mirror of
https://github.com/Atmosphere-NX/Atmosphere
synced 2024-11-09 22:56:35 +00:00
kern: use TinyMT instead of mt19937_t
This commit is contained in:
parent
364b04b68a
commit
ea0011d572
6 changed files with 418 additions and 206 deletions
|
@ -24,9 +24,11 @@ namespace ams::kern {
|
|||
bool g_call_smc_on_panic;
|
||||
|
||||
/* Global variables for randomness. */
|
||||
/* Incredibly, N really does use std:: randomness... */
|
||||
/* Nintendo uses std::mt19937_t for randomness. */
|
||||
/* To save space (and because mt19337_t isn't secure anyway), */
|
||||
/* We will use TinyMT. */
|
||||
bool g_initialized_random_generator;
|
||||
std::mt19937 g_random_generator;
|
||||
util::TinyMT g_random_generator;
|
||||
KSpinLock g_random_lock;
|
||||
|
||||
ALWAYS_INLINE size_t GetRealMemorySizeForInit() {
|
||||
|
@ -73,6 +75,27 @@ namespace ams::kern {
|
|||
return value;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE u64 GenerateRandomU64FromGenerator() {
|
||||
return g_random_generator.GenerateRandomU64();
|
||||
}
|
||||
|
||||
template<typename F>
|
||||
ALWAYS_INLINE u64 GenerateUniformRange(u64 min, u64 max, F f) {
|
||||
/* Handle the case where the difference is too large to represent. */
|
||||
if (max == std::numeric_limits<u64>::max() && min == std::numeric_limits<u64>::min()) {
|
||||
return f();
|
||||
}
|
||||
|
||||
/* Iterate until we get a value in range. */
|
||||
const u64 range_size = ((max + 1) - min);
|
||||
const u64 effective_max = (std::numeric_limits<u64>::max() / range_size) * range_size;
|
||||
while (true) {
|
||||
if (const u64 rnd = f(); rnd < effective_max) {
|
||||
return min + (rnd % range_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ALWAYS_INLINE u64 GetConfigU64(smc::ConfigItem which) {
|
||||
u64 value;
|
||||
smc::GetConfig(&value, 1, which);
|
||||
|
@ -168,13 +191,7 @@ namespace ams::kern {
|
|||
}
|
||||
|
||||
u64 KSystemControl::Init::GenerateRandomRange(u64 min, u64 max) {
|
||||
const u64 range_size = ((max + 1) - min);
|
||||
const u64 effective_max = (std::numeric_limits<u64>::max() / range_size) * range_size;
|
||||
while (true) {
|
||||
if (const u64 rnd = GenerateRandomU64ForInit(); rnd < effective_max) {
|
||||
return min + (rnd % range_size);
|
||||
}
|
||||
}
|
||||
return GenerateUniformRange(min, max, GenerateRandomU64ForInit);
|
||||
}
|
||||
|
||||
/* System Initialization. */
|
||||
|
@ -250,11 +267,11 @@ namespace ams::kern {
|
|||
if (AMS_UNLIKELY(!g_initialized_random_generator)) {
|
||||
u64 seed;
|
||||
GenerateRandomBytes(&seed, sizeof(seed));
|
||||
g_random_generator.seed(seed);
|
||||
g_random_generator.Initialize(reinterpret_cast<u32*>(&seed), sizeof(seed) / sizeof(u32));
|
||||
g_initialized_random_generator = true;
|
||||
}
|
||||
|
||||
return (std::uniform_int_distribution<u64>(min, max))(g_random_generator);
|
||||
return GenerateUniformRange(min, max, GenerateRandomU64FromGenerator);
|
||||
}
|
||||
|
||||
void KSystemControl::StopSystem() {
|
||||
|
|
|
@ -41,6 +41,14 @@ namespace ams::util {
|
|||
|
||||
static constexpr int MinimumInitIterations = 8;
|
||||
static constexpr int NumDiscardedInitOutputs = 8;
|
||||
|
||||
constexpr inline u32 XorByShifted27(u32 value) {
|
||||
return value ^ (value >> 27);
|
||||
}
|
||||
|
||||
constexpr inline u32 XorByShifted30(u32 value) {
|
||||
return value ^ (value >> 30);
|
||||
}
|
||||
private:
|
||||
State state;
|
||||
private:
|
||||
|
@ -49,22 +57,147 @@ namespace ams::util {
|
|||
|
||||
u32 GenerateRandomU24() { return (this->GenerateRandomU32() >> 8); }
|
||||
|
||||
static void GenerateInitialValuePlus(TinyMT::State *state, int index, u32 value);
|
||||
static void GenerateInitialValueXor(TinyMT::State *state, int index);
|
||||
static void GenerateInitialValuePlus(TinyMT::State *state, int index, u32 value) {
|
||||
u32 &state0 = state->data[(index + 0) % NumStateWords];
|
||||
u32 &state1 = state->data[(index + 1) % NumStateWords];
|
||||
u32 &state2 = state->data[(index + 2) % NumStateWords];
|
||||
u32 &state3 = state->data[(index + 3) % NumStateWords];
|
||||
|
||||
const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus;
|
||||
const u32 y = x + index + value;
|
||||
|
||||
state0 = y;
|
||||
state1 += x;
|
||||
state2 += y;
|
||||
}
|
||||
|
||||
static void GenerateInitialValueXor(TinyMT::State *state, int index) {
|
||||
u32 &state0 = state->data[(index + 0) % NumStateWords];
|
||||
u32 &state1 = state->data[(index + 1) % NumStateWords];
|
||||
u32 &state2 = state->data[(index + 2) % NumStateWords];
|
||||
u32 &state3 = state->data[(index + 3) % NumStateWords];
|
||||
|
||||
const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor;
|
||||
const u32 y = x - index;
|
||||
|
||||
state0 = y;
|
||||
state1 ^= x;
|
||||
state2 ^= y;
|
||||
}
|
||||
public:
|
||||
constexpr TinyMT() : state() { /* ... */ }
|
||||
|
||||
/* Public API. */
|
||||
|
||||
/* Initialization. */
|
||||
void Initialize(u32 seed);
|
||||
void Initialize(const u32 *seed, int seed_count);
|
||||
void Initialize(u32 seed) {
|
||||
this->state.data[0] = seed;
|
||||
this->state.data[1] = ParamMat1;
|
||||
this->state.data[2] = ParamMat2;
|
||||
this->state.data[3] = ParamTmat;
|
||||
|
||||
for (int i = 1; i < MinimumInitIterations; i++) {
|
||||
const u32 mixed = XorByShifted30(this->state.data[(i - 1) % NumStateWords]);
|
||||
this->state.data[i % NumStateWords] ^= mixed * ParamMult + i;
|
||||
}
|
||||
|
||||
this->FinalizeInitialization();
|
||||
}
|
||||
|
||||
void Initialize(const u32 *seed, int seed_count) {
|
||||
this->state.data[0] = 0;
|
||||
this->state.data[1] = ParamMat1;
|
||||
this->state.data[2] = ParamMat2;
|
||||
this->state.data[3] = ParamTmat;
|
||||
|
||||
{
|
||||
const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1;
|
||||
|
||||
GenerateInitialValuePlus(&this->state, 0, seed_count);
|
||||
|
||||
for (int i = 0; i < num_init_iterations; i++) {
|
||||
GenerateInitialValuePlus(&this->state, (i + 1) % NumStateWords, (i < seed_count) ? seed[i] : 0);
|
||||
}
|
||||
|
||||
for (int i = 0; i < static_cast<int>(NumStateWords); i++) {
|
||||
GenerateInitialValueXor(&this->state, (i + 1 + num_init_iterations) % NumStateWords);
|
||||
}
|
||||
}
|
||||
|
||||
this->FinalizeInitialization();
|
||||
}
|
||||
|
||||
/* State management. */
|
||||
void GetState(TinyMT::State *out) const;
|
||||
void SetState(const TinyMT::State *state);
|
||||
void GetState(TinyMT::State *out) const {
|
||||
std::memcpy(out->data, this->state.data, sizeof(this->state));
|
||||
}
|
||||
|
||||
void SetState(const TinyMT::State *state) {
|
||||
std::memcpy(this->state.data, state->data, sizeof(this->state));
|
||||
}
|
||||
|
||||
/* Random generation. */
|
||||
void GenerateRandomBytes(void *dst, size_t size);
|
||||
u32 GenerateRandomU32();
|
||||
NOINLINE void GenerateRandomBytes(void *dst, size_t size) {
|
||||
const uintptr_t start = reinterpret_cast<uintptr_t>(dst);
|
||||
const uintptr_t end = start + size;
|
||||
const uintptr_t aligned_start = util::AlignUp(start, 4);
|
||||
const uintptr_t aligned_end = util::AlignDown(end, 4);
|
||||
|
||||
/* Make sure we're aligned. */
|
||||
if (start < aligned_start) {
|
||||
const u32 rnd = this->GenerateRandomU32();
|
||||
std::memcpy(dst, &rnd, aligned_start - start);
|
||||
}
|
||||
|
||||
/* Write as many aligned u32s as we can. */
|
||||
{
|
||||
u32 * cur_dst = reinterpret_cast<u32 *>(aligned_start);
|
||||
u32 * const end_dst = reinterpret_cast<u32 *>(aligned_end);
|
||||
|
||||
while (cur_dst < end_dst) {
|
||||
*(cur_dst++) = this->GenerateRandomU32();
|
||||
}
|
||||
}
|
||||
|
||||
/* Handle any leftover unaligned data. */
|
||||
if (aligned_end < end) {
|
||||
const u32 rnd = this->GenerateRandomU32();
|
||||
std::memcpy(reinterpret_cast<void *>(aligned_end), &rnd, end - aligned_end);
|
||||
}
|
||||
}
|
||||
|
||||
NOINLINE u32 GenerateRandomU32() {
|
||||
/* Advance state. */
|
||||
const u32 x0 = (this->state.data[0] & TopBitmask) ^ this->state.data[1] ^ this->state.data[2];
|
||||
const u32 y0 = this->state.data[3];
|
||||
const u32 x1 = x0 ^ (x0 << 1);
|
||||
const u32 y1 = y0 ^ (y0 >> 1) ^ x1;
|
||||
|
||||
const u32 state0 = this->state.data[1];
|
||||
u32 state1 = this->state.data[2];
|
||||
u32 state2 = x1 ^ (y1 << 10);
|
||||
const u32 state3 = y1;
|
||||
|
||||
if ((y1 & 1) != 0) {
|
||||
state1 ^= ParamMat1;
|
||||
state2 ^= ParamMat2;
|
||||
}
|
||||
|
||||
this->state.data[0] = state0;
|
||||
this->state.data[1] = state1;
|
||||
this->state.data[2] = state2;
|
||||
this->state.data[3] = state3;
|
||||
|
||||
/* Temper. */
|
||||
const u32 t1 = state0 + (state2 >> 8);
|
||||
u32 t0 = state3 ^ t1;
|
||||
|
||||
if ((t1 & 1) != 0) {
|
||||
t0 ^= ParamTmat;
|
||||
}
|
||||
|
||||
return t0;
|
||||
}
|
||||
|
||||
inline u64 GenerateRandomU64() {
|
||||
const u32 lo = this->GenerateRandomU32();
|
||||
|
|
|
@ -1,187 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2018-2020 Atmosphère-NX
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms and conditions of the GNU General Public License,
|
||||
* version 2, as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stratosphere.hpp>
|
||||
|
||||
namespace ams::util {
|
||||
|
||||
namespace {
|
||||
|
||||
constexpr inline u32 XorByShifted27(u32 value) {
|
||||
return value ^ (value >> 27);
|
||||
}
|
||||
|
||||
constexpr inline u32 XorByShifted30(u32 value) {
|
||||
return value ^ (value >> 30);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void TinyMT::GenerateInitialValuePlus(TinyMT::State *state, int index, u32 value) {
|
||||
u32 &state0 = state->data[(index + 0) % NumStateWords];
|
||||
u32 &state1 = state->data[(index + 1) % NumStateWords];
|
||||
u32 &state2 = state->data[(index + 2) % NumStateWords];
|
||||
u32 &state3 = state->data[(index + 3) % NumStateWords];
|
||||
|
||||
const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus;
|
||||
const u32 y = x + index + value;
|
||||
|
||||
state0 = y;
|
||||
state1 += x;
|
||||
state2 += y;
|
||||
}
|
||||
|
||||
void TinyMT::GenerateInitialValueXor(TinyMT::State *state, int index) {
|
||||
u32 &state0 = state->data[(index + 0) % NumStateWords];
|
||||
u32 &state1 = state->data[(index + 1) % NumStateWords];
|
||||
u32 &state2 = state->data[(index + 2) % NumStateWords];
|
||||
u32 &state3 = state->data[(index + 3) % NumStateWords];
|
||||
|
||||
const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor;
|
||||
const u32 y = x - index;
|
||||
|
||||
state0 = y;
|
||||
state1 ^= x;
|
||||
state2 ^= y;
|
||||
}
|
||||
|
||||
void TinyMT::Initialize(u32 seed) {
|
||||
this->state.data[0] = seed;
|
||||
this->state.data[1] = ParamMat1;
|
||||
this->state.data[2] = ParamMat2;
|
||||
this->state.data[3] = ParamTmat;
|
||||
|
||||
for (int i = 1; i < MinimumInitIterations; i++) {
|
||||
const u32 mixed = XorByShifted30(this->state.data[(i - 1) % NumStateWords]);
|
||||
this->state.data[i % NumStateWords] ^= mixed * ParamMult + i;
|
||||
}
|
||||
|
||||
this->FinalizeInitialization();
|
||||
}
|
||||
|
||||
void TinyMT::Initialize(const u32 *seed, int seed_count) {
|
||||
this->state.data[0] = 0;
|
||||
this->state.data[1] = ParamMat1;
|
||||
this->state.data[2] = ParamMat2;
|
||||
this->state.data[3] = ParamTmat;
|
||||
|
||||
{
|
||||
const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1;
|
||||
|
||||
GenerateInitialValuePlus(&this->state, 0, seed_count);
|
||||
|
||||
for (int i = 0; i < num_init_iterations; i++) {
|
||||
GenerateInitialValuePlus(&this->state, (i + 1) % NumStateWords, (i < seed_count) ? seed[i] : 0);
|
||||
}
|
||||
|
||||
for (int i = 0; i < static_cast<int>(NumStateWords); i++) {
|
||||
GenerateInitialValueXor(&this->state, (i + 1 + num_init_iterations) % NumStateWords);
|
||||
}
|
||||
}
|
||||
|
||||
this->FinalizeInitialization();
|
||||
}
|
||||
|
||||
void TinyMT::FinalizeInitialization() {
|
||||
const u32 state0 = this->state.data[0] & TopBitmask;
|
||||
const u32 state1 = this->state.data[1];
|
||||
const u32 state2 = this->state.data[2];
|
||||
const u32 state3 = this->state.data[3];
|
||||
|
||||
if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) {
|
||||
this->state.data[0] = 'T';
|
||||
this->state.data[1] = 'I';
|
||||
this->state.data[2] = 'N';
|
||||
this->state.data[3] = 'Y';
|
||||
}
|
||||
|
||||
for (int i = 0; i < NumDiscardedInitOutputs; i++) {
|
||||
this->GenerateRandomU32();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void TinyMT::GetState(TinyMT::State *out) const {
|
||||
std::memcpy(out->data, this->state.data, sizeof(this->state));
|
||||
}
|
||||
|
||||
void TinyMT::SetState(const TinyMT::State *state) {
|
||||
std::memcpy(this->state.data, state->data, sizeof(this->state));
|
||||
}
|
||||
|
||||
void TinyMT::GenerateRandomBytes(void *dst, size_t size) {
|
||||
const uintptr_t start = reinterpret_cast<uintptr_t>(dst);
|
||||
const uintptr_t end = start + size;
|
||||
const uintptr_t aligned_start = util::AlignUp(start, 4);
|
||||
const uintptr_t aligned_end = util::AlignDown(end, 4);
|
||||
|
||||
/* Make sure we're aligned. */
|
||||
if (start < aligned_start) {
|
||||
const u32 rnd = this->GenerateRandomU32();
|
||||
std::memcpy(dst, &rnd, aligned_start - start);
|
||||
}
|
||||
|
||||
/* Write as many aligned u32s as we can. */
|
||||
{
|
||||
u32 * cur_dst = reinterpret_cast<u32 *>(aligned_start);
|
||||
u32 * const end_dst = reinterpret_cast<u32 *>(aligned_end);
|
||||
|
||||
while (cur_dst < end_dst) {
|
||||
*(cur_dst++) = this->GenerateRandomU32();
|
||||
}
|
||||
}
|
||||
|
||||
/* Handle any leftover unaligned data. */
|
||||
if (aligned_end < end) {
|
||||
const u32 rnd = this->GenerateRandomU32();
|
||||
std::memcpy(reinterpret_cast<void *>(aligned_end), &rnd, end - aligned_end);
|
||||
}
|
||||
}
|
||||
|
||||
u32 TinyMT::GenerateRandomU32() {
|
||||
/* Advance state. */
|
||||
const u32 x0 = (this->state.data[0] & TopBitmask) ^ this->state.data[1] ^ this->state.data[2];
|
||||
const u32 y0 = this->state.data[3];
|
||||
const u32 x1 = x0 ^ (x0 << 1);
|
||||
const u32 y1 = y0 ^ (y0 >> 1) ^ x1;
|
||||
|
||||
const u32 state0 = this->state.data[1];
|
||||
u32 state1 = this->state.data[2];
|
||||
u32 state2 = x1 ^ (y1 << 10);
|
||||
const u32 state3 = y1;
|
||||
|
||||
if ((y1 & 1) != 0) {
|
||||
state1 ^= ParamMat1;
|
||||
state2 ^= ParamMat2;
|
||||
}
|
||||
|
||||
this->state.data[0] = state0;
|
||||
this->state.data[1] = state1;
|
||||
this->state.data[2] = state2;
|
||||
this->state.data[3] = state3;
|
||||
|
||||
/* Temper. */
|
||||
const u32 t1 = state0 + (state2 >> 8);
|
||||
u32 t0 = state3 ^ t1;
|
||||
|
||||
if ((t1 & 1) != 0) {
|
||||
t0 ^= ParamTmat;
|
||||
}
|
||||
|
||||
return t0;
|
||||
}
|
||||
|
||||
}
|
|
@ -27,3 +27,4 @@
|
|||
#include "util/util_typed_storage.hpp"
|
||||
#include "util/util_intrusive_list.hpp"
|
||||
#include "util/util_intrusive_red_black_tree.hpp"
|
||||
#include "util/util_tinymt.hpp"
|
||||
|
|
248
libraries/libvapours/include/vapours/util/util_tinymt.hpp
Normal file
248
libraries/libvapours/include/vapours/util/util_tinymt.hpp
Normal file
|
@ -0,0 +1,248 @@
|
|||
/*
|
||||
* Copyright (c) 2018-2020 Atmosphère-NX
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms and conditions of the GNU General Public License,
|
||||
* version 2, as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <vapours.hpp>
|
||||
|
||||
namespace ams::util {
|
||||
|
||||
/* Implementation of TinyMT (mersenne twister RNG). */
|
||||
/* Like Nintendo, we will use the sample parameters. */
|
||||
class TinyMT {
|
||||
public:
|
||||
static constexpr size_t NumStateWords = 4;
|
||||
|
||||
struct State {
|
||||
u32 data[NumStateWords];
|
||||
};
|
||||
private:
|
||||
static constexpr u32 ParamMat1 = 0x8F7011EE;
|
||||
static constexpr u32 ParamMat2 = 0xFC78FF1F;
|
||||
static constexpr u32 ParamTmat = 0x3793FDFF;
|
||||
|
||||
static constexpr u32 ParamMult = 0x6C078965;
|
||||
static constexpr u32 ParamPlus = 0x0019660D;
|
||||
static constexpr u32 ParamXor = 0x5D588B65;
|
||||
|
||||
static constexpr u32 TopBitmask = 0x7FFFFFFF;
|
||||
|
||||
static constexpr int MinimumInitIterations = 8;
|
||||
static constexpr int NumDiscardedInitOutputs = 8;
|
||||
|
||||
static constexpr inline u32 XorByShifted27(u32 value) {
|
||||
return value ^ (value >> 27);
|
||||
}
|
||||
|
||||
static constexpr inline u32 XorByShifted30(u32 value) {
|
||||
return value ^ (value >> 30);
|
||||
}
|
||||
private:
|
||||
State state;
|
||||
private:
|
||||
/* Internal API. */
|
||||
void FinalizeInitialization() {
|
||||
const u32 state0 = this->state.data[0] & TopBitmask;
|
||||
const u32 state1 = this->state.data[1];
|
||||
const u32 state2 = this->state.data[2];
|
||||
const u32 state3 = this->state.data[3];
|
||||
|
||||
if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) {
|
||||
this->state.data[0] = 'T';
|
||||
this->state.data[1] = 'I';
|
||||
this->state.data[2] = 'N';
|
||||
this->state.data[3] = 'Y';
|
||||
}
|
||||
|
||||
for (int i = 0; i < NumDiscardedInitOutputs; i++) {
|
||||
this->GenerateRandomU32();
|
||||
}
|
||||
}
|
||||
|
||||
u32 GenerateRandomU24() { return (this->GenerateRandomU32() >> 8); }
|
||||
|
||||
static void GenerateInitialValuePlus(TinyMT::State *state, int index, u32 value) {
|
||||
u32 &state0 = state->data[(index + 0) % NumStateWords];
|
||||
u32 &state1 = state->data[(index + 1) % NumStateWords];
|
||||
u32 &state2 = state->data[(index + 2) % NumStateWords];
|
||||
u32 &state3 = state->data[(index + 3) % NumStateWords];
|
||||
|
||||
const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus;
|
||||
const u32 y = x + index + value;
|
||||
|
||||
state0 = y;
|
||||
state1 += x;
|
||||
state2 += y;
|
||||
}
|
||||
|
||||
static void GenerateInitialValueXor(TinyMT::State *state, int index) {
|
||||
u32 &state0 = state->data[(index + 0) % NumStateWords];
|
||||
u32 &state1 = state->data[(index + 1) % NumStateWords];
|
||||
u32 &state2 = state->data[(index + 2) % NumStateWords];
|
||||
u32 &state3 = state->data[(index + 3) % NumStateWords];
|
||||
|
||||
const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor;
|
||||
const u32 y = x - index;
|
||||
|
||||
state0 = y;
|
||||
state1 ^= x;
|
||||
state2 ^= y;
|
||||
}
|
||||
public:
|
||||
constexpr TinyMT() : state() { /* ... */ }
|
||||
|
||||
/* Public API. */
|
||||
|
||||
/* Initialization. */
|
||||
void Initialize(u32 seed) {
|
||||
this->state.data[0] = seed;
|
||||
this->state.data[1] = ParamMat1;
|
||||
this->state.data[2] = ParamMat2;
|
||||
this->state.data[3] = ParamTmat;
|
||||
|
||||
for (int i = 1; i < MinimumInitIterations; i++) {
|
||||
const u32 mixed = XorByShifted30(this->state.data[(i - 1) % NumStateWords]);
|
||||
this->state.data[i % NumStateWords] ^= mixed * ParamMult + i;
|
||||
}
|
||||
|
||||
this->FinalizeInitialization();
|
||||
}
|
||||
|
||||
void Initialize(const u32 *seed, int seed_count) {
|
||||
this->state.data[0] = 0;
|
||||
this->state.data[1] = ParamMat1;
|
||||
this->state.data[2] = ParamMat2;
|
||||
this->state.data[3] = ParamTmat;
|
||||
|
||||
{
|
||||
const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1;
|
||||
|
||||
GenerateInitialValuePlus(&this->state, 0, seed_count);
|
||||
|
||||
for (int i = 0; i < num_init_iterations; i++) {
|
||||
GenerateInitialValuePlus(&this->state, (i + 1) % NumStateWords, (i < seed_count) ? seed[i] : 0);
|
||||
}
|
||||
|
||||
for (int i = 0; i < static_cast<int>(NumStateWords); i++) {
|
||||
GenerateInitialValueXor(&this->state, (i + 1 + num_init_iterations) % NumStateWords);
|
||||
}
|
||||
}
|
||||
|
||||
this->FinalizeInitialization();
|
||||
}
|
||||
|
||||
/* State management. */
|
||||
void GetState(TinyMT::State *out) const {
|
||||
std::memcpy(out->data, this->state.data, sizeof(this->state));
|
||||
}
|
||||
|
||||
void SetState(const TinyMT::State *state) {
|
||||
std::memcpy(this->state.data, state->data, sizeof(this->state));
|
||||
}
|
||||
|
||||
/* Random generation. */
|
||||
NOINLINE void GenerateRandomBytes(void *dst, size_t size) {
|
||||
const uintptr_t start = reinterpret_cast<uintptr_t>(dst);
|
||||
const uintptr_t end = start + size;
|
||||
const uintptr_t aligned_start = util::AlignUp(start, 4);
|
||||
const uintptr_t aligned_end = util::AlignDown(end, 4);
|
||||
|
||||
/* Make sure we're aligned. */
|
||||
if (start < aligned_start) {
|
||||
const u32 rnd = this->GenerateRandomU32();
|
||||
std::memcpy(dst, &rnd, aligned_start - start);
|
||||
}
|
||||
|
||||
/* Write as many aligned u32s as we can. */
|
||||
{
|
||||
u32 * cur_dst = reinterpret_cast<u32 *>(aligned_start);
|
||||
u32 * const end_dst = reinterpret_cast<u32 *>(aligned_end);
|
||||
|
||||
while (cur_dst < end_dst) {
|
||||
*(cur_dst++) = this->GenerateRandomU32();
|
||||
}
|
||||
}
|
||||
|
||||
/* Handle any leftover unaligned data. */
|
||||
if (aligned_end < end) {
|
||||
const u32 rnd = this->GenerateRandomU32();
|
||||
std::memcpy(reinterpret_cast<void *>(aligned_end), &rnd, end - aligned_end);
|
||||
}
|
||||
}
|
||||
|
||||
NOINLINE u32 GenerateRandomU32() {
|
||||
/* Advance state. */
|
||||
const u32 x0 = (this->state.data[0] & TopBitmask) ^ this->state.data[1] ^ this->state.data[2];
|
||||
const u32 y0 = this->state.data[3];
|
||||
const u32 x1 = x0 ^ (x0 << 1);
|
||||
const u32 y1 = y0 ^ (y0 >> 1) ^ x1;
|
||||
|
||||
const u32 state0 = this->state.data[1];
|
||||
u32 state1 = this->state.data[2];
|
||||
u32 state2 = x1 ^ (y1 << 10);
|
||||
const u32 state3 = y1;
|
||||
|
||||
if ((y1 & 1) != 0) {
|
||||
state1 ^= ParamMat1;
|
||||
state2 ^= ParamMat2;
|
||||
}
|
||||
|
||||
this->state.data[0] = state0;
|
||||
this->state.data[1] = state1;
|
||||
this->state.data[2] = state2;
|
||||
this->state.data[3] = state3;
|
||||
|
||||
/* Temper. */
|
||||
const u32 t1 = state0 + (state2 >> 8);
|
||||
u32 t0 = state3 ^ t1;
|
||||
|
||||
if ((t1 & 1) != 0) {
|
||||
t0 ^= ParamTmat;
|
||||
}
|
||||
|
||||
return t0;
|
||||
}
|
||||
|
||||
inline u64 GenerateRandomU64() {
|
||||
const u32 lo = this->GenerateRandomU32();
|
||||
const u32 hi = this->GenerateRandomU32();
|
||||
return (static_cast<u64>(hi) << 32) | static_cast<u64>(lo);
|
||||
}
|
||||
|
||||
inline float GenerateRandomF32() {
|
||||
/* Floats have 24 bits of mantissa. */
|
||||
constexpr int MantissaBits = 24;
|
||||
return GenerateRandomU24() * (1.0f / (1ul << MantissaBits));
|
||||
}
|
||||
|
||||
inline double GenerateRandomF64() {
|
||||
/* Doubles have 53 bits of mantissa. */
|
||||
/* The smart way to generate 53 bits of random would be to use 32 bits */
|
||||
/* from the first rnd32() call, and then 21 from the second. */
|
||||
/* Nintendo does not. They use (32 - 5) = 27 bits from the first rnd32() */
|
||||
/* call, and (32 - 6) bits from the second. We'll do what they do, but */
|
||||
/* There's not a clear reason why. */
|
||||
constexpr int MantissaBits = 53;
|
||||
constexpr int Shift1st = (64 - MantissaBits) / 2;
|
||||
constexpr int Shift2nd = (64 - MantissaBits) - Shift1st;
|
||||
|
||||
const u32 first = (this->GenerateRandomU32() >> Shift1st);
|
||||
const u32 second = (this->GenerateRandomU32() >> Shift2nd);
|
||||
|
||||
return (1.0 * first * (1ul << (32 - Shift2nd)) + second) * (1.0 / (1ul << MantissaBits));
|
||||
}
|
||||
};
|
||||
|
||||
}
|
Loading…
Reference in a new issue