYS_INLINE void Open(KVirtualAddress addr, int count) {
MESOSPHERE_ASSERT(this->IsInRange(addr));
*this->GetRefCountPointer(addr) += count;
MESOSPHERE_ABORT_UNLESS(this->GetRefCount(addr) > 0);
}
ALWAYS_INLINE bool Close(KVirtualAddress addr, int count) {
MESOSPHERE_ASSERT(this->IsInRange(addr));
MESOSPHERE_ABORT_UNLESS(this->GetRefCount(addr) >= count);
*this->GetRefCountPointer(addr) -= count;
return this->GetRefCount(addr) == 0;
}
constexpr ALWAYS_INLINE bool IsInPageTableHeap(KVirtualAddress addr) const {
return this->IsInRange(addr);
}
};
}

View file

@ -29,7 +29,7 @@
#include <mesosphere/kern_k_address_arbiter.hpp> #include <mesosphere/kern_k_address_arbiter.hpp>
#include <mesosphere/kern_k_capabilities.hpp> #include <mesosphere/kern_k_capabilities.hpp>
#include <mesosphere/kern_k_wait_object.hpp> #include <mesosphere/kern_k_wait_object.hpp>
#include <mesosphere/kern_k_dynamic_slab_heap.hpp> #include <mesosphere/kern_k_dynamic_resource_manager.hpp>
#include <mesosphere/kern_k_page_table_manager.hpp> #include <mesosphere/kern_k_page_table_manager.hpp>
namespace ams::kern { namespace ams::kern {
@ -121,6 +121,9 @@ namespace ams::kern {
KMemoryBlockSlabManager m_memory_block_slab_manager{}; KMemoryBlockSlabManager m_memory_block_slab_manager{};
KBlockInfoManager m_block_info_manager{}; KBlockInfoManager m_block_info_manager{};
KPageTableManager m_page_table_manager{}; KPageTableManager m_page_table_manager{};
KMemoryBlockSlabHeap m_memory_block_heap{};
KBlockInfoSlabHeap m_block_info_heap{};
KPageTableSlabHeap m_page_table_heap{};
private: private:
Result Initialize(const ams::svc::CreateProcessParameter &params); Result Initialize(const ams::svc::CreateProcessParameter &params);

View file

@ -47,6 +47,8 @@ namespace ams::kern {
Result SetLimitValue(ams::svc::LimitableResource which, s64 value); Result SetLimitValue(ams::svc::LimitableResource which, s64 value);
void Add(ams::svc::LimitableResource which, s64 value);
bool Reserve(ams::svc::LimitableResource which, s64 value); bool Reserve(ams::svc::LimitableResource which, s64 value);
bool Reserve(ams::svc::LimitableResource which, s64 value, s64 timeout); bool Reserve(ams::svc::LimitableResource which, s64 value, s64 timeout);
void Release(ams::svc::LimitableResource which, s64 value); void Release(ams::svc::LimitableResource which, s64 value);

View file

@ -25,7 +25,7 @@ namespace ams::kern {
class KClientPort; class KClientPort;
class KProcess; class KProcess;
class KSession final : public KAutoObjectWithSlabHeapAndContainer<KSession, KAutoObjectWithList> { class KSession final : public KAutoObjectWithSlabHeapAndContainer<KSession, KAutoObjectWithList, true> {
MESOSPHERE_AUTOOBJECT_TRAITS(KSession, KAutoObject); MESOSPHERE_AUTOOBJECT_TRAITS(KSession, KAutoObject);
private: private:
enum class State : u8 { enum class State : u8 {

View file

@ -24,7 +24,7 @@
namespace ams::kern { namespace ams::kern {
class KSessionRequest final : public KSlabAllocated<KSessionRequest>, public KAutoObject, public util::IntrusiveListBaseNode<KSessionRequest> { class KSessionRequest final : public KSlabAllocated<KSessionRequest, true>, public KAutoObject, public util::IntrusiveListBaseNode<KSessionRequest> {
MESOSPHERE_AUTOOBJECT_TRAITS(KSessionRequest, KAutoObject); MESOSPHERE_AUTOOBJECT_TRAITS(KSessionRequest, KAutoObject);
public: public:
class SessionMappings { class SessionMappings {
@ -140,6 +140,14 @@ namespace ams::kern {
return req; return req;
} }
static KSessionRequest *CreateFromUnusedSlabMemory() {
KSessionRequest *req = KSessionRequest::AllocateFromUnusedSlabMemory();
if (req != nullptr) {
KAutoObject::Create(req);
}
return req;
}
virtual void Destroy() override { virtual void Destroy() override {
this->Finalize(); this->Finalize();
KSessionRequest::Free(this); KSessionRequest::Free(this);

View file

@ -35,7 +35,7 @@ namespace ams::kern {
bool m_is_initialized; bool m_is_initialized;
public: public:
explicit KSharedMemory() explicit KSharedMemory()
: m_page_group(std::addressof(Kernel::GetBlockInfoManager())), m_resource_limit(nullptr), m_owner_process_id(std::numeric_limits<u64>::max()), : m_page_group(std::addressof(Kernel::GetSystemBlockInfoManager())), m_resource_limit(nullptr), m_owner_process_id(std::numeric_limits<u64>::max()),
m_owner_perm(ams::svc::MemoryPermission_None), m_remote_perm(ams::svc::MemoryPermission_None), m_is_initialized(false) m_owner_perm(ams::svc::MemoryPermission_None), m_remote_perm(ams::svc::MemoryPermission_None), m_is_initialized(false)
{ {
/* ... */ /* ... */

View file

@ -16,11 +16,13 @@
#pragma once #pragma once
#include <mesosphere/kern_common.hpp> #include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_k_typed_address.hpp> #include <mesosphere/kern_k_typed_address.hpp>
#include <mesosphere/kern_k_memory_layout.hpp>
#if defined(ATMOSPHERE_ARCH_ARM64) #if defined(ATMOSPHERE_ARCH_ARM64)
#include <mesosphere/arch/arm64/kern_k_slab_heap_impl.hpp> #include <mesosphere/arch/arm64/kern_k_slab_heap_impl.hpp>
namespace ams::kern { namespace ams::kern {
using ams::kern::arch::arm64::IsSlabAtomicValid;
using ams::kern::arch::arm64::AllocateFromSlabAtomic; using ams::kern::arch::arm64::AllocateFromSlabAtomic;
using ams::kern::arch::arm64::FreeToSlabAtomic; using ams::kern::arch::arm64::FreeToSlabAtomic;
} }
@ -44,73 +46,68 @@ namespace ams::kern {
Node *next; Node *next;
}; };
private: private:
Node * m_head; Node *m_head{nullptr};
size_t m_obj_size;
public: public:
constexpr KSlabHeapImpl() : m_head(nullptr), m_obj_size(0) { MESOSPHERE_ASSERT_THIS(); } constexpr KSlabHeapImpl() = default;
void Initialize(size_t size) { void Initialize() {
MESOSPHERE_INIT_ABORT_UNLESS(m_head == nullptr); MESOSPHERE_ABORT_UNLESS(m_head == nullptr);
m_obj_size = size; MESOSPHERE_ABORT_UNLESS(IsSlabAtomicValid());
} }
Node *GetHead() const { ALWAYS_INLINE Node *GetHead() const {
return m_head; return m_head;
} }
size_t GetObjectSize() const { ALWAYS_INLINE void *Allocate() {
return m_obj_size;
}
void *Allocate() {
MESOSPHERE_ASSERT_THIS();
return AllocateFromSlabAtomic(std::addressof(m_head)); return AllocateFromSlabAtomic(std::addressof(m_head));
} }
void Free(void *obj) { ALWAYS_INLINE void Free(void *obj) {
MESOSPHERE_ASSERT_THIS(); return FreeToSlabAtomic(std::addressof(m_head), static_cast<Node *>(obj));
Node *node = reinterpret_cast<Node *>(obj);
return FreeToSlabAtomic(std::addressof(m_head), node);
} }
}; };
} }
class KSlabHeapBase { template<bool SupportDynamicExpansion>
class KSlabHeapBase : protected impl::KSlabHeapImpl {
NON_COPYABLE(KSlabHeapBase); NON_COPYABLE(KSlabHeapBase);
NON_MOVEABLE(KSlabHeapBase); NON_MOVEABLE(KSlabHeapBase);
private: private:
using Impl = impl::KSlabHeapImpl; size_t m_obj_size{};
uintptr_t m_peak{};
uintptr_t m_start{};
uintptr_t m_end{};
private: private:
Impl m_impl; ALWAYS_INLINE void UpdatePeakImpl(uintptr_t obj) {
uintptr_t m_peak; static_assert(std::atomic_ref<uintptr_t>::is_always_lock_free);
uintptr_t m_start; std::atomic_ref<uintptr_t> peak_ref(m_peak);
uintptr_t m_end;
private: const uintptr_t alloc_peak = obj + this->GetObjectSize();
ALWAYS_INLINE Impl *GetImpl() { uintptr_t cur_peak = m_peak;
return std::addressof(m_impl); do {
if (alloc_peak <= cur_peak) {
break;
} }
ALWAYS_INLINE const Impl *GetImpl() const { } while (!peak_ref.compare_exchange_strong(cur_peak, alloc_peak));
return std::addressof(m_impl);
} }
public: public:
constexpr KSlabHeapBase() : m_impl(), m_peak(0), m_start(0), m_end(0) { MESOSPHERE_ASSERT_THIS(); } constexpr KSlabHeapBase() = default;
ALWAYS_INLINE bool Contains(uintptr_t address) const { ALWAYS_INLINE bool Contains(uintptr_t address) const {
return m_start <= address && address < m_end; return m_start <= address && address < m_end;
} }
void InitializeImpl(size_t obj_size, void *memory, size_t memory_size) { void Initialize(size_t obj_size, void *memory, size_t memory_size) {
MESOSPHERE_ASSERT_THIS();
/* Ensure we don't initialize a slab using null memory. */ /* Ensure we don't initialize a slab using null memory. */
MESOSPHERE_ABORT_UNLESS(memory != nullptr); MESOSPHERE_ABORT_UNLESS(memory != nullptr);
/* Set our object size. */
m_obj_size = obj_size;
/* Initialize the base allocator. */ /* Initialize the base allocator. */
this->GetImpl()->Initialize(obj_size); KSlabHeapImpl::Initialize();
/* Set our tracking variables. */ /* Set our tracking variables. */
const size_t num_obj = (memory_size / obj_size); const size_t num_obj = (memory_size / obj_size);
@ -123,76 +120,92 @@ namespace ams::kern {
for (size_t i = 0; i < num_obj; i++) { for (size_t i = 0; i < num_obj; i++) {
cur -= obj_size; cur -= obj_size;
this->GetImpl()->Free(cur); KSlabHeapImpl::Free(cur);
} }
} }
size_t GetSlabHeapSize() const { ALWAYS_INLINE size_t GetSlabHeapSize() const {
return (m_end - m_start) / this->GetObjectSize(); return (m_end - m_start) / this->GetObjectSize();
} }
size_t GetObjectSize() const { ALWAYS_INLINE size_t GetObjectSize() const {
return this->GetImpl()->GetObjectSize(); return m_obj_size;
} }
void *AllocateImpl() { ALWAYS_INLINE void *Allocate() {
MESOSPHERE_ASSERT_THIS(); void *obj = KSlabHeapImpl::Allocate();
void *obj = this->GetImpl()->Allocate();
/* Track the allocated peak. */ /* Track the allocated peak. */
#if defined(MESOSPHERE_BUILD_FOR_DEBUGGING) #if defined(MESOSPHERE_BUILD_FOR_DEBUGGING)
if (AMS_LIKELY(obj != nullptr)) { if (AMS_LIKELY(obj != nullptr)) {
static_assert(std::atomic_ref<uintptr_t>::is_always_lock_free); if constexpr (SupportDynamicExpansion) {
std::atomic_ref<uintptr_t> peak_ref(m_peak); if (this->Contains(reinterpret_cast<uintptr_t>(obj))) {
this->UpdatePeakImpl(reinterpret_cast<uintptr_t>(obj));
const uintptr_t alloc_peak = reinterpret_cast<uintptr_t>(obj) + this->GetObjectSize(); } else {
uintptr_t cur_peak = m_peak; this->UpdatePeakImpl(reinterpret_cast<uintptr_t>(m_end) - this->GetObjectSize());
do { }
if (alloc_peak <= cur_peak) { } else {
break; this->UpdatePeakImpl(reinterpret_cast<uintptr_t>(obj));
} }
} while (!peak_ref.compare_exchange_strong(cur_peak, alloc_peak));
} }
#endif #endif
return obj; return obj;
} }
void FreeImpl(void *obj) { ALWAYS_INLINE void Free(void *obj) {
MESOSPHERE_ASSERT_THIS();
/* Don't allow freeing an object that wasn't allocated from this heap. */ /* Don't allow freeing an object that wasn't allocated from this heap. */
MESOSPHERE_ABORT_UNLESS(this->Contains(reinterpret_cast<uintptr_t>(obj))); const bool contained = this->Contains(reinterpret_cast<uintptr_t>(obj));
if constexpr (SupportDynamicExpansion) {
this->GetImpl()->Free(obj); const bool is_slab = KMemoryLayout::GetSlabRegion().Contains(reinterpret_cast<uintptr_t>(obj));
MESOSPHERE_ABORT_UNLESS(contained || is_slab);
} else {
MESOSPHERE_ABORT_UNLESS(contained);
}
KSlabHeapImpl::Free(obj);
}
ALWAYS_INLINE size_t GetObjectIndex(const void *obj) const {
if constexpr (SupportDynamicExpansion) {
if (!this->Contains(reinterpret_cast<uintptr_t>(obj))) {
return std::numeric_limits<size_t>::max();
}
} }
size_t GetObjectIndexImpl(const void *obj) const {
return (reinterpret_cast<uintptr_t>(obj) - m_start) / this->GetObjectSize(); return (reinterpret_cast<uintptr_t>(obj) - m_start) / this->GetObjectSize();
} }
size_t GetPeakIndex() const { ALWAYS_INLINE size_t GetPeakIndex() const {
return this->GetObjectIndexImpl(reinterpret_cast<const void *>(m_peak)); return this->GetObjectIndex(reinterpret_cast<const void *>(m_peak));
} }
uintptr_t GetSlabHeapAddress() const { ALWAYS_INLINE uintptr_t GetSlabHeapAddress() const {
return m_start; return m_start;
} }
size_t GetNumRemaining() const { ALWAYS_INLINE size_t GetNumRemaining() const {
size_t remaining = 0; size_t remaining = 0;
/* Only calculate the number of remaining objects under debug configuration. */ /* Only calculate the number of remaining objects under debug configuration. */
#if defined(MESOSPHERE_BUILD_FOR_DEBUGGING) #if defined(MESOSPHERE_BUILD_FOR_DEBUGGING)
while (true) { while (true) {
auto *cur = this->GetImpl()->GetHead(); auto *cur = this->GetHead();
remaining = 0; remaining = 0;
if constexpr (SupportDynamicExpansion) {
const auto &slab_region = KMemoryLayout::GetSlabRegion();
while (this->Contains(reinterpret_cast<uintptr_t>(cur)) || slab_region.Contains(reinterpret_cast<uintptr_t>(cur))) {
++remaining;
cur = cur->next;
}
} else {
while (this->Contains(reinterpret_cast<uintptr_t>(cur))) { while (this->Contains(reinterpret_cast<uintptr_t>(cur))) {
++remaining; ++remaining;
cur = cur->next; cur = cur->next;
} }
}
if (cur == nullptr) { if (cur == nullptr) {
break; break;
@ -204,29 +217,31 @@ namespace ams::kern {
} }
}; };
template<typename T> template<typename T, bool SupportDynamicExpansion>
class KSlabHeap : public KSlabHeapBase { class KSlabHeap : public KSlabHeapBase<SupportDynamicExpansion> {
private:
using BaseHeap = KSlabHeapBase<SupportDynamicExpansion>;
public: public:
constexpr KSlabHeap() : KSlabHeapBase() { /* ... */ } constexpr KSlabHeap() = default;
void Initialize(void *memory, size_t memory_size) { void Initialize(void *memory, size_t memory_size) {
this->InitializeImpl(sizeof(T), memory, memory_size); BaseHeap::Initialize(sizeof(T), memory, memory_size);
} }
T *Allocate() { ALWAYS_INLINE T *Allocate() {
T *obj = reinterpret_cast<T *>(this->AllocateImpl()); T *obj = static_cast<T *>(BaseHeap::Allocate());
if (AMS_LIKELY(obj != nullptr)) { if (AMS_LIKELY(obj != nullptr)) {
std::construct_at(obj); std::construct_at(obj);
} }
return obj; return obj;
} }
void Free(T *obj) { ALWAYS_INLINE void Free(T *obj) {
this->FreeImpl(obj); BaseHeap::Free(obj);
} }
size_t GetObjectIndex(const T *obj) const { ALWAYS_INLINE size_t GetObjectIndex(const T *obj) const {
return this->GetObjectIndexImpl(obj); return BaseHeap::GetObjectIndex(obj);
} }
}; };

View file

@ -23,12 +23,13 @@ namespace ams::kern {
private: private:
friend class KSystemControl; friend class KSystemControl;
private: private:
static inline bool s_is_debug_mode; static inline constinit bool s_is_debug_mode;
static inline bool s_enable_debug_logging; static inline constinit bool s_enable_debug_logging;
static inline bool s_enable_user_exception_handlers; static inline constinit bool s_enable_user_exception_handlers;
static inline bool s_enable_debug_memory_fill; static inline constinit bool s_enable_debug_memory_fill;
static inline bool s_enable_user_pmu_access; static inline constinit bool s_enable_user_pmu_access;
static inline bool s_enable_kernel_debugging; static inline constinit bool s_enable_kernel_debugging;
static inline constinit bool s_enable_dynamic_resource_limits;
private: private:
static ALWAYS_INLINE void SetIsDebugMode(bool en) { s_is_debug_mode = en; } static ALWAYS_INLINE void SetIsDebugMode(bool en) { s_is_debug_mode = en; }
static ALWAYS_INLINE void EnableDebugLogging(bool en) { s_enable_debug_logging = en; } static ALWAYS_INLINE void EnableDebugLogging(bool en) { s_enable_debug_logging = en; }
@ -36,6 +37,7 @@ namespace ams::kern {
static ALWAYS_INLINE void EnableDebugMemoryFill(bool en) { s_enable_debug_memory_fill = en; } static ALWAYS_INLINE void EnableDebugMemoryFill(bool en) { s_enable_debug_memory_fill = en; }
static ALWAYS_INLINE void EnableUserPmuAccess(bool en) { s_enable_user_pmu_access = en; } static ALWAYS_INLINE void EnableUserPmuAccess(bool en) { s_enable_user_pmu_access = en; }
static ALWAYS_INLINE void EnableKernelDebugging(bool en) { s_enable_kernel_debugging = en; } static ALWAYS_INLINE void EnableKernelDebugging(bool en) { s_enable_kernel_debugging = en; }
static ALWAYS_INLINE void EnableDynamicResourceLimits(bool en) { s_enable_dynamic_resource_limits = en; }
public: public:
static ALWAYS_INLINE bool IsDebugMode() { return s_is_debug_mode; } static ALWAYS_INLINE bool IsDebugMode() { return s_is_debug_mode; }
static ALWAYS_INLINE bool IsDebugLoggingEnabled() { return s_enable_debug_logging; } static ALWAYS_INLINE bool IsDebugLoggingEnabled() { return s_enable_debug_logging; }
@ -43,6 +45,7 @@ namespace ams::kern {
static ALWAYS_INLINE bool IsDebugMemoryFillEnabled() { return s_enable_debug_memory_fill; } static ALWAYS_INLINE bool IsDebugMemoryFillEnabled() { return s_enable_debug_memory_fill; }
static ALWAYS_INLINE bool IsUserPmuAccessEnabled() { return s_enable_user_pmu_access; } static ALWAYS_INLINE bool IsUserPmuAccessEnabled() { return s_enable_user_pmu_access; }
static ALWAYS_INLINE bool IsKernelDebuggingEnabled() { return s_enable_kernel_debugging; } static ALWAYS_INLINE bool IsKernelDebuggingEnabled() { return s_enable_kernel_debugging; }
static ALWAYS_INLINE bool IsDynamicResourceLimitsEnabled() { return s_enable_dynamic_resource_limits; }
}; };
} }

View file

@ -0,0 +1,27 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_k_typed_address.hpp>
namespace ams::kern {
/* Utilities to allocate/free memory from the "unused" gaps between slab heaps. */
/* See KTargetSystem::IsDynamicResourceLimitsEnabled() usage for more context. */
KVirtualAddress AllocateUnusedSlabMemory(size_t size, size_t alignment);
void FreeUnusedSlabMemory(KVirtualAddress address, size_t size);
}

View file

@ -63,14 +63,21 @@ namespace ams::kern {
static constexpr size_t ApplicationMemoryBlockSlabHeapSize = 20000; static constexpr size_t ApplicationMemoryBlockSlabHeapSize = 20000;
static constexpr size_t SystemMemoryBlockSlabHeapSize = 10000; static constexpr size_t SystemMemoryBlockSlabHeapSize = 10000;
static constexpr size_t BlockInfoSlabHeapSize = 4000; static constexpr size_t BlockInfoSlabHeapSize = 4000;
static constexpr size_t ReservedDynamicPageCount = 70;
private: private:
static State s_state; static State s_state;
static KResourceLimit s_system_resource_limit; static KResourceLimit s_system_resource_limit;
static KMemoryManager s_memory_manager; static KMemoryManager s_memory_manager;
static KPageTableManager s_page_table_manager; static KPageTableSlabHeap s_page_table_heap;
static KMemoryBlockSlabHeap s_app_memory_block_heap;
static KMemoryBlockSlabHeap s_sys_memory_block_heap;
static KBlockInfoSlabHeap s_block_info_heap;
static KPageTableManager s_app_page_table_manager;
static KPageTableManager s_sys_page_table_manager;
static KMemoryBlockSlabManager s_app_memory_block_manager; static KMemoryBlockSlabManager s_app_memory_block_manager;
static KMemoryBlockSlabManager s_sys_memory_block_manager; static KMemoryBlockSlabManager s_sys_memory_block_manager;
static KBlockInfoManager s_block_info_manager; static KBlockInfoManager s_app_block_info_manager;
static KBlockInfoManager s_sys_block_info_manager;
static KSupervisorPageTable s_supervisor_page_table; static KSupervisorPageTable s_supervisor_page_table;
static KUnsafeMemory s_unsafe_memory; static KUnsafeMemory s_unsafe_memory;
static KWorkerTaskManager s_worker_task_managers[KWorkerTaskManager::WorkerType_Count]; static KWorkerTaskManager s_worker_task_managers[KWorkerTaskManager::WorkerType_Count];
@ -130,12 +137,20 @@ namespace ams::kern {
return s_sys_memory_block_manager; return s_sys_memory_block_manager;
} }
static ALWAYS_INLINE KBlockInfoManager &GetBlockInfoManager() { static ALWAYS_INLINE KBlockInfoManager &GetApplicationBlockInfoManager() {
return s_block_info_manager; return s_app_block_info_manager;
} }
static ALWAYS_INLINE KPageTableManager &GetPageTableManager() { static ALWAYS_INLINE KBlockInfoManager &GetSystemBlockInfoManager() {
return s_page_table_manager; return s_sys_block_info_manager;
}
static ALWAYS_INLINE KPageTableManager &GetApplicationPageTableManager() {
return s_app_page_table_manager;
}
static ALWAYS_INLINE KPageTableManager &GetSystemPageTableManager() {
return s_sys_page_table_manager;
} }
static ALWAYS_INLINE KSupervisorPageTable &GetKernelPageTable() { static ALWAYS_INLINE KSupervisorPageTable &GetKernelPageTable() {

View file

@ -18,15 +18,16 @@
#include <mesosphere/kern_k_auto_object.hpp> #include <mesosphere/kern_k_auto_object.hpp>
#include <mesosphere/kern_k_slab_heap.hpp> #include <mesosphere/kern_k_slab_heap.hpp>
#include <mesosphere/kern_k_auto_object_container.hpp> #include <mesosphere/kern_k_auto_object_container.hpp>
#include <mesosphere/kern_k_unused_slab_memory.hpp>
namespace ams::kern { namespace ams::kern {
template<class Derived> template<class Derived, bool SupportDynamicExpansion = false>
class KSlabAllocated { class KSlabAllocated {
private: private:
static inline KSlabHeap<Derived> s_slab_heap; static constinit inline KSlabHeap<Derived, SupportDynamicExpansion> s_slab_heap;
public: public:
constexpr KSlabAllocated() { /* ... */ } constexpr KSlabAllocated() = default;
size_t GetSlabIndex() const { size_t GetSlabIndex() const {
return s_slab_heap.GetIndex(static_cast<const Derived *>(this)); return s_slab_heap.GetIndex(static_cast<const Derived *>(this));
@ -36,14 +37,25 @@ namespace ams::kern {
s_slab_heap.Initialize(memory, memory_size); s_slab_heap.Initialize(memory, memory_size);
} }
static ALWAYS_INLINE Derived *Allocate() { static Derived *Allocate() {
return s_slab_heap.Allocate(); return s_slab_heap.Allocate();
} }
static ALWAYS_INLINE void Free(Derived *obj) { static void Free(Derived *obj) {
s_slab_heap.Free(obj); s_slab_heap.Free(obj);
} }
template<bool Enable = SupportDynamicExpansion, typename = typename std::enable_if<Enable>::type>
static Derived *AllocateFromUnusedSlabMemory() {
static_assert(Enable == SupportDynamicExpansion);
Derived * const obj = GetPointer<Derived>(AllocateUnusedSlabMemory(sizeof(Derived), alignof(Derived)));
if (AMS_LIKELY(obj != nullptr)) {
std::construct_at(obj);
}
return obj;
}
static size_t GetObjectSize() { return s_slab_heap.GetObjectSize(); } static size_t GetObjectSize() { return s_slab_heap.GetObjectSize(); }
static size_t GetSlabHeapSize() { return s_slab_heap.GetSlabHeapSize(); } static size_t GetSlabHeapSize() { return s_slab_heap.GetSlabHeapSize(); }
static size_t GetPeakIndex() { return s_slab_heap.GetPeakIndex(); } static size_t GetPeakIndex() { return s_slab_heap.GetPeakIndex(); }
@ -52,12 +64,12 @@ namespace ams::kern {
static size_t GetNumRemaining() { return s_slab_heap.GetNumRemaining(); } static size_t GetNumRemaining() { return s_slab_heap.GetNumRemaining(); }
}; };
template<typename Derived, typename Base> template<typename Derived, typename Base, bool SupportDynamicExpansion = false>
class KAutoObjectWithSlabHeapAndContainer : public Base { class KAutoObjectWithSlabHeapAndContainer : public Base {
static_assert(std::is_base_of<KAutoObjectWithList, Base>::value); static_assert(std::is_base_of<KAutoObjectWithList, Base>::value);
private: private:
static inline KSlabHeap<Derived> s_slab_heap; static constinit inline KSlabHeap<Derived, SupportDynamicExpansion> s_slab_heap;
static inline KAutoObjectWithListContainer s_container; static constinit inline KAutoObjectWithListContainer s_container;
private: private:
static ALWAYS_INLINE Derived *Allocate() { static ALWAYS_INLINE Derived *Allocate() {
return s_slab_heap.Allocate(); return s_slab_heap.Allocate();
@ -73,7 +85,7 @@ namespace ams::kern {
ALWAYS_INLINE ~ListAccessor() { /* ... */ } ALWAYS_INLINE ~ListAccessor() { /* ... */ }
}; };
public: public:
constexpr KAutoObjectWithSlabHeapAndContainer() : Base() { /* ... */ } constexpr KAutoObjectWithSlabHeapAndContainer() = default;
virtual void Destroy() override { virtual void Destroy() override {
const bool is_initialized = this->IsInitialized(); const bool is_initialized = this->IsInitialized();
@ -109,6 +121,18 @@ namespace ams::kern {
return obj; return obj;
} }
template<bool Enable = SupportDynamicExpansion, typename = typename std::enable_if<Enable>::type>
static Derived *CreateFromUnusedSlabMemory() {
static_assert(Enable == SupportDynamicExpansion);
Derived * const obj = GetPointer<Derived>(AllocateUnusedSlabMemory(sizeof(Derived), alignof(Derived)));
if (AMS_LIKELY(obj != nullptr)) {
std::construct_at(obj);
KAutoObject::Create(obj);
}
return obj;
}
static void Register(Derived *obj) { static void Register(Derived *obj) {
return s_container.Register(obj); return s_container.Register(obj);
} }

View file

@ -166,7 +166,7 @@ namespace ams::kern::arch::arm64 {
Result KPageTable::InitializeForKernel(void *table, KVirtualAddress start, KVirtualAddress end) { Result KPageTable::InitializeForKernel(void *table, KVirtualAddress start, KVirtualAddress end) {
/* Initialize basic fields. */ /* Initialize basic fields. */
m_asid = 0; m_asid = 0;
m_manager = std::addressof(Kernel::GetPageTableManager()); m_manager = std::addressof(Kernel::GetSystemPageTableManager());
/* Allocate a page for ttbr. */ /* Allocate a page for ttbr. */
const u64 asid_tag = (static_cast<u64>(m_asid) << 48ul); const u64 asid_tag = (static_cast<u64>(m_asid) << 48ul);

View file

@ -650,11 +650,11 @@ namespace ams::kern::board::nintendo::nx {
g_memory_controller_address = KMemoryLayout::GetDevicePhysicalAddress(KMemoryRegionType_MemoryController); g_memory_controller_address = KMemoryLayout::GetDevicePhysicalAddress(KMemoryRegionType_MemoryController);
/* Allocate a page to use as a reserved/no device table. */ /* Allocate a page to use as a reserved/no device table. */
const KVirtualAddress table_virt_addr = Kernel::GetPageTableManager().Allocate(); const KVirtualAddress table_virt_addr = Kernel::GetSystemPageTableManager().Allocate();
MESOSPHERE_ABORT_UNLESS(table_virt_addr != Null<KVirtualAddress>); MESOSPHERE_ABORT_UNLESS(table_virt_addr != Null<KVirtualAddress>);
const KPhysicalAddress table_phys_addr = GetPageTablePhysicalAddress(table_virt_addr); const KPhysicalAddress table_phys_addr = GetPageTablePhysicalAddress(table_virt_addr);
MESOSPHERE_ASSERT(IsValidPhysicalAddress(table_phys_addr)); MESOSPHERE_ASSERT(IsValidPhysicalAddress(table_phys_addr));
Kernel::GetPageTableManager().Open(table_virt_addr, 1); Kernel::GetSystemPageTableManager().Open(table_virt_addr, 1);
/* Clear the page and save it. */ /* Clear the page and save it. */
/* NOTE: Nintendo does not check the result of StoreDataCache. */ /* NOTE: Nintendo does not check the result of StoreDataCache. */
@ -779,7 +779,7 @@ namespace ams::kern::board::nintendo::nx {
const size_t end_index = (space_address + space_size - 1) / DeviceRegionSize; const size_t end_index = (space_address + space_size - 1) / DeviceRegionSize;
/* Get the page table manager. */ /* Get the page table manager. */
auto &ptm = Kernel::GetPageTableManager(); auto &ptm = Kernel::GetSystemPageTableManager();
/* Clear the tables. */ /* Clear the tables. */
static_assert(TableCount == (1ul << DeviceVirtualAddressBits) / DeviceRegionSize); static_assert(TableCount == (1ul << DeviceVirtualAddressBits) / DeviceRegionSize);
@ -840,7 +840,7 @@ namespace ams::kern::board::nintendo::nx {
void KDevicePageTable::Finalize() { void KDevicePageTable::Finalize() {
/* Get the page table manager. */ /* Get the page table manager. */
auto &ptm = Kernel::GetPageTableManager(); auto &ptm = Kernel::GetSystemPageTableManager();
/* Detach from all devices. */ /* Detach from all devices. */
{ {
@ -1017,7 +1017,7 @@ namespace ams::kern::board::nintendo::nx {
/* Get the memory manager and page table manager. */ /* Get the memory manager and page table manager. */
KMemoryManager &mm = Kernel::GetMemoryManager(); KMemoryManager &mm = Kernel::GetMemoryManager();
KPageTableManager &ptm = Kernel::GetPageTableManager(); KPageTableManager &ptm = Kernel::GetSystemPageTableManager();
/* Cache permissions. */ /* Cache permissions. */
const bool read = (device_perm & ams::svc::MemoryPermission_Read) != 0; const bool read = (device_perm & ams::svc::MemoryPermission_Read) != 0;
@ -1181,10 +1181,10 @@ namespace ams::kern::board::nintendo::nx {
/* Get the memory manager and page table manager. */ /* Get the memory manager and page table manager. */
KMemoryManager &mm = Kernel::GetMemoryManager(); KMemoryManager &mm = Kernel::GetMemoryManager();
KPageTableManager &ptm = Kernel::GetPageTableManager(); KPageTableManager &ptm = Kernel::GetSystemPageTableManager();
/* Make a page group for the pages we're closing. */ /* Make a page group for the pages we're closing. */
KPageGroup pg(std::addressof(Kernel::GetBlockInfoManager())); KPageGroup pg(std::addressof(Kernel::GetSystemBlockInfoManager()));
/* Walk the directory. */ /* Walk the directory. */
u64 remaining = size; u64 remaining = size;

View file

@ -459,6 +459,7 @@ namespace ams::kern::board::nintendo::nx {
KTargetSystem::EnableDebugMemoryFill(kernel_config.Get<smc::KernelConfiguration::DebugFillMemory>()); KTargetSystem::EnableDebugMemoryFill(kernel_config.Get<smc::KernelConfiguration::DebugFillMemory>());
KTargetSystem::EnableUserExceptionHandlers(kernel_config.Get<smc::KernelConfiguration::EnableUserExceptionHandlers>()); KTargetSystem::EnableUserExceptionHandlers(kernel_config.Get<smc::KernelConfiguration::EnableUserExceptionHandlers>());
KTargetSystem::EnableDynamicResourceLimits(!kernel_config.Get<smc::KernelConfiguration::DisableDynamicResourceLimits>());
KTargetSystem::EnableUserPmuAccess(kernel_config.Get<smc::KernelConfiguration::EnableUserPmuAccess>()); KTargetSystem::EnableUserPmuAccess(kernel_config.Get<smc::KernelConfiguration::EnableUserPmuAccess>());
g_call_smc_on_panic = kernel_config.Get<smc::KernelConfiguration::UseSecureMonitorPanicCall>(); g_call_smc_on_panic = kernel_config.Get<smc::KernelConfiguration::UseSecureMonitorPanicCall>();

View file

@ -84,8 +84,9 @@ namespace ams::kern::board::nintendo::nx::smc {
using EnableUserExceptionHandlers = util::BitPack32::Field<DebugFillMemory::Next, 1, bool>; using EnableUserExceptionHandlers = util::BitPack32::Field<DebugFillMemory::Next, 1, bool>;
using EnableUserPmuAccess = util::BitPack32::Field<EnableUserExceptionHandlers::Next, 1, bool>; using EnableUserPmuAccess = util::BitPack32::Field<EnableUserExceptionHandlers::Next, 1, bool>;
using IncreaseThreadResourceLimit = util::BitPack32::Field<EnableUserPmuAccess::Next, 1, bool>; using IncreaseThreadResourceLimit = util::BitPack32::Field<EnableUserPmuAccess::Next, 1, bool>;
using Reserved4 = util::BitPack32::Field<IncreaseThreadResourceLimit::Next, 4, u32>; using DisableDynamicResourceLimits = util::BitPack32::Field<IncreaseThreadResourceLimit::Next, 1, bool>;
using UseSecureMonitorPanicCall = util::BitPack32::Field<Reserved4::Next, 1, bool>; using Reserved5 = util::BitPack32::Field<DisableDynamicResourceLimits::Next, 3, u32>;
using UseSecureMonitorPanicCall = util::BitPack32::Field<Reserved5::Next, 1, bool>;
using Reserved9 = util::BitPack32::Field<UseSecureMonitorPanicCall::Next, 7, u32>; using Reserved9 = util::BitPack32::Field<UseSecureMonitorPanicCall::Next, 7, u32>;
using MemorySize = util::BitPack32::Field<Reserved9::Next, 2, smc::MemorySize>; using MemorySize = util::BitPack32::Field<Reserved9::Next, 2, smc::MemorySize>;
}; };

View file

@ -173,8 +173,9 @@ namespace ams::kern::init {
} }
void InitializeSlabHeaps() { void InitializeSlabHeaps() {
/* Get the start of the slab region, since that's where we'll be working. */ /* Get the slab region, since that's where we'll be working. */
KVirtualAddress address = KMemoryLayout::GetSlabRegionAddress(); const KMemoryRegion &slab_region = KMemoryLayout::GetSlabRegion();
KVirtualAddress address = slab_region.GetAddress();
/* Initialize slab type array to be in sorted order. */ /* Initialize slab type array to be in sorted order. */
KSlabType slab_types[KSlabType_Count]; KSlabType slab_types[KSlabType_Count];
@ -202,13 +203,21 @@ namespace ams::kern::init {
} }
} }
/* Track the gaps, so that we can free them to the unused slab tree. */
KVirtualAddress gap_start = address;
size_t gap_size = 0;
for (size_t i = 0; i < util::size(slab_types); i++) { for (size_t i = 0; i < util::size(slab_types); i++) {
/* Add the random gap to the address. */ /* Add the random gap to the address. */
address += (i == 0) ? slab_gaps[0] : slab_gaps[i] - slab_gaps[i - 1]; const auto cur_gap = (i == 0) ? slab_gaps[0] : slab_gaps[i] - slab_gaps[i - 1];
address += cur_gap;
gap_size += cur_gap;
#define INITIALIZE_SLAB_HEAP(NAME, COUNT, ...) \ #define INITIALIZE_SLAB_HEAP(NAME, COUNT, ...) \
case KSlabType_##NAME: \ case KSlabType_##NAME: \
if (COUNT > 0) { \
address = InitializeSlabHeap<NAME>(address, COUNT); \ address = InitializeSlabHeap<NAME>(address, COUNT); \
} \
break; break;
/* Initialize the slabheap. */ /* Initialize the slabheap. */
@ -218,7 +227,17 @@ namespace ams::kern::init {
/* If we somehow get an invalid type, abort. */ /* If we somehow get an invalid type, abort. */
MESOSPHERE_UNREACHABLE_DEFAULT_CASE(); MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
} }
/* If we've hit the end of a gap, free it. */
if (gap_start + gap_size != address) {
FreeUnusedSlabMemory(gap_start, gap_size);
gap_start = address;
gap_size = 0;
} }
} }
/* Free the end of the slab region. */
FreeUnusedSlabMemory(gap_start, gap_size + (slab_region.GetEndAddress() - GetInteger(address)));
}
} }

View file

@ -128,13 +128,13 @@ namespace ams::kern {
KProcess *new_process = nullptr; KProcess *new_process = nullptr;
{ {
/* Make page groups to represent the data. */ /* Make page groups to represent the data. */
KPageGroup pg(std::addressof(Kernel::GetBlockInfoManager())); KPageGroup pg(std::addressof(Kernel::GetSystemBlockInfoManager()));
KPageGroup workaround_pg(std::addressof(Kernel::GetBlockInfoManager())); KPageGroup workaround_pg(std::addressof(Kernel::GetSystemBlockInfoManager()));
/* Populate the page group to represent the data. */ /* Populate the page group to represent the data. */
{ {
/* Allocate the previously unreserved pages. */ /* Allocate the previously unreserved pages. */
KPageGroup unreserve_pg(std::addressof(Kernel::GetBlockInfoManager())); KPageGroup unreserve_pg(std::addressof(Kernel::GetSystemBlockInfoManager()));
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetMemoryManager().AllocateAndOpen(std::addressof(unreserve_pg), unreserved_size / PageSize, KMemoryManager::EncodeOption(dst_pool, KMemoryManager::Direction_FromFront))); MESOSPHERE_R_ABORT_UNLESS(Kernel::GetMemoryManager().AllocateAndOpen(std::addressof(unreserve_pg), unreserved_size / PageSize, KMemoryManager::EncodeOption(dst_pool, KMemoryManager::Direction_FromFront)));
/* Add the previously reserved pages. */ /* Add the previously reserved pages. */

View file

@ -62,11 +62,46 @@ namespace ams::kern {
Result KClientPort::CreateSession(KClientSession **out) { Result KClientPort::CreateSession(KClientSession **out) {
MESOSPHERE_ASSERT_THIS(); MESOSPHERE_ASSERT_THIS();
/* Declare the session we're going to allocate. */
KSession *session;
/* Reserve a new session from the resource limit. */ /* Reserve a new session from the resource limit. */
KScopedResourceReservation session_reservation(GetCurrentProcessPointer(), ams::svc::LimitableResource_SessionCountMax); KScopedResourceReservation session_reservation(GetCurrentProcessPointer(), ams::svc::LimitableResource_SessionCountMax);
R_UNLESS(session_reservation.Succeeded(), svc::ResultLimitReached()); if (session_reservation.Succeeded()) {
/* Allocate a session normally. */
session = KSession::Create();
} else {
/* We couldn't reserve a session. Check that we support dynamically expanding the resource limit. */
R_UNLESS(GetCurrentProcess().GetResourceLimit() == std::addressof(Kernel::GetSystemResourceLimit()), svc::ResultLimitReached());
R_UNLESS(KTargetSystem::IsDynamicResourceLimitsEnabled(), svc::ResultLimitReached());
/* Try to allocate a session from unused slab memory. */
session = KSession::CreateFromUnusedSlabMemory();
R_UNLESS(session != nullptr, svc::ResultLimitReached());
/* Ensure that if we fail to allocate our session requests, we close the session we created. */
auto session_guard = SCOPE_GUARD { session->Close(); };
{
/* We want to add two KSessionRequests to the heap, to prevent request exhaustion. */
for (size_t i = 0; i < 2; ++i) {
KSessionRequest *request = KSessionRequest::CreateFromUnusedSlabMemory();
R_UNLESS(request != nullptr, svc::ResultLimitReached());
request->Close();
}
}
session_guard.Cancel();
/* We successfully allocated a session, so add the object we allocated to the resource limit. */
Kernel::GetSystemResourceLimit().Add(ams::svc::LimitableResource_SessionCountMax, 1);
}
/* Check that we successfully created a session. */
R_UNLESS(session != nullptr, svc::ResultOutOfResource());
/* Update the session counts. */ /* Update the session counts. */
auto count_guard = SCOPE_GUARD { session->Close(); };
{ {
/* Atomically increment the number of sessions. */ /* Atomically increment the number of sessions. */
s32 new_sessions; s32 new_sessions;
@ -90,18 +125,7 @@ namespace ams::kern {
} while (!m_peak_sessions.compare_exchange_weak(peak, new_sessions, std::memory_order_relaxed)); } while (!m_peak_sessions.compare_exchange_weak(peak, new_sessions, std::memory_order_relaxed));
} }
} }
count_guard.Cancel();
/* Create a new session. */
KSession *session = KSession::Create();
if (session == nullptr) {
/* Decrement the session count. */
const auto prev = m_num_sessions--;
if (prev == m_max_sessions) {
this->NotifyAvailable();
}
return svc::ResultOutOfResource();
}
/* Initialize the session. */ /* Initialize the session. */
session->Initialize(this, m_parent->GetName()); session->Initialize(this, m_parent->GetName());
@ -128,11 +152,32 @@ namespace ams::kern {
Result KClientPort::CreateLightSession(KLightClientSession **out) { Result KClientPort::CreateLightSession(KLightClientSession **out) {
MESOSPHERE_ASSERT_THIS(); MESOSPHERE_ASSERT_THIS();
/* Declare the session we're going to allocate. */
KLightSession *session;
/* Reserve a new session from the resource limit. */ /* Reserve a new session from the resource limit. */
KScopedResourceReservation session_reservation(GetCurrentProcessPointer(), ams::svc::LimitableResource_SessionCountMax); KScopedResourceReservation session_reservation(GetCurrentProcessPointer(), ams::svc::LimitableResource_SessionCountMax);
R_UNLESS(session_reservation.Succeeded(), svc::ResultLimitReached()); if (session_reservation.Succeeded()) {
/* Allocate a session normally. */
session = KLightSession::Create();
} else {
/* We couldn't reserve a session. Check that we support dynamically expanding the resource limit. */
R_UNLESS(GetCurrentProcess().GetResourceLimit() == std::addressof(Kernel::GetSystemResourceLimit()), svc::ResultLimitReached());
R_UNLESS(KTargetSystem::IsDynamicResourceLimitsEnabled(), svc::ResultLimitReached());
/* Try to allocate a session from unused slab memory. */
session = KLightSession::CreateFromUnusedSlabMemory();
R_UNLESS(session != nullptr, svc::ResultLimitReached());
/* We successfully allocated a session, so add the object we allocated to the resource limit. */
Kernel::GetSystemResourceLimit().Add(ams::svc::LimitableResource_SessionCountMax, 1);
}
/* Check that we successfully created a session. */
R_UNLESS(session != nullptr, svc::ResultOutOfResource());
/* Update the session counts. */ /* Update the session counts. */
auto count_guard = SCOPE_GUARD { session->Close(); };
{ {
/* Atomically increment the number of sessions. */ /* Atomically increment the number of sessions. */
s32 new_sessions; s32 new_sessions;
@ -156,18 +201,7 @@ namespace ams::kern {
} while (!m_peak_sessions.compare_exchange_weak(peak, new_sessions, std::memory_order_relaxed)); } while (!m_peak_sessions.compare_exchange_weak(peak, new_sessions, std::memory_order_relaxed));
} }
} }
count_guard.Cancel();
/* Create a new session. */
KLightSession *session = KLightSession::Create();
if (session == nullptr) {
/* Decrement the session count. */
const auto prev = m_num_sessions--;
if (prev == m_max_sessions) {
this->NotifyAvailable();
}
return svc::ResultOutOfResource();
}
/* Initialize the session. */ /* Initialize the session. */
session->Initialize(this, m_parent->GetName()); session->Initialize(this, m_parent->GetName());

View file

@ -369,14 +369,14 @@ namespace ams::kern::KDumpObject {
/* KBlockInfo slab. */ /* KBlockInfo slab. */
{ {
MESOSPHERE_RELEASE_LOG("KBlockInfo\n"); MESOSPHERE_RELEASE_LOG("KBlockInfo\n");
auto &manager = Kernel::GetBlockInfoManager(); auto &manager = Kernel::GetSystemBlockInfoManager();
MESOSPHERE_RELEASE_LOG(" Cur=%6zu Peak=%6zu Max=%6zu\n", manager.GetUsed(), manager.GetPeak(), manager.GetCount()); MESOSPHERE_RELEASE_LOG(" Cur=%6zu Peak=%6zu Max=%6zu\n", manager.GetUsed(), manager.GetPeak(), manager.GetCount());
} }
/* Page Table slab. */ /* Page Table slab. */
{ {
MESOSPHERE_RELEASE_LOG("Page Table\n"); MESOSPHERE_RELEASE_LOG("Page Table\n");
auto &manager = Kernel::GetPageTableManager(); auto &manager = Kernel::GetSystemPageTableManager();
MESOSPHERE_RELEASE_LOG(" Cur=%6zu Peak=%6zu Max=%6zu\n", manager.GetUsed(), manager.GetPeak(), manager.GetCount()); MESOSPHERE_RELEASE_LOG(" Cur=%6zu Peak=%6zu Max=%6zu\n", manager.GetUsed(), manager.GetPeak(), manager.GetCount());
} }
} }

View file

@ -37,7 +37,7 @@ namespace ams::kern {
void KEvent::Finalize() { void KEvent::Finalize() {
MESOSPHERE_ASSERT_THIS(); MESOSPHERE_ASSERT_THIS();
KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObjectWithList>::Finalize(); KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObjectWithList, true>::Finalize();
} }
Result KEvent::Signal() { Result KEvent::Signal() {

View file

@ -37,6 +37,7 @@ namespace ams::kern {
void KMemoryManager::Initialize(KVirtualAddress management_region, size_t management_region_size) { void KMemoryManager::Initialize(KVirtualAddress management_region, size_t management_region_size) {
/* Clear the management region to zero. */ /* Clear the management region to zero. */
const KVirtualAddress management_region_end = management_region + management_region_size; const KVirtualAddress management_region_end = management_region + management_region_size;
std::memset(GetVoidPointer(management_region), 0, management_region_size); std::memset(GetVoidPointer(management_region), 0, management_region_size);

View file

@ -106,7 +106,7 @@ namespace ams::kern {
m_mapped_ipc_server_memory = 0; m_mapped_ipc_server_memory = 0;
m_memory_block_slab_manager = std::addressof(Kernel::GetSystemMemoryBlockManager()); m_memory_block_slab_manager = std::addressof(Kernel::GetSystemMemoryBlockManager());
m_block_info_manager = std::addressof(Kernel::GetBlockInfoManager()); m_block_info_manager = std::addressof(Kernel::GetSystemBlockInfoManager());
m_resource_limit = std::addressof(Kernel::GetSystemResourceLimit()); m_resource_limit = std::addressof(Kernel::GetSystemResourceLimit());
m_allocate_option = KMemoryManager::EncodeOption(KMemoryManager::Pool_System, KMemoryManager::Direction_FromFront); m_allocate_option = KMemoryManager::EncodeOption(KMemoryManager::Pool_System, KMemoryManager::Direction_FromFront);

View file

@ -260,8 +260,8 @@ namespace ams::kern {
const bool enable_das_merge = (params.flags & ams::svc::CreateProcessFlag_DisableDeviceAddressSpaceMerge) == 0; const bool enable_das_merge = (params.flags & ams::svc::CreateProcessFlag_DisableDeviceAddressSpaceMerge) == 0;
const bool is_app = (params.flags & ams::svc::CreateProcessFlag_IsApplication) != 0; const bool is_app = (params.flags & ams::svc::CreateProcessFlag_IsApplication) != 0;
auto *mem_block_manager = std::addressof(is_app ? Kernel::GetApplicationMemoryBlockManager() : Kernel::GetSystemMemoryBlockManager()); auto *mem_block_manager = std::addressof(is_app ? Kernel::GetApplicationMemoryBlockManager() : Kernel::GetSystemMemoryBlockManager());
auto *block_info_manager = std::addressof(Kernel::GetBlockInfoManager()); auto *block_info_manager = std::addressof(is_app ? Kernel::GetApplicationBlockInfoManager() : Kernel::GetSystemBlockInfoManager());
auto *pt_manager = std::addressof(Kernel::GetPageTableManager()); auto *pt_manager = std::addressof(is_app ? Kernel::GetApplicationPageTableManager() : Kernel::GetSystemPageTableManager());
R_TRY(m_page_table.Initialize(m_process_id, as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, params.code_address, params.code_num_pages * PageSize, mem_block_manager, block_info_manager, pt_manager, res_limit)); R_TRY(m_page_table.Initialize(m_process_id, as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, params.code_address, params.code_num_pages * PageSize, mem_block_manager, block_info_manager, pt_manager, res_limit));
} }
auto pt_guard = SCOPE_GUARD { m_page_table.Finalize(); }; auto pt_guard = SCOPE_GUARD { m_page_table.Finalize(); };
@ -326,12 +326,17 @@ namespace ams::kern {
MESOSPHERE_ASSERT(m_system_resource_address != Null<KVirtualAddress>); MESOSPHERE_ASSERT(m_system_resource_address != Null<KVirtualAddress>);
m_system_resource_num_pages = system_resource_num_pages; m_system_resource_num_pages = system_resource_num_pages;
/* Initialize managers. */ /* Initialize slab heaps. */
const size_t rc_size = util::AlignUp(KPageTableManager::CalculateReferenceCountSize(system_resource_size), PageSize); const size_t rc_size = util::AlignUp(KPageTableSlabHeap::CalculateReferenceCountSize(system_resource_size), PageSize);
m_dynamic_page_manager.Initialize(m_system_resource_address + rc_size, system_resource_size - rc_size); m_dynamic_page_manager.Initialize(m_system_resource_address + rc_size, system_resource_size - rc_size);
m_page_table_manager.Initialize(std::addressof(m_dynamic_page_manager), GetPointer<KPageTableManager::RefCount>(m_system_resource_address)); m_page_table_heap.Initialize(std::addressof(m_dynamic_page_manager), 0, GetPointer<KPageTableManager::RefCount>(m_system_resource_address));
m_memory_block_slab_manager.Initialize(std::addressof(m_dynamic_page_manager)); m_memory_block_heap.Initialize(std::addressof(m_dynamic_page_manager), 0);
m_block_info_manager.Initialize(std::addressof(m_dynamic_page_manager)); m_block_info_heap.Initialize(std::addressof(m_dynamic_page_manager), 0);
/* Initialize managers. */
m_page_table_manager.Initialize(std::addressof(m_dynamic_page_manager), std::addressof(m_page_table_heap));
m_memory_block_slab_manager.Initialize(std::addressof(m_dynamic_page_manager), std::addressof(m_memory_block_heap));
m_block_info_manager.Initialize(std::addressof(m_dynamic_page_manager), std::addressof(m_block_info_heap));
mem_block_manager = std::addressof(m_memory_block_slab_manager); mem_block_manager = std::addressof(m_memory_block_slab_manager);
block_info_manager = std::addressof(m_block_info_manager); block_info_manager = std::addressof(m_block_info_manager);
@ -339,8 +344,8 @@ namespace ams::kern {
} else { } else {
const bool is_app = (params.flags & ams::svc::CreateProcessFlag_IsApplication); const bool is_app = (params.flags & ams::svc::CreateProcessFlag_IsApplication);
mem_block_manager = std::addressof(is_app ? Kernel::GetApplicationMemoryBlockManager() : Kernel::GetSystemMemoryBlockManager()); mem_block_manager = std::addressof(is_app ? Kernel::GetApplicationMemoryBlockManager() : Kernel::GetSystemMemoryBlockManager());
block_info_manager = std::addressof(Kernel::GetBlockInfoManager()); block_info_manager = std::addressof(is_app ? Kernel::GetApplicationBlockInfoManager() : Kernel::GetSystemBlockInfoManager());
pt_manager = std::addressof(Kernel::GetPageTableManager()); pt_manager = std::addressof(is_app ? Kernel::GetApplicationPageTableManager() : Kernel::GetSystemPageTableManager());
} }
/* Ensure we don't leak any secure memory we allocated. */ /* Ensure we don't leak any secure memory we allocated. */

View file

@ -49,7 +49,8 @@ namespace ams::kern {
KScopedLightLock lk(m_lock); KScopedLightLock lk(m_lock);
value = m_limit_values[which]; value = m_limit_values[which];
MESOSPHERE_ASSERT(value >= 0); MESOSPHERE_ASSERT(value >= 0);
MESOSPHERE_ASSERT(m_current_values[which] <= m_limit_values[which]); MESOSPHERE_ASSERT(m_current_values[which] <= m_peak_values[which]);
MESOSPHERE_ASSERT(m_peak_values[which] <= m_limit_values[which]);
MESOSPHERE_ASSERT(m_current_hints[which] <= m_current_values[which]); MESOSPHERE_ASSERT(m_current_hints[which] <= m_current_values[which]);
} }
@ -64,7 +65,8 @@ namespace ams::kern {
KScopedLightLock lk(m_lock); KScopedLightLock lk(m_lock);
value = m_current_values[which]; value = m_current_values[which];
MESOSPHERE_ASSERT(value >= 0); MESOSPHERE_ASSERT(value >= 0);
MESOSPHERE_ASSERT(m_current_values[which] <= m_limit_values[which]); MESOSPHERE_ASSERT(m_current_values[which] <= m_peak_values[which]);
MESOSPHERE_ASSERT(m_peak_values[which] <= m_limit_values[which]);
MESOSPHERE_ASSERT(m_current_hints[which] <= m_current_values[which]); MESOSPHERE_ASSERT(m_current_hints[which] <= m_current_values[which]);
} }
@ -79,7 +81,8 @@ namespace ams::kern {
KScopedLightLock lk(m_lock); KScopedLightLock lk(m_lock);
value = m_peak_values[which]; value = m_peak_values[which];
MESOSPHERE_ASSERT(value >= 0); MESOSPHERE_ASSERT(value >= 0);
MESOSPHERE_ASSERT(m_current_values[which] <= m_limit_values[which]); MESOSPHERE_ASSERT(m_current_values[which] <= m_peak_values[which]);
MESOSPHERE_ASSERT(m_peak_values[which] <= m_limit_values[which]);
MESOSPHERE_ASSERT(m_current_hints[which] <= m_current_values[which]); MESOSPHERE_ASSERT(m_current_hints[which] <= m_current_values[which]);
} }
@ -93,7 +96,8 @@ namespace ams::kern {
{ {
KScopedLightLock lk(m_lock); KScopedLightLock lk(m_lock);
MESOSPHERE_ASSERT(m_current_values[which] >= 0); MESOSPHERE_ASSERT(m_current_values[which] >= 0);
MESOSPHERE_ASSERT(m_current_values[which] <= m_limit_values[which]); MESOSPHERE_ASSERT(m_current_values[which] <= m_peak_values[which]);
MESOSPHERE_ASSERT(m_peak_values[which] <= m_limit_values[which]);
MESOSPHERE_ASSERT(m_current_hints[which] <= m_current_values[which]); MESOSPHERE_ASSERT(m_current_hints[which] <= m_current_values[which]);
value = m_limit_values[which] - m_current_values[which]; value = m_limit_values[which] - m_current_values[which];
} }
@ -113,6 +117,37 @@ namespace ams::kern {
return ResultSuccess(); return ResultSuccess();
} }
void KResourceLimit::Add(ams::svc::LimitableResource which, s64 value) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KTargetSystem::IsDynamicResourceLimitsEnabled());
KScopedLightLock lk(m_lock);
/* Check that this is a true increase. */
MESOSPHERE_ABORT_UNLESS(value > 0);
/* Check that we can perform an increase. */
MESOSPHERE_ABORT_UNLESS(m_current_values[which] <= m_peak_values[which]);
MESOSPHERE_ABORT_UNLESS(m_peak_values[which] <= m_limit_values[which]);
MESOSPHERE_ABORT_UNLESS(m_current_hints[which] <= m_current_values[which]);
/* Check that the increase doesn't cause an overflow. */
const auto increased_limit = m_limit_values[which] + value;
const auto increased_current = m_current_values[which] + value;
const auto increased_hint = m_current_hints[which] + value;
MESOSPHERE_ABORT_UNLESS(m_limit_values[which] < increased_limit);
MESOSPHERE_ABORT_UNLESS(m_current_values[which] < increased_current);
MESOSPHERE_ABORT_UNLESS(m_current_hints[which] < increased_hint);
/* Add the value. */
m_limit_values[which] = increased_limit;
m_current_values[which] = increased_current;
m_current_hints[which] = increased_hint;
/* Update our peak. */
m_peak_values[which] = std::max(m_peak_values[which], increased_current);
}
bool KResourceLimit::Reserve(ams::svc::LimitableResource which, s64 value) { bool KResourceLimit::Reserve(ams::svc::LimitableResource which, s64 value) {
return this->Reserve(which, value, KHardwareTimer::GetTick() + DefaultTimeout); return this->Reserve(which, value, KHardwareTimer::GetTick() + DefaultTimeout);
} }

View file

@ -0,0 +1,159 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
namespace {
class KUnusedSlabMemory : public util::IntrusiveRedBlackTreeBaseNode<KUnusedSlabMemory> {
NON_COPYABLE(KUnusedSlabMemory);
NON_MOVEABLE(KUnusedSlabMemory);
private:
size_t m_size;
public:
struct RedBlackKeyType {
size_t m_size;
constexpr ALWAYS_INLINE size_t GetSize() const {
return m_size;
}
};
template<typename T> requires (std::same_as<T, KUnusedSlabMemory> || std::same_as<T, RedBlackKeyType>)
static constexpr ALWAYS_INLINE int Compare(const T &lhs, const KUnusedSlabMemory &rhs) {
if (lhs.GetSize() < rhs.GetSize()) {
return -1;
} else {
return 1;
}
}
public:
constexpr KUnusedSlabMemory(size_t size) : m_size(size) { /* ... */ }
constexpr ALWAYS_INLINE KVirtualAddress GetAddress() const { return reinterpret_cast<uintptr_t>(this); }
constexpr ALWAYS_INLINE size_t GetSize() const { return m_size; }
};
static_assert(std::is_trivially_destructible<KUnusedSlabMemory>::value);
using KUnusedSlabMemoryTree = util::IntrusiveRedBlackTreeBaseTraits<KUnusedSlabMemory>::TreeType<KUnusedSlabMemory>;
constinit KLightLock g_unused_slab_memory_lock;
constinit KUnusedSlabMemoryTree g_unused_slab_memory_tree;
}
KVirtualAddress AllocateUnusedSlabMemory(size_t size, size_t alignment) {
/* Acquire exclusive access to the memory tree. */
KScopedLightLock lk(g_unused_slab_memory_lock);
/* Adjust size and alignment. */
size = std::max(size, sizeof(KUnusedSlabMemory));
alignment = std::max(alignment, alignof(KUnusedSlabMemory));
/* Find the smallest block which fits our allocation. */
KUnusedSlabMemory *best_fit = std::addressof(*g_unused_slab_memory_tree.nfind_key({ size - 1 }));
/* Ensure that the chunk is valid. */
size_t prefix_waste;
KVirtualAddress alloc_start;
KVirtualAddress alloc_last;
KVirtualAddress alloc_end;
KVirtualAddress chunk_last;
KVirtualAddress chunk_end;
while (true) {
/* Check that we still have a chunk satisfying our size requirement. */
if (AMS_UNLIKELY(best_fit == nullptr)) {
return Null<KVirtualAddress>;
}
/* Determine where the actual allocation would start. */
alloc_start = util::AlignUp(GetInteger(best_fit->GetAddress()), alignment);
if (AMS_LIKELY(alloc_start >= best_fit->GetAddress())) {
prefix_waste = alloc_start - best_fit->GetAddress();
alloc_end = alloc_start + size;
alloc_last = alloc_end - 1;
/* Check that the allocation remains in bounds. */
if (alloc_start <= alloc_last) {
chunk_end = best_fit->GetAddress() + best_fit->GetSize();
chunk_last = chunk_end - 1;
if (AMS_LIKELY(alloc_last <= chunk_last)) {
break;
}
}
}
/* Check the next smallest block. */
best_fit = best_fit->GetNext();
}
/* Remove the chunk we selected from the tree. */
g_unused_slab_memory_tree.erase(g_unused_slab_memory_tree.iterator_to(*best_fit));
std::destroy_at(best_fit);
/* If there's enough prefix waste due to alignment for a new chunk, insert it into the tree. */
if (prefix_waste >= sizeof(KUnusedSlabMemory)) {
std::construct_at(best_fit, prefix_waste);
g_unused_slab_memory_tree.insert(*best_fit);
}
/* If there's enough suffix waste after the allocation for a new chunk, insert it into the tree. */
if (alloc_last < alloc_end + sizeof(KUnusedSlabMemory) - 1 && alloc_end + sizeof(KUnusedSlabMemory) - 1 <= chunk_last) {
KUnusedSlabMemory *suffix_chunk = GetPointer<KUnusedSlabMemory>(alloc_end);
std::construct_at(suffix_chunk, chunk_end - alloc_end);
g_unused_slab_memory_tree.insert(*suffix_chunk);
}
/* Return the allocated memory. */
return alloc_start;
}
void FreeUnusedSlabMemory(KVirtualAddress address, size_t size) {
/* NOTE: This is called only during initialization, so we don't need exclusive access. */
/* Nintendo doesn't acquire the lock here, either. */
/* Check that there's anything at all for us to free. */
if (AMS_UNLIKELY(size == 0)) {
return;
}
/* Determine the start of the block. */
const KVirtualAddress block_start = util::AlignUp(GetInteger(address), alignof(KUnusedSlabMemory));
/* Check that there's space for a KUnusedSlabMemory to exist. */
if (AMS_UNLIKELY(std::numeric_limits<uintptr_t>::max() - sizeof(KUnusedSlabMemory) < GetInteger(block_start))) {
return;
}
/* Determine the end of the block region. */
const KVirtualAddress block_end = util::AlignDown(GetInteger(address) + size, alignof(KUnusedSlabMemory));
/* Check that the block remains within bounds. */
if (AMS_UNLIKELY(block_start + sizeof(KUnusedSlabMemory) - 1 > block_end - 1)){
return;
}
/* Create the block. */
KUnusedSlabMemory *block = GetPointer<KUnusedSlabMemory>(block_start);
std::construct_at(block, GetInteger(block_end) - GetInteger(block_start));
/* Insert the block into the tree. */
g_unused_slab_memory_tree.insert(*block);
}
}

View file

@ -66,15 +66,11 @@ namespace ams::kern {
void Kernel::InitializeResourceManagers(KVirtualAddress address, size_t size) { void Kernel::InitializeResourceManagers(KVirtualAddress address, size_t size) {
/* Ensure that the buffer is suitable for our use. */ /* Ensure that the buffer is suitable for our use. */
//const size_t app_size = ApplicationMemoryBlockSlabHeapSize * sizeof(KMemoryBlock);
//const size_t sys_size = SystemMemoryBlockSlabHeapSize * sizeof(KMemoryBlock);
//const size_t info_size = BlockInfoSlabHeapSize * sizeof(KBlockInfo);
//const size_t fixed_size = util::AlignUp(app_size + sys_size + info_size, PageSize);
MESOSPHERE_ABORT_UNLESS(util::IsAligned(GetInteger(address), PageSize)); MESOSPHERE_ABORT_UNLESS(util::IsAligned(GetInteger(address), PageSize));
MESOSPHERE_ABORT_UNLESS(util::IsAligned(size, PageSize)); MESOSPHERE_ABORT_UNLESS(util::IsAligned(size, PageSize));
/* Ensure that we have space for our reference counts. */ /* Ensure that we have space for our reference counts. */
const size_t rc_size = util::AlignUp(KPageTableManager::CalculateReferenceCountSize(size), PageSize); const size_t rc_size = util::AlignUp(KPageTableSlabHeap::CalculateReferenceCountSize(size), PageSize);
MESOSPHERE_ABORT_UNLESS(rc_size < size); MESOSPHERE_ABORT_UNLESS(rc_size < size);
size -= rc_size; size -= rc_size;
@ -82,13 +78,28 @@ namespace ams::kern {
g_resource_manager_page_manager.Initialize(address, size); g_resource_manager_page_manager.Initialize(address, size);
/* Initialize the fixed-size slabheaps. */ /* Initialize the fixed-size slabheaps. */
s_app_memory_block_manager.Initialize(std::addressof(g_resource_manager_page_manager), ApplicationMemoryBlockSlabHeapSize); s_app_memory_block_heap.Initialize(std::addressof(g_resource_manager_page_manager), ApplicationMemoryBlockSlabHeapSize);
s_sys_memory_block_manager.Initialize(std::addressof(g_resource_manager_page_manager), SystemMemoryBlockSlabHeapSize); s_sys_memory_block_heap.Initialize(std::addressof(g_resource_manager_page_manager), SystemMemoryBlockSlabHeapSize);
s_block_info_manager.Initialize(std::addressof(g_resource_manager_page_manager), BlockInfoSlabHeapSize); s_block_info_heap.Initialize(std::addressof(g_resource_manager_page_manager), BlockInfoSlabHeapSize);
/* Reserve all remaining pages for the page table manager. */ /* Reserve all but a fixed number of remaining pages for the page table heap. */
const size_t num_pt_pages = g_resource_manager_page_manager.GetCount() - g_resource_manager_page_manager.GetUsed(); const size_t num_pt_pages = g_resource_manager_page_manager.GetCount() - g_resource_manager_page_manager.GetUsed() - ReservedDynamicPageCount;
s_page_table_manager.Initialize(std::addressof(g_resource_manager_page_manager), num_pt_pages, GetPointer<KPageTableManager::RefCount>(address + size)); s_page_table_heap.Initialize(std::addressof(g_resource_manager_page_manager), num_pt_pages, GetPointer<KPageTableManager::RefCount>(address + size));
/* Setup the slab managers. */
KDynamicPageManager * const app_dynamic_page_manager = nullptr;
KDynamicPageManager * const sys_dynamic_page_manager = KTargetSystem::IsDynamicResourceLimitsEnabled() ? std::addressof(g_resource_manager_page_manager) : nullptr;
s_app_memory_block_manager.Initialize(app_dynamic_page_manager, std::addressof(s_app_memory_block_heap));
s_sys_memory_block_manager.Initialize(sys_dynamic_page_manager, std::addressof(s_sys_memory_block_heap));
s_app_block_info_manager.Initialize(app_dynamic_page_manager, std::addressof(s_block_info_heap));
s_sys_block_info_manager.Initialize(sys_dynamic_page_manager, std::addressof(s_block_info_heap));
s_app_page_table_manager.Initialize(app_dynamic_page_manager, std::addressof(s_page_table_heap));
s_sys_page_table_manager.Initialize(sys_dynamic_page_manager, std::addressof(s_page_table_heap));
/* Check that we have the correct number of dynamic pages available. */
MESOSPHERE_ABORT_UNLESS(g_resource_manager_page_manager.GetCount() - g_resource_manager_page_manager.GetUsed() == ReservedDynamicPageCount);
} }
void Kernel::PrintLayout() { void Kernel::PrintLayout() {

View file

@ -60,12 +60,28 @@ namespace ams::kern::svc {
auto &process = GetCurrentProcess(); auto &process = GetCurrentProcess();
auto &handle_table = process.GetHandleTable(); auto &handle_table = process.GetHandleTable();
/* Declare the event we're going to allocate. */
KEvent *event;
/* Reserve a new event from the process resource limit. */ /* Reserve a new event from the process resource limit. */
KScopedResourceReservation event_reservation(std::addressof(process), ams::svc::LimitableResource_EventCountMax); KScopedResourceReservation event_reservation(std::addressof(process), ams::svc::LimitableResource_EventCountMax);
R_UNLESS(event_reservation.Succeeded(), svc::ResultLimitReached()); if (event_reservation.Succeeded()) {
/* Allocate an event normally. */
event = KEvent::Create();
} else {
/* We couldn't reserve an event. Check that we support dynamically expanding the resource limit. */
R_UNLESS(process.GetResourceLimit() == std::addressof(Kernel::GetSystemResourceLimit()), svc::ResultLimitReached());
R_UNLESS(KTargetSystem::IsDynamicResourceLimitsEnabled(), svc::ResultLimitReached());
/* Create a new event. */ /* Try to allocate an event from unused slab memory. */
KEvent *event = KEvent::Create(); event = KEvent::CreateFromUnusedSlabMemory();
R_UNLESS(event != nullptr, svc::ResultLimitReached());
/* We successfully allocated an event, so add the object we allocated to the resource limit. */
Kernel::GetSystemResourceLimit().Add(ams::svc::LimitableResource_EventCountMax, 1);
}
/* Check that we successfully created an event. */
R_UNLESS(event != nullptr, svc::ResultOutOfResource()); R_UNLESS(event != nullptr, svc::ResultOutOfResource());
/* Initialize the event. */ /* Initialize the event. */

View file

@ -27,12 +27,44 @@ namespace ams::kern::svc {
auto &process = GetCurrentProcess(); auto &process = GetCurrentProcess();
auto &handle_table = process.GetHandleTable(); auto &handle_table = process.GetHandleTable();
/* Declare the session we're going to allocate. */
T *session;
/* Reserve a new session from the process resource limit. */ /* Reserve a new session from the process resource limit. */
KScopedResourceReservation session_reservation(std::addressof(process), ams::svc::LimitableResource_SessionCountMax); KScopedResourceReservation session_reservation(std::addressof(process), ams::svc::LimitableResource_SessionCountMax);
R_UNLESS(session_reservation.Succeeded(), svc::ResultLimitReached()); if (session_reservation.Succeeded()) {
/* Allocate a session normally. */
session = T::Create();
} else {
/* We couldn't reserve a session. Check that we support dynamically expanding the resource limit. */
R_UNLESS(process.GetResourceLimit() == std::addressof(Kernel::GetSystemResourceLimit()), svc::ResultLimitReached());
R_UNLESS(KTargetSystem::IsDynamicResourceLimitsEnabled(), svc::ResultLimitReached());
/* Create a new session. */ /* Try to allocate a session from unused slab memory. */
T *session = T::Create(); session = T::CreateFromUnusedSlabMemory();
R_UNLESS(session != nullptr, svc::ResultLimitReached());
/* If we're creating a KSession, we want to add two KSessionRequests to the heap, to prevent request exhaustion. */
/* NOTE: Nintendo checks if session->DynamicCast<KSession *>() != nullptr, but there's no reason to not do this statically. */
if constexpr (std::same_as<T, KSession>) {
/* Ensure that if we fail to allocate our session requests, we close the session we created. */
auto session_guard = SCOPE_GUARD { session->Close(); };
{
for (size_t i = 0; i < 2; ++i) {
KSessionRequest *request = KSessionRequest::CreateFromUnusedSlabMemory();
R_UNLESS(request != nullptr, svc::ResultLimitReached());
request->Close();
}
}
session_guard.Cancel();
}
/* We successfully allocated a session, so add the object we allocated to the resource limit. */
Kernel::GetSystemResourceLimit().Add(ams::svc::LimitableResource_SessionCountMax, 1);
}
/* Check that we successfully created a session. */
R_UNLESS(session != nullptr, svc::ResultOutOfResource()); R_UNLESS(session != nullptr, svc::ResultOutOfResource());
/* Initialize the session. */ /* Initialize the session. */

View file

@ -21,10 +21,6 @@ namespace ams::kern {
constinit Kernel::State Kernel::s_state = Kernel::State::Invalid; constinit Kernel::State Kernel::s_state = Kernel::State::Invalid;
constinit KResourceLimit Kernel::s_system_resource_limit; constinit KResourceLimit Kernel::s_system_resource_limit;
KMemoryManager Kernel::s_memory_manager; KMemoryManager Kernel::s_memory_manager;
constinit KPageTableManager Kernel::s_page_table_manager;
constinit KMemoryBlockSlabManager Kernel::s_app_memory_block_manager;
constinit KMemoryBlockSlabManager Kernel::s_sys_memory_block_manager;
constinit KBlockInfoManager Kernel::s_block_info_manager;
constinit KSupervisorPageTable Kernel::s_supervisor_page_table; constinit KSupervisorPageTable Kernel::s_supervisor_page_table;
constinit KUnsafeMemory Kernel::s_unsafe_memory; constinit KUnsafeMemory Kernel::s_unsafe_memory;
constinit KWorkerTaskManager Kernel::s_worker_task_managers[KWorkerTaskManager::WorkerType_Count]; constinit KWorkerTaskManager Kernel::s_worker_task_managers[KWorkerTaskManager::WorkerType_Count];
@ -33,6 +29,17 @@ namespace ams::kern {
constinit KInterruptTaskManager Kernel::s_interrupt_task_managers[cpu::NumCores]; constinit KInterruptTaskManager Kernel::s_interrupt_task_managers[cpu::NumCores];
constinit KHardwareTimer Kernel::s_hardware_timers[cpu::NumCores]; constinit KHardwareTimer Kernel::s_hardware_timers[cpu::NumCores];
constinit KPageTableSlabHeap Kernel::s_page_table_heap;
constinit KMemoryBlockSlabHeap Kernel::s_app_memory_block_heap;
constinit KMemoryBlockSlabHeap Kernel::s_sys_memory_block_heap;
constinit KBlockInfoSlabHeap Kernel::s_block_info_heap;
constinit KPageTableManager Kernel::s_app_page_table_manager;
constinit KPageTableManager Kernel::s_sys_page_table_manager;
constinit KMemoryBlockSlabManager Kernel::s_app_memory_block_manager;
constinit KMemoryBlockSlabManager Kernel::s_sys_memory_block_manager;
constinit KBlockInfoManager Kernel::s_app_block_info_manager;
constinit KBlockInfoManager Kernel::s_sys_block_info_manager;
namespace { namespace {
constinit std::array<KThread, cpu::NumCores> g_main_threads; constinit std::array<KThread, cpu::NumCores> g_main_threads;