fusee_cpp: implement package2 rebuild/kip patching

This commit is contained in:
Michael Scire 2021-09-03 18:34:20 -07:00 committed by SciresM
parent 968ced677e
commit e5106ffa2c
10 changed files with 330 additions and 19 deletions

View file

@ -98,7 +98,10 @@ else
DEPENDS := $(OFILES:.o=.d) DEPENDS := $(OFILES:.o=.d)
all : $(OUTPUT).kip all : $(OUTPUT)_unpacked.kip
$(OUTPUT)_unpacked.kip : $(OUTPUT).kip
@hactool -t kip --uncompressed=$(OUTPUT)_unpacked.kip $(OUTPUT).kip
$(OUTPUT).kip : $(OUTPUT).elf $(OUTPUT).kip : $(OUTPUT).elf

View file

@ -154,9 +154,12 @@ namespace ams::secmon::boot {
bool VerifyPackage2Payloads(const pkg2::Package2Meta &meta, uintptr_t payload_address) { bool VerifyPackage2Payloads(const pkg2::Package2Meta &meta, uintptr_t payload_address) {
/* Verify hashes match for all payloads. */ /* Verify hashes match for all payloads. */
for (int i = 0; i < pkg2::PayloadCount; ++i) { for (int i = 0; i < pkg2::PayloadCount; ++i) {
/* Allow all-zero bytes to match any payload. */
if (!(meta.payload_hashes[i][0] == 0 && std::memcmp(meta.payload_hashes[i] + 0, meta.payload_hashes[i] + 1, sizeof(meta.payload_hashes[i]) - 1) == 0)) {
if (!VerifyHash(meta.payload_hashes[i], payload_address, meta.payload_sizes[i])) { if (!VerifyHash(meta.payload_hashes[i], payload_address, meta.payload_sizes[i])) {
return false; return false;
} }
}
payload_address += meta.payload_sizes[i]; payload_address += meta.payload_sizes[i];
} }

View file

@ -129,6 +129,9 @@ namespace ams::nxboot {
/* Restore memory clock rate. */ /* Restore memory clock rate. */
RestoreMemoryClockRate(); RestoreMemoryClockRate();
/* Restore secure monitor code. */
RestoreSecureMonitorOverlay();
/* Finalize display. */ /* Finalize display. */
FinalizeDisplay(); FinalizeDisplay();

View file

@ -22,6 +22,8 @@ namespace ams::nxboot {
namespace { namespace {
constinit u8 g_secmon_debug_storage[secmon::MemoryRegionPhysicalIramSecureMonitorDebug.GetSize()];
ALWAYS_INLINE void *GetOverlayDestination() { ALWAYS_INLINE void *GetOverlayDestination() {
return reinterpret_cast<void *>(0x4002C000); return reinterpret_cast<void *>(0x4002C000);
} }
@ -64,7 +66,7 @@ namespace ams::nxboot {
/* NOTE: Erista does not do memory clock restoration. */ /* NOTE: Erista does not do memory clock restoration. */
/* std::memcpy(const_cast<u8 *>(GetSecondaryArchive().ovl_mtc_erista), GetOverlayDestination(), sizeof(SecondaryArchive{}.ovl_mtc_erista)); */ /* std::memcpy(const_cast<u8 *>(GetSecondaryArchive().ovl_mtc_erista), GetOverlayDestination(), sizeof(SecondaryArchive{}.ovl_mtc_erista)); */
} else /* if (fuse::GetSocType() == fuse::SocType_Mariko) */ { } else /* if (fuse::GetSocType() == fuse::SocType_Mariko) */ {
std::memcpy(const_cast<u8 *>(GetSecondaryArchive().ovl_mtc_mariko), GetOverlayDestination(), sizeof(SecondaryArchive{}.ovl_mtc_mariko)); std::memcpy(const_cast<u8 *>(GetSecondaryArchive().ovl_mtc_mariko), GetOverlayDestination(), sizeof(SecondaryArchive{}.ovl_mtc_mariko) - 0x2000);
} }
} }
@ -73,7 +75,16 @@ namespace ams::nxboot {
/* NOTE: Erista does not do memory clock restoration. */ /* NOTE: Erista does not do memory clock restoration. */
/* std::memcpy(GetOverlayDestination(), GetSecondaryArchive().ovl_mtc_erista, sizeof(SecondaryArchive{}.ovl_mtc_erista)); */ /* std::memcpy(GetOverlayDestination(), GetSecondaryArchive().ovl_mtc_erista, sizeof(SecondaryArchive{}.ovl_mtc_erista)); */
} else /* if (fuse::GetSocType() == fuse::SocType_Mariko) */ { } else /* if (fuse::GetSocType() == fuse::SocType_Mariko) */ {
std::memcpy(GetOverlayDestination(), GetSecondaryArchive().ovl_mtc_mariko, sizeof(SecondaryArchive{}.ovl_mtc_mariko)); std::memcpy(g_secmon_debug_storage, secmon::MemoryRegionPhysicalIramSecureMonitorDebug.GetPointer<void>(), sizeof(g_secmon_debug_storage));
std::memcpy(GetOverlayDestination(), GetSecondaryArchive().ovl_mtc_mariko, sizeof(SecondaryArchive{}.ovl_mtc_mariko) - 0x2000);
}
}
void RestoreSecureMonitorOverlay() {
if (fuse::GetSocType() == fuse::SocType_Erista) {
/* NOTE: Erista does not do memory clock restoration. */
} else /* if (fuse::GetSocType() == fuse::SocType_Mariko) */ {
std::memcpy(secmon::MemoryRegionPhysicalIramSecureMonitorDebug.GetPointer<void>(), g_secmon_debug_storage, sizeof(g_secmon_debug_storage));
} }
} }

View file

@ -28,5 +28,6 @@ namespace ams::nxboot {
void SaveMemoryTrainingOverlay(); void SaveMemoryTrainingOverlay();
void RestoreMemoryTrainingOverlay(); void RestoreMemoryTrainingOverlay();
void RestoreSecureMonitorOverlay();
} }

View file

@ -47,8 +47,9 @@ namespace ams::nxboot {
u32 reserved0; /* Previously entrypoint. */ u32 reserved0; /* Previously entrypoint. */
u32 metadata_offset; u32 metadata_offset;
u32 flags; u32 flags;
u32 meso_size;
u32 num_kips; u32 num_kips;
u32 reserved1[4]; u32 reserved1[3];
u32 magic; u32 magic;
u32 total_size; u32 total_size;
u32 reserved2; /* Previously crt0 offset. */ u32 reserved2; /* Previously crt0 offset. */

View file

@ -834,7 +834,8 @@ namespace ams::nxboot {
/* Build modified package2. */ /* Build modified package2. */
RebuildPackage2(target_firmware, emummc_enabled); RebuildPackage2(target_firmware, emummc_enabled);
WaitForReboot(); /* Wait for confirmation that exosphere is ready. */
WaitSecureMonitorState(pkg1::SecureMonitorState_Initialized);
} }
} }

View file

@ -85,6 +85,8 @@ namespace ams::nxboot {
static_assert(sizeof(InitialProcessMeta) == 0x40); static_assert(sizeof(InitialProcessMeta) == 0x40);
static_assert(alignof(InitialProcessMeta) == 0x10); static_assert(alignof(InitialProcessMeta) == 0x10);
constexpr inline const u64 FsProgramId = 0x0100000000000000;
enum FsVersion { enum FsVersion {
FsVersion_1_0_0 = 0, FsVersion_1_0_0 = 0,
@ -284,6 +286,11 @@ namespace ams::nxboot {
} }
bool AddInitialProcess(const InitialProcessHeader *kip, const se::Sha256Hash *hash = nullptr) { bool AddInitialProcess(const InitialProcessHeader *kip, const se::Sha256Hash *hash = nullptr) {
/* Check kip magic. */
if (kip->magic != InitialProcessHeader::Magic) {
ShowFatalError("KIP seems corrupted!\n");
}
/* Handle the initial case. */ /* Handle the initial case. */
if (g_initial_process_binary_size == 0) { if (g_initial_process_binary_size == 0) {
AddInitialProcessImpl(std::addressof(g_initial_process_meta), kip, hash); AddInitialProcessImpl(std::addressof(g_initial_process_meta), kip, hash);
@ -591,6 +598,60 @@ namespace ams::nxboot {
} }
} }
struct BlzSegmentFlags {
using Offset = util::BitPack16::Field<0, 12, u32>;
using Size = util::BitPack16::Field<Offset::Next, 4, u32>;
};
void BlzUncompress(void *_end) {
/* Parse the footer, endian agnostic. */
static_assert(sizeof(u32) == 4);
static_assert(sizeof(u16) == 2);
static_assert(sizeof(u8) == 1);
u8 *end = static_cast<u8 *>(_end);
const u32 total_size = (end[-12] << 0) | (end[-11] << 8) | (end[-10] << 16) | (end[- 9] << 24);
const u32 footer_size = (end[- 8] << 0) | (end[- 7] << 8) | (end[- 6] << 16) | (end[- 5] << 24);
const u32 additional_size = (end[- 4] << 0) | (end[- 3] << 8) | (end[- 2] << 16) | (end[- 1] << 24);
/* Prepare to decompress. */
u8 *cmp_start = end - total_size;
u32 cmp_ofs = total_size - footer_size;
u32 out_ofs = total_size + additional_size;
/* Decompress. */
while (out_ofs) {
u8 control = cmp_start[--cmp_ofs];
/* Each bit in the control byte is a flag indicating compressed or not compressed. */
for (size_t i = 0; i < 8 && out_ofs; ++i, control <<= 1) {
if (control & 0x80) {
/* NOTE: Nintendo does not check if it's possible to decompress. */
/* As such, we will leave the following as a debug assertion, and not a release assertion. */
AMS_AUDIT(cmp_ofs >= sizeof(u16));
cmp_ofs -= sizeof(u16);
/* Extract segment bounds. */
const util::BitPack16 seg_flags{static_cast<u16>((cmp_start[cmp_ofs] << 0) | (cmp_start[cmp_ofs + 1] << 8))};
const u32 seg_ofs = seg_flags.Get<BlzSegmentFlags::Offset>() + 3;
const u32 seg_size = std::min(seg_flags.Get<BlzSegmentFlags::Size>() + 3, out_ofs);
AMS_AUDIT(out_ofs + seg_ofs <= total_size + additional_size);
/* Copy the data. */
out_ofs -= seg_size;
for (size_t j = 0; j < seg_size; j++) {
cmp_start[out_ofs + j] = cmp_start[out_ofs + seg_ofs + j];
}
} else {
/* NOTE: Nintendo does not check if it's possible to copy. */
/* As such, we will leave the following as a debug assertion, and not a release assertion. */
AMS_AUDIT(cmp_ofs >= sizeof(u8));
cmp_start[--out_ofs] = cmp_start[--cmp_ofs];
}
}
}
}
void *ReadFile(s64 *out_size, const char *path, size_t align = 0x10) { void *ReadFile(s64 *out_size, const char *path, size_t align = 0x10) {
fs::FileHandle file; fs::FileHandle file;
if (R_SUCCEEDED(fs::OpenFile(std::addressof(file), path, fs::OpenMode_Read))) { if (R_SUCCEEDED(fs::OpenFile(std::addressof(file), path, fs::OpenMode_Read))) {
@ -674,7 +735,6 @@ namespace ams::nxboot {
} }
/* Get meta for FS process. */ /* Get meta for FS process. */
constexpr u64 FsProgramId = 0x0100000000000000;
auto *fs_meta = FindInitialProcess(FsProgramId); auto *fs_meta = FindInitialProcess(FsProgramId);
if (fs_meta == nullptr) { if (fs_meta == nullptr) {
/* Get nintendo header/data. */ /* Get nintendo header/data. */
@ -833,7 +893,220 @@ namespace ams::nxboot {
} }
void RebuildPackage2(ams::TargetFirmware target_firmware, bool emummc_enabled) { void RebuildPackage2(ams::TargetFirmware target_firmware, bool emummc_enabled) {
/* TODO */ /* Get the secondary archive. */
const auto &secondary_archive = GetSecondaryArchive();
/* Clear package2 header. */
auto *package2 = secmon::MemoryRegionDramPackage2.GetPointer<pkg2::Package2Header>();
std::memset(package2, 0, sizeof(*package2));
/* Get payload data pointer. */
u8 * const payload_data = reinterpret_cast<u8 *>(package2 + 1);
/* Useful values. */
constexpr u32 KernelPayloadBase = 0x60000;
/* Set fields. */
package2->meta.key_generation = pkg1::KeyGeneration_Current;
std::memcpy(package2->meta.magic, pkg2::Package2Meta::Magic::String, sizeof(package2->meta.magic));
package2->meta.entrypoint = KernelPayloadBase;
package2->meta.bootloader_version = pkg2::CurrentBootloaderVersion;
package2->meta.package2_version = pkg2::MinimumValidDataVersion;
/* Load mesosphere. */
s64 meso_size;
if (void *sd_meso = ReadFile(std::addressof(meso_size), "sdmc:/atmosphere/mesosphere.bin"); sd_meso != nullptr) {
std::memcpy(payload_data, sd_meso, meso_size);
} else {
meso_size = secondary_archive.header.meso_size;
std::memcpy(payload_data, secondary_archive.mesosphere, meso_size);
}
/* Read emummc, if needed. */
const InitialProcessHeader *emummc;
s64 emummc_size;
if (emummc_enabled) {
emummc = static_cast<const InitialProcessHeader *>(ReadFile(std::addressof(emummc_size), "sdmc:/atmosphere/emummc.kip"));
if (emummc == nullptr) {
emummc = reinterpret_cast<const InitialProcessHeader *>(secondary_archive.kips + secondary_archive.header.emummc_meta.offset);
emummc_size = secondary_archive.header.emummc_meta.size;
}
}
/* Set the embedded ini pointer. */
std::memcpy(payload_data + 8, std::addressof(meso_size), sizeof(meso_size));
/* Get the ini pointer. */
InitialProcessBinaryHeader * const ini = reinterpret_cast<InitialProcessBinaryHeader *>(payload_data + meso_size);
/* Set ini fields. */
ini->magic = InitialProcessBinaryHeader::Magic;
ini->num_processes = 0;
ini->reserved = 0;
/* Iterate all processes. */
u8 * const dst_kip_start = reinterpret_cast<u8 *>(ini + 1);
u8 * dst_kip_cur = dst_kip_start;
for (InitialProcessMeta *meta = std::addressof(g_initial_process_meta); meta != nullptr; meta = meta->next) {
/* Get the current kip. */
const auto *src_kip = meta->kip;
auto *dst_kip = reinterpret_cast<InitialProcessHeader *>(dst_kip_cur);
/* Copy the kip header */
std::memcpy(dst_kip, src_kip, sizeof(*src_kip));
const u8 *src_kip_data = reinterpret_cast<const u8 *>(src_kip + 1);
u8 *dst_kip_data = reinterpret_cast< u8 *>(dst_kip + 1);
/* If necessary, inject emummc. */
u32 addl_text_offset = 0;
if (dst_kip->program_id == FsProgramId && emummc_enabled) {
/* Get emummc extents. */
addl_text_offset = emummc->bss_address + emummc->bss_size;
if ((emummc->flags & 7) || !util::IsAligned(addl_text_offset, 0x1000)) {
ShowFatalError("Invalid emummc kip!\n");
}
/* Copy emummc capabilities. */
{
std::memcpy(dst_kip->capabilities, emummc->capabilities, sizeof(emummc->capabilities));
if (target_firmware <= ams::TargetFirmware_1_0_0) {
for (size_t i = 0; i < util::size(dst_kip->capabilities); ++i) {
if (dst_kip->capabilities[i] == 0xFFFFFFFF) {
dst_kip->capabilities[i] = 0x07000E7F;
break;
}
}
}
}
/* Update section headers. */
dst_kip->ro_address += addl_text_offset;
dst_kip->rw_address += addl_text_offset;
dst_kip->bss_address += addl_text_offset;
/* Get emummc sections. */
const u8 *emummc_data = reinterpret_cast<const u8 *>(emummc + 1);
/* Copy emummc sections. */
std::memcpy(dst_kip_data + emummc->rx_address, emummc_data, emummc->rx_compressed_size);
std::memcpy(dst_kip_data + emummc->ro_address, emummc_data + emummc->rx_compressed_size, emummc->ro_compressed_size);
std::memcpy(dst_kip_data + emummc->rw_address, emummc_data + emummc->rx_compressed_size + emummc->ro_compressed_size, emummc->rw_compressed_size);
std::memset(dst_kip_data + emummc->bss_address, 0, emummc->bss_size);
/* Advance. */
dst_kip_data += addl_text_offset;
}
/* Prepare to process segments. */
u8 *dst_rx_data, *dst_ro_data, *dst_rw_data;
/* Process .text. */
{
dst_rx_data = dst_kip_data;
std::memcpy(dst_kip_data, src_kip_data, src_kip->rx_compressed_size);
/* Uncompress, if necessary. */
if ((meta->patch_segments & src_kip->flags) & (1 << 0)) {
BlzUncompress(dst_kip_data + dst_kip->rx_compressed_size);
dst_kip->rx_compressed_size = dst_kip->rx_size;
}
/* Advance. */
dst_kip_data += dst_kip->rx_compressed_size;
src_kip_data += src_kip->rx_compressed_size;
/* Account for potential emummc. */
dst_kip->rx_size += addl_text_offset;
dst_kip->rx_compressed_size += addl_text_offset;
}
/* Process .rodata. */
{
dst_ro_data = dst_kip_data;
std::memcpy(dst_kip_data, src_kip_data, src_kip->ro_compressed_size);
/* Uncompress, if necessary. */
if ((meta->patch_segments & src_kip->flags) & (1 << 1)) {
BlzUncompress(dst_kip_data + dst_kip->ro_compressed_size);
dst_kip->ro_compressed_size = dst_kip->ro_size;
}
/* Advance. */
dst_kip_data += dst_kip->ro_compressed_size;
src_kip_data += src_kip->ro_compressed_size;
}
/* Process .rwdata. */
{
dst_rw_data = dst_kip_data;
std::memcpy(dst_kip_data, src_kip_data, src_kip->rw_compressed_size);
/* Uncompress, if necessary. */
if ((meta->patch_segments & src_kip->flags) & (1 << 2)) {
BlzUncompress(dst_kip_data + dst_kip->rw_compressed_size);
dst_kip->rw_compressed_size = dst_kip->rw_size;
}
/* Advance. */
dst_kip_data += dst_kip->rw_compressed_size;
src_kip_data += src_kip->rw_compressed_size;
}
/* Adjust flags. */
dst_kip->flags &= ~meta->patch_segments;
/* Apply patches. */
for (auto *patch = meta->patches_head; patch != nullptr; patch = patch->next) {
/* Get the destination segment. */
u8 *patch_dst_segment;
switch (patch->start_segment) {
case 0: patch_dst_segment = dst_rx_data; break;
case 1: patch_dst_segment = dst_ro_data; break;
case 2: patch_dst_segment = dst_rw_data; break;
default: ShowFatalError("Unknown patch segment %" PRIu32 "\n", patch->start_segment); break;
}
/* Get the destination. */
u8 * const patch_dst = patch_dst_segment + patch->rel_offset;
/* Apply the patch. */
if (patch->is_memset) {
const u8 val = *static_cast<const u8 *>(patch->data);
std::memset(patch_dst, val, patch->size);
} else {
std::memcpy(patch_dst, patch->data, patch->size);
}
}
/* Advance. */
dst_kip_cur += GetInitialProcessSize(dst_kip);
/* Increment num kips. */
++ini->num_processes;
}
/* Set INI size. */
ini->size = sizeof(*ini) + (dst_kip_cur - dst_kip_start);
if (ini->size > 12_MB) {
ShowFatalError("INI is too big! (0x%08" PRIx32 ")\n", ini->size);
}
/* Set the payload size/offset. */
package2->meta.payload_offsets[0] = KernelPayloadBase;
package2->meta.payload_sizes[0] = util::AlignUp(meso_size + ini->size, 0x10);
/* Set total size. */
package2->meta.package2_size = sizeof(*package2) + package2->meta.payload_sizes[0];
} }
} }

View file

@ -23,7 +23,7 @@ def get_overlay(program, i):
KIP_NAMES = ['Loader', 'NCM', 'ProcessManager', 'sm', 'boot', 'spl', 'ams_mitm'] KIP_NAMES = ['Loader', 'NCM', 'ProcessManager', 'sm', 'boot', 'spl', 'ams_mitm']
def get_kips(): def get_kips():
emummc = read_file('../../../../emummc/emummc.kip') emummc = read_file('../../../../emummc/emummc_unpacked.kip')
loader = read_file('../../../../stratosphere/loader/loader.kip') loader = read_file('../../../../stratosphere/loader/loader.kip')
ncm = read_file('../../../../stratosphere/ncm/ncm.kip') ncm = read_file('../../../../stratosphere/ncm/ncm.kip')
pm = read_file('../../../../stratosphere/pm/pm.kip') pm = read_file('../../../../stratosphere/pm/pm.kip')
@ -45,11 +45,11 @@ def write_kip_meta(f, kip, ofs):
# Write program id # Write program id
f.write(kip[0x10:0x18]) f.write(kip[0x10:0x18])
# Write offset, size # Write offset, size
f.write(pk('<II', ofs, len(kip))) f.write(pk('<II', ofs - 0x100000, len(kip)))
# Write hash # Write hash
f.write(hashlib.sha256(kip).digest()) f.write(hashlib.sha256(kip).digest())
def write_header(f, all_kips): def write_header(f, all_kips, meso_size):
# Unpack kips # Unpack kips
emummc, kips = all_kips emummc, kips = all_kips
# Write reserved0 (previously entrypoint) as infinite loop instruction. # Write reserved0 (previously entrypoint) as infinite loop instruction.
@ -58,15 +58,17 @@ def write_header(f, all_kips):
f.write(pk('<I', 0x20)) f.write(pk('<I', 0x20))
# Write flags # Write flags
f.write(pk('<I', 0x00000000)) f.write(pk('<I', 0x00000000))
# Write meso_size
f.write(pk('<I', meso_size))
# Write num_kips # Write num_kips
f.write(pk('<I', len(KIP_NAMES))) f.write(pk('<I', len(KIP_NAMES)))
# Write reserved2 # Write reserved1
f.write(b'\xCC' * 0x10) f.write(b'\xCC' * 0xC)
# Write magic # Write magic
f.write('FSS0') f.write('FSS0')
# Write total size # Write total size
f.write(pk('<I', 0x800000)) f.write(pk('<I', 0x800000))
# Write reserved3 # Write reserved2
f.write(pk('<I', 0xCCCCCCCC)) f.write(pk('<I', 0xCCCCCCCC))
# Write content_header_offset # Write content_header_offset
f.write(pk('<I', 0x40)) f.write(pk('<I', 0x40))
@ -87,21 +89,25 @@ def write_header(f, all_kips):
f.write(pk('<IIBBBBI16s', 0x7C0000, 0x020000, 0, 0, 0, 0, 0xCCCCCCCC, 'fusee')) f.write(pk('<IIBBBBI16s', 0x7C0000, 0x020000, 0, 0, 0, 0, 0xCCCCCCCC, 'fusee'))
f.write(pk('<IIBBBBI16s', 0x7E0000, 0x001000, 3, 0, 0, 0, 0xCCCCCCCC, 'rebootstub')) f.write(pk('<IIBBBBI16s', 0x7E0000, 0x001000, 3, 0, 0, 0, 0xCCCCCCCC, 'rebootstub'))
f.write(pk('<IIBBBBI16s', 0x100000, len(emummc), 8, 0, 0, 0, 0xCCCCCCCC, 'emummc')) f.write(pk('<IIBBBBI16s', 0x100000, len(emummc), 8, 0, 0, 0, 0xCCCCCCCC, 'emummc'))
ofs = 0x100000 + len(emummc) ofs = (0x100000 + len(emummc) + 0xF) & ~0xF
for kip_name in KIP_NAMES: for kip_name in KIP_NAMES:
kip_data = kips[kip_name] kip_data = kips[kip_name]
f.write(pk('<IIBBBBI16s', ofs, len(kip_data), 6, 0, 0, 0, 0xCCCCCCCC, kip_name)) f.write(pk('<IIBBBBI16s', ofs, len(kip_data), 6, 0, 0, 0, 0xCCCCCCCC, kip_name))
ofs += len(kip_data) ofs += len(kip_data)
ofs += 0xF
ofs &= ~0xF
# Pad to kip metas. # Pad to kip metas.
f.write(b'\xCC' * (0x400 - 0x40 - (0x20 * (8 + len(KIP_NAMES))))) f.write(b'\xCC' * (0x400 - 0x40 - (0x20 * (8 + len(KIP_NAMES)))))
# Write emummc_meta. */ # Write emummc_meta. */
write_kip_meta(f, emummc, 0x100000) write_kip_meta(f, emummc, 0x100000)
# Write kip metas # Write kip metas
ofs = 0x100000 + len(emummc) ofs = (0x100000 + len(emummc) + 0xF) & ~0xF
for kip_name in KIP_NAMES: for kip_name in KIP_NAMES:
kip_data = kips[kip_name] kip_data = kips[kip_name]
write_kip_meta(f, kip_data, ofs) write_kip_meta(f, kip_data, ofs)
ofs += len(kip_data) ofs += len(kip_data)
ofs += 0xF
ofs &= ~0xF
# Pad to end of header # Pad to end of header
f.write(b'\xCC' * (0x800 - (0x400 + (1 + len(KIP_NAMES)) * 0x30))) f.write(b'\xCC' * (0x800 - (0x400 + (1 + len(KIP_NAMES)) * 0x30)))
@ -112,10 +118,18 @@ def write_kips(f, all_kips):
f.write(emummc) f.write(emummc)
# Write kips # Write kips
tot = len(emummc) tot = len(emummc)
if (tot & 0xF):
f.write('\xCC' * (0x10 - (tot & 0xF)))
tot += 0xF
tot &= ~0xF
for kip_name in KIP_NAMES: for kip_name in KIP_NAMES:
kip_data = kips[kip_name] kip_data = kips[kip_name]
f.write(kip_data) f.write(kip_data)
tot += len(kip_data) tot += len(kip_data)
if (tot & 0xF):
f.write('\xCC' * (0x10 - (tot & 0xF)))
tot += 0xF
tot &= ~0xF
# Pad to 3 MB # Pad to 3 MB
f.write(b'\xCC' * (0x300000 - tot)) f.write(b'\xCC' * (0x300000 - tot))
@ -137,11 +151,12 @@ def main(argc, argv):
erista_hsh = hashlib.sha256(erista_mtc[:-4]).digest()[:4] erista_hsh = hashlib.sha256(erista_mtc[:-4]).digest()[:4]
mariko_hsh = hashlib.sha256(mariko_mtc[:-4]).digest()[:4] mariko_hsh = hashlib.sha256(mariko_mtc[:-4]).digest()[:4]
fusee_program = lz4_compress(data[:0x2B000 - 8] + erista_hsh + mariko_hsh + get_overlay(data, 0)[:0x11000]) fusee_program = lz4_compress(data[:0x2B000 - 8] + erista_hsh + mariko_hsh + get_overlay(data, 0)[:0x11000])
mesosphere = read_file('../../../../mesosphere/mesosphere%s.bin' % target)
with open('../../program%s.lz4' % target, 'wb') as f: with open('../../program%s.lz4' % target, 'wb') as f:
f.write(fusee_program) f.write(fusee_program)
with open('../../fusee-boogaloo%s.bin' % target, 'wb') as f: with open('../../fusee-boogaloo%s.bin' % target, 'wb') as f:
# Write header # Write header
write_header(f, all_kips) write_header(f, all_kips, len(mesosphere))
# Write warmboot # Write warmboot
f.write(pad(read_file('../../../../exosphere/warmboot%s.bin' % target), 0x1800)) f.write(pad(read_file('../../../../exosphere/warmboot%s.bin' % target), 0x1800))
# Write TSEC Keygen # Write TSEC Keygen

View file

@ -333,7 +333,7 @@ namespace ams::secmon {
static_assert(MemoryRegionPhysicalTzramNonVolatile.Contains(MemoryRegionPhysicalTzramL2L3PageTable)); static_assert(MemoryRegionPhysicalTzramNonVolatile.Contains(MemoryRegionPhysicalTzramL2L3PageTable));
constexpr inline const MemoryRegion MemoryRegionPhysicalTzramFullProgramImage = MemoryRegion(UINT64_C(0x7C010800), 0xD800); constexpr inline const MemoryRegion MemoryRegionPhysicalTzramFullProgramImage = MemoryRegion(UINT64_C(0x7C010800), 0xD800);
constexpr inline const MemoryRegion MemoryRegionPhysicalIramBootCodeImage = MemoryRegion(UINT64_C(0x40032000), 0x6000); constexpr inline const MemoryRegion MemoryRegionPhysicalIramBootCodeImage = MemoryRegion(UINT64_C(0x40032000), 0xC000);
constexpr inline const MemoryRegion MemoryRegionPhysicalIramBootCodeCode = MemoryRegion(UINT64_C(0x40032000), 0x1000); constexpr inline const MemoryRegion MemoryRegionPhysicalIramBootCodeCode = MemoryRegion(UINT64_C(0x40032000), 0x1000);
constexpr inline const MemoryRegion MemoryRegionPhysicalIramBootCodeKeys = MemoryRegion(UINT64_C(0x40033000), 0x1000); constexpr inline const MemoryRegion MemoryRegionPhysicalIramBootCodeKeys = MemoryRegion(UINT64_C(0x40033000), 0x1000);