exo2: implement through boot config load/validate

This commit is contained in:
Michael Scire 2020-05-12 00:32:09 -07:00 committed by SciresM
parent cbcd1d87fb
commit e11fad6598
26 changed files with 688 additions and 49 deletions

View file

@ -22,4 +22,10 @@ namespace ams::secmon::boot {
void InitializeColdBoot(); void InitializeColdBoot();
bool VerifySignature(void *sig, size_t sig_size, const void *mod, size_t mod_size, const void *msg, size_t msg_size);
bool VerifyHash(const void *hash, uintptr_t msg, size_t msg_size);
bool VerifyBootConfigSignature(pkg1::BootConfig &bc, const void *mod, size_t mod_size);
bool VerifyBootConfigEcid(const pkg1::BootConfig &bc);
} }

View file

@ -14,9 +14,21 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include <exosphere.hpp> #include <exosphere.hpp>
#include "secmon_boot.hpp"
namespace ams::secmon::boot { namespace ams::secmon::boot {
/* TODO */ bool VerifyBootConfigSignature(pkg1::BootConfig &bc, const void *mod, size_t mod_size) {
return VerifySignature(std::addressof(bc.signature), sizeof(bc.signature), mod, mod_size, std::addressof(bc.signed_data), sizeof(bc.signed_data));
}
bool VerifyBootConfigEcid(const pkg1::BootConfig &bc) {
/* Get the ecid. */
br::BootEcid ecid;
fuse::GetEcid(std::addressof(ecid));
/* Verify it matches. */
return crypto::IsSameBytes(std::addressof(ecid), bc.signed_data.ecid, sizeof(ecid));
}
} }

View file

@ -14,13 +14,94 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include <exosphere.hpp> #include <exosphere.hpp>
#include "secmon_boot.hpp"
#include "secmon_boot_functions.hpp" #include "secmon_boot_functions.hpp"
namespace ams::secmon::boot { namespace ams::secmon::boot {
namespace {
constexpr inline uintptr_t SYSCTR0 = MemoryRegionVirtualDeviceSysCtr0.GetAddress();
constinit const u8 BootConfigRsaPublicModulus[se::RsaSize] = {
0xB5, 0x96, 0x87, 0x31, 0x39, 0xAA, 0xBB, 0x3C, 0x28, 0xF3, 0xF0, 0x65, 0xF1, 0x50, 0x70, 0x64,
0xE6, 0x6C, 0x97, 0x50, 0xCD, 0xA6, 0xEE, 0xEA, 0xC3, 0x8F, 0xE6, 0xB5, 0x81, 0x54, 0x65, 0x33,
0x1B, 0x88, 0x4B, 0xCE, 0x9F, 0x53, 0xDF, 0xE4, 0xF6, 0xAD, 0xC3, 0x78, 0xD7, 0x3C, 0xD1, 0xDB,
0x27, 0x21, 0xA0, 0x24, 0x30, 0x2D, 0x98, 0x41, 0xA8, 0xDF, 0x50, 0x7D, 0xAB, 0xCE, 0x00, 0xD9,
0xCB, 0xAC, 0x8F, 0x37, 0xF5, 0x53, 0xE4, 0x97, 0x1F, 0x13, 0x3C, 0x19, 0xFF, 0x05, 0xA7, 0x3B,
0xF6, 0xF4, 0x01, 0xDE, 0xF0, 0xC3, 0x77, 0x7B, 0x83, 0xBA, 0xAF, 0x99, 0x30, 0x94, 0x87, 0x25,
0x4E, 0x54, 0x42, 0x3F, 0xAC, 0x27, 0xF9, 0xCC, 0x87, 0xDD, 0xAE, 0xF2, 0x54, 0xF3, 0x97, 0x49,
0xF4, 0xB0, 0xF8, 0x6D, 0xDA, 0x60, 0xE0, 0xFD, 0x57, 0xAE, 0x55, 0xA9, 0x76, 0xEA, 0x80, 0x24,
0xA0, 0x04, 0x7D, 0xBE, 0xD1, 0x81, 0xD3, 0x0C, 0x95, 0xCF, 0xB7, 0xE0, 0x2D, 0x21, 0x21, 0xFF,
0x97, 0x1E, 0xB3, 0xD7, 0x9F, 0xBB, 0x33, 0x0C, 0x23, 0xC5, 0x88, 0x4A, 0x33, 0xB9, 0xC9, 0x4E,
0x1E, 0x65, 0x51, 0x45, 0xDE, 0xF9, 0x64, 0x7C, 0xF0, 0xBF, 0x11, 0xB4, 0x93, 0x8D, 0x5D, 0xC6,
0xAB, 0x37, 0x9E, 0xE9, 0x39, 0xC1, 0xC8, 0xDB, 0xB9, 0xFE, 0x45, 0xCE, 0x7B, 0xDD, 0x72, 0xD9,
0x6F, 0x68, 0x13, 0xC0, 0x4B, 0xBA, 0x00, 0xF4, 0x1E, 0x89, 0x71, 0x91, 0x26, 0xA6, 0x46, 0x12,
0xDF, 0x29, 0x6B, 0xC2, 0x5A, 0x53, 0xAF, 0xB9, 0x5B, 0xFD, 0x13, 0x9F, 0xD1, 0x8A, 0x7C, 0xB5,
0x04, 0xFD, 0x69, 0xEA, 0x23, 0xB4, 0x6D, 0x16, 0x21, 0x98, 0x54, 0xB4, 0xDF, 0xE6, 0xAB, 0x93,
0x36, 0xB6, 0xD2, 0x43, 0xCF, 0x2B, 0x98, 0x1D, 0x45, 0xC9, 0xBB, 0x20, 0x42, 0xB1, 0x9D, 0x1D
};
}
void ClearIram() { void ClearIram() {
/* Clear the boot code image from where it was loaded in IRAM. */ /* Clear the boot code image from where it was loaded in IRAM. */
util::ClearMemory(MemoryRegionPhysicalIramBootCodeImage.GetPointer(), MemoryRegionPhysicalIramBootCodeImage.GetSize()); util::ClearMemory(MemoryRegionPhysicalIramBootCodeImage.GetPointer(), MemoryRegionPhysicalIramBootCodeImage.GetSize());
} }
void WaitForNxBootloader(const pkg1::SecureMonitorParameters &params, pkg1::BootloaderState state) {
/* Check NX Bootloader's state once per microsecond until it's advanced enough. */
while (params.bootloader_state < state) {
util::WaitMicroSeconds(1);
}
}
void LoadBootConfig(const void *src) {
pkg1::BootConfig * const dst = secmon::impl::GetBootConfigStorage();
if (pkg1::IsProduction()) {
std::memset(dst, 0, sizeof(*dst));
} else {
hw::FlushDataCache(src, sizeof(*dst));
hw::DataSynchronizationBarrierInnerShareable();
std::memcpy(dst, src, sizeof(*dst));
}
}
void VerifyOrClearBootConfig() {
/* On production hardware, the boot config is already cleared. */
if (pkg1::IsProduction()) {
return;
}
pkg1::BootConfig * const bc = secmon::impl::GetBootConfigStorage();
/* Determine if the bc is valid for the device. */
bool valid_for_device = false;
{
const bool valid_signature = secmon::boot::VerifyBootConfigSignature(*bc, BootConfigRsaPublicModulus, util::size(BootConfigRsaPublicModulus));
if (valid_signature) {
valid_for_device = secmon::boot::VerifyBootConfigEcid(*bc);
}
}
/* If the boot config is not valid for the device, clear its signed data. */
if (!valid_for_device) {
util::ClearMemory(std::addressof(bc->signed_data), sizeof(bc->signed_data));
}
}
void EnableTsc(u64 initial_tsc_value) {
/* Write the initial value to the CNTCV registers. */
const u32 lo = static_cast<u32>(initial_tsc_value >> 0);
const u32 hi = static_cast<u32>(initial_tsc_value >> 32);
reg::Write(SYSCTR0 + SYSCTR0_CNTCV0, lo);
reg::Write(SYSCTR0 + SYSCTR0_CNTCV1, hi);
/* Configure the system counter control register. */
reg::Write(SYSCTR0 + SYSCTR0_CNTCR, SYSCTR0_REG_BITS_ENUM(CNTCR_HDBG, ENABLE),
SYSCTR0_REG_BITS_ENUM(CNTCR_EN, ENABLE));
}
} }

View file

@ -20,4 +20,11 @@ namespace ams::secmon::boot {
void ClearIram(); void ClearIram();
void WaitForNxBootloader(const pkg1::SecureMonitorParameters &params, pkg1::BootloaderState state);
void LoadBootConfig(const void *src);
void VerifyOrClearBootConfig();
void EnableTsc(u64 initial_tsc_value);
} }

View file

@ -0,0 +1,159 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "secmon_boot.hpp"
namespace ams::secmon::boot {
namespace {
constinit const u8 RsaPublicKeyExponent[] = {
0x00, 0x01, 0x00, 0x01,
};
constexpr inline u8 TailMagic = 0xBC;
bool VerifyRsaPssSha256(const u8 *sig, const void *msg, size_t msg_size) {
/* Define constants. */
constexpr int EmBits = 2047;
constexpr int EmLen = util::DivideUp(EmBits, BITSIZEOF(u8));
constexpr int SaltLen = 0x20;
constexpr int HashLen = se::Sha256HashSize;
/* Define a work buffer. */
u8 work[EmLen];
ON_SCOPE_EXIT { util::ClearMemory(work, sizeof(work)); };
/* Calculate the message hash, first flushing cache to ensure SE sees correct data. */
se::Sha256Hash msg_hash;
hw::FlushDataCache(msg, msg_size);
hw::DataSynchronizationBarrierInnerShareable();
se::CalculateSha256(std::addressof(msg_hash), msg, msg_size);
/* Verify the tail magic. */
bool is_valid = sig[EmLen - 1] == TailMagic;
/* Determine extents of masked db and h. */
const u8 *masked_db = std::addressof(sig[0]);
const u8 *h = std::addressof(sig[EmLen - HashLen - 1]);
/* Verify the extra bits are zero. */
is_valid &= (masked_db[0] >> (BITSIZEOF(u8) - (BITSIZEOF(u8) * EmLen - EmBits))) == 0;
/* Calculate the db mask. */
{
constexpr int MaskLen = EmLen - HashLen - 1;
constexpr int HashIters = util::DivideUp(MaskLen, HashLen);
u8 mgf1_buf[sizeof(u32) + HashLen];
std::memcpy(std::addressof(mgf1_buf[0]), h, HashLen);
std::memset(std::addressof(mgf1_buf[HashLen]), 0, sizeof(u32));
for (int i = 0; i < HashIters; ++i) {
/* Set the counter for this iteration. */
mgf1_buf[sizeof(mgf1_buf) - 1] = i;
/* Calculate the sha256 to the appropriate place in the work buffer. */
auto *mgf1_dst = reinterpret_cast<se::Sha256Hash *>(std::addressof(work[HashLen * i]));
hw::FlushDataCache(mgf1_buf, sizeof(mgf1_buf));
hw::DataSynchronizationBarrierInnerShareable();
se::CalculateSha256(mgf1_dst, mgf1_buf, sizeof(mgf1_buf));
}
}
/* Decrypt masked db using the mask we just generated. */
for (int i = 0; i < EmLen - HashLen - 1; ++i) {
work[i] ^= masked_db[i];
}
/* Mask out the top bits. */
u8 *db = work;
db[0] &= 0xFF >> (BITSIZEOF(u8) * EmLen - EmBits);
/* Verify that DB is of the form 0000...0001 */
constexpr int DbLen = EmLen - HashLen - 1;
int salt_ofs = 0;
{
int looking_for_one = 1;
int invalid_db_padding = 0;
int is_zero;
int is_one;
for (size_t i = 0; i < DbLen; /* ... */) {
is_zero = (db[i] == 0);
is_one = (db[i] == 1);
salt_ofs += (looking_for_one & is_one) * (static_cast<s32>(++i));
looking_for_one &= ~is_one;
invalid_db_padding |= (looking_for_one & ~is_zero);
}
is_valid &= (invalid_db_padding == 0);
}
/* Verify salt. */
is_valid &= (DbLen - salt_ofs) == SaltLen;
/* Setup the message to verify. */
const u8 *salt = std::addressof(db[DbLen - SaltLen]);
u8 verif_msg[8 + HashLen + SaltLen];
ON_SCOPE_EXIT { util::ClearMemory(verif_msg, sizeof(verif_msg)); };
util::ClearMemory(std::addressof(verif_msg[0]), 8);
std::memcpy(std::addressof(verif_msg[8]), std::addressof(msg_hash), HashLen);
std::memcpy(std::addressof(verif_msg[8 + HashLen]), salt, SaltLen);
/* Verify the final hash. */
return VerifyHash(h, reinterpret_cast<uintptr_t>(std::addressof(verif_msg[0])), sizeof(verif_msg));
}
bool VerifyRsaPssSha256(int slot, void *sig, size_t sig_size, const void *msg, size_t msg_size) {
/* Exponentiate the signature, using the signature as the destination buffer. */
se::ModularExponentiate(sig, sig_size, slot, sig, sig_size);
/* Verify the pss padding. */
return VerifyRsaPssSha256(static_cast<const u8 *>(sig), msg, msg_size);
}
}
bool VerifySignature(void *sig, size_t sig_size, const void *mod, size_t mod_size, const void *msg, size_t msg_size) {
/* Load the public key into a temporary keyslot. */
const int slot = pkg1::RsaKeySlot_Temporary;
se::SetRsaKey(slot, mod, mod_size, RsaPublicKeyExponent, util::size(RsaPublicKeyExponent));
return VerifyRsaPssSha256(slot, sig, sig_size, msg, msg_size);
}
bool VerifyHash(const void *hash, uintptr_t msg, size_t msg_size) {
/* Zero-sized messages are always valid. */
if (msg_size == 0) {
return true;
}
/* Ensure that the SE sees correct data for the message. */
hw::FlushDataCache(reinterpret_cast<void *>(msg), msg_size);
hw::DataSynchronizationBarrierInnerShareable();
/* Calculate the hash. */
se::Sha256Hash calc_hash;
se::CalculateSha256(std::addressof(calc_hash), reinterpret_cast<void *>(msg), msg_size);
/* Verify the result. */
return crypto::IsSameBytes(std::addressof(calc_hash), hash, sizeof(calc_hash));
}
}

View file

@ -26,7 +26,7 @@ namespace ams::secmon {
/* Set library register addresses. */ /* Set library register addresses. */
/* actmon::SetRegisterAddress(MemoryRegionVirtualDeviceActivityMonitor.GetAddress()); */ /* actmon::SetRegisterAddress(MemoryRegionVirtualDeviceActivityMonitor.GetAddress()); */
clkrst::SetRegisterAddress(MemoryRegionVirtualDeviceClkRst.GetAddress()); clkrst::SetRegisterAddress(MemoryRegionVirtualDeviceClkRst.GetAddress());
/* flowctrl::SetRegisterAddress(); */ flow::SetRegisterAddress(MemoryRegionVirtualDeviceFlowController.GetAddress());
fuse::SetRegisterAddress(MemoryRegionVirtualDeviceFuses.GetAddress()); fuse::SetRegisterAddress(MemoryRegionVirtualDeviceFuses.GetAddress());
gic::SetRegisterAddress(MemoryRegionVirtualDeviceGicDistributor.GetAddress(), MemoryRegionVirtualDeviceGicCpuInterface.GetAddress()); gic::SetRegisterAddress(MemoryRegionVirtualDeviceGicDistributor.GetAddress(), MemoryRegionVirtualDeviceGicCpuInterface.GetAddress());
i2c::SetRegisterAddress(i2c::Port_1, MemoryRegionVirtualDeviceI2c1.GetAddress()); i2c::SetRegisterAddress(i2c::Port_1, MemoryRegionVirtualDeviceI2c1.GetAddress());
@ -69,6 +69,26 @@ namespace ams::secmon {
/* Initialize the random cache. */ /* Initialize the random cache. */
secmon::smc::FillRandomCache(); secmon::smc::FillRandomCache();
} }
/* Wait for NX Bootloader to finish loading the BootConfig. */
secmon::boot::WaitForNxBootloader(secmon_params, pkg1::BootloaderState_LoadedBootConfig);
hw::DataSynchronizationBarrierInnerShareable();
/* Load the bootconfig. */
secmon::boot::LoadBootConfig(MemoryRegionPhysicalIramBootConfig.GetPointer());
/* Verify or clear the boot config. */
secmon::boot::VerifyOrClearBootConfig();
/* Get the boot config. */
const auto &bc = secmon::GetBootConfig();
/* Set the tsc value by the boot config. */
{
constexpr u64 TscMask = (static_cast<u64>(1) << 55) - 1;
secmon::boot::EnableTsc(bc.data.GetInitialTscValue() & TscMask);
}
} }
} }

View file

@ -21,6 +21,7 @@
#include <exosphere/hw.hpp> #include <exosphere/hw.hpp>
#include <exosphere/util.hpp> #include <exosphere/util.hpp>
#include <exosphere/mmu.hpp> #include <exosphere/mmu.hpp>
#include <exosphere/br.hpp>
#include <exosphere/gic.hpp> #include <exosphere/gic.hpp>
#include <exosphere/wdt.hpp> #include <exosphere/wdt.hpp>
#include <exosphere/pkg1.hpp> #include <exosphere/pkg1.hpp>

View file

@ -0,0 +1,19 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <exosphere/br/br_types.hpp>

View file

@ -0,0 +1,30 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <exosphere/br/impl/br_erista_types.hpp>
#include <exosphere/br/impl/br_mariko_types.hpp>
namespace ams::br {
struct BootEcid {
u32 ecid[4];
};
static_assert(util::is_pod<BootEcid>::value);
static_assert(sizeof(BootEcid) == 0x10);
}

View file

@ -0,0 +1,21 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::br::erista {
}

View file

@ -0,0 +1,21 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::br::mariko {
}

View file

@ -15,6 +15,7 @@
*/ */
#pragma once #pragma once
#include <vapours.hpp> #include <vapours.hpp>
#include <exosphere/br.hpp>
#include <exosphere/pmic.hpp> #include <exosphere/pmic.hpp>
namespace ams::fuse { namespace ams::fuse {
@ -45,5 +46,6 @@ namespace ams::fuse {
HardwareType GetHardwareType(); HardwareType GetHardwareType();
HardwareState GetHardwareState(); HardwareState GetHardwareState();
pmic::Regulator GetRegulator(); pmic::Regulator GetRegulator();
void GetEcid(br::BootEcid *out);
} }

View file

@ -20,3 +20,4 @@
#include <exosphere/pkg1/pkg1_error_types.hpp> #include <exosphere/pkg1/pkg1_error_types.hpp>
#include <exosphere/pkg1/pkg1_key_generation.hpp> #include <exosphere/pkg1/pkg1_key_generation.hpp>
#include <exosphere/pkg1/pkg1_se_key_slots.hpp> #include <exosphere/pkg1/pkg1_se_key_slots.hpp>
#include <exosphere/pkg1/pkg1_api.hpp>

View file

@ -0,0 +1,25 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::pkg1 {
bool IsProduction();
bool IsProductionForVersionCheck();
bool IsProductionForPublicKey();
}

View file

@ -90,9 +90,13 @@ namespace ams::pkg1 {
return static_cast<MemoryMode>(this->flags0[3]); return static_cast<MemoryMode>(this->flags0[3]);
} }
bool IsTscInitialValueValid() const { constexpr bool IsInitialTscValueValid() const {
return (this->flags0[4] & (1 << 0)) != 0; return (this->flags0[4] & (1 << 0)) != 0;
} }
constexpr u64 GetInitialTscValue() const {
return this->IsInitialTscValueValid() ? this->initial_tsc_value : 0;
}
}; };
static_assert(util::is_pod<BootConfigData>::value); static_assert(util::is_pod<BootConfigData>::value);
static_assert(sizeof(BootConfigData) == 0x200); static_assert(sizeof(BootConfigData) == 0x200);

View file

@ -19,6 +19,7 @@
#include <exosphere/se/se_common.hpp> #include <exosphere/se/se_common.hpp>
#include <exosphere/se/se_management.hpp> #include <exosphere/se/se_management.hpp>
#include <exosphere/se/se_aes.hpp> #include <exosphere/se/se_aes.hpp>
#include <exosphere/se/se_hash.hpp>
#include <exosphere/se/se_rsa.hpp> #include <exosphere/se/se_rsa.hpp>
#include <exosphere/se/se_rng.hpp> #include <exosphere/se/se_rng.hpp>
#include <exosphere/se/se_suspend.hpp> #include <exosphere/se/se_suspend.hpp>

View file

@ -0,0 +1,30 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::se {
constexpr inline int Sha256HashSize = crypto::Sha256Generator::HashSize;
union Sha256Hash {
u8 bytes[Sha256HashSize / sizeof( u8)];
u32 words[Sha256HashSize / sizeof(u32)];
};
void CalculateSha256(Sha256Hash *dst, const void *src, size_t src_size);
}

View file

@ -26,4 +26,6 @@ namespace ams::se {
void SetRsaKey(int slot, const void *mod, size_t mod_size, const void *exp, size_t exp_size); void SetRsaKey(int slot, const void *mod, size_t mod_size, const void *exp, size_t exp_size);
void ModularExponentiate(void *dst, size_t dst_size, int slot, const void *src, size_t src_size);
} }

View file

@ -70,6 +70,10 @@ namespace ams::secmon {
GetConfigurationContext().secmon_cfg.key_generation = generation; GetConfigurationContext().secmon_cfg.key_generation = generation;
} }
ALWAYS_INLINE pkg1::BootConfig *GetBootConfigStorage() {
return std::addressof(GetConfigurationContext().boot_config);
}
} }
ALWAYS_INLINE const ConfigurationContext &GetConfigurationContext() { ALWAYS_INLINE const ConfigurationContext &GetConfigurationContext() {

View file

@ -271,7 +271,9 @@ namespace ams::secmon {
static_assert(MemoryRegionVirtual.Contains(MemoryRegionVirtualTzramL2L3PageTable)); static_assert(MemoryRegionVirtual.Contains(MemoryRegionVirtualTzramL2L3PageTable));
static_assert(MemoryRegionPhysicalTzramNonVolatile.Contains(MemoryRegionPhysicalTzramL2L3PageTable)); static_assert(MemoryRegionPhysicalTzramNonVolatile.Contains(MemoryRegionPhysicalTzramL2L3PageTable));
constexpr inline const MemoryRegion MemoryRegionPhysicalTzramFullProgramImage = MemoryRegion(0x7C010800, 0xD800); constexpr inline const MemoryRegion MemoryRegionPhysicalTzramFullProgramImage = MemoryRegion(UINT64_C(0x7C010800), 0xD800);
constexpr inline const MemoryRegion MemoryRegionPhysicalIramBootCodeImage = MemoryRegion(0x40032000, 0xC000); constexpr inline const MemoryRegion MemoryRegionPhysicalIramBootCodeImage = MemoryRegion(UINT64_C(0x40032000), 0xC000);
constexpr inline const MemoryRegion MemoryRegionPhysicalIramBootConfig = MemoryRegion(UINT64_C(0x4003F800), 0x400);
} }

View file

@ -16,6 +16,9 @@
#pragma once #pragma once
#include <vapours.hpp> #include <vapours.hpp>
#define SYSCTR0_CNTCR (0x00C)
#define SYSCTR0_CNTCV0 (0x008)
#define SYSCTR0_CNTCV1 (0x00C)
#define SYSCTR0_CNTFID0 (0x020) #define SYSCTR0_CNTFID0 (0x020)
#define SYSCTR0_CNTFID1 (0x024) #define SYSCTR0_CNTFID1 (0x024)
@ -34,3 +37,17 @@
#define SYSCTR0_COUNTERID11 (0xFFC) #define SYSCTR0_COUNTERID11 (0xFFC)
#define SYSCTR0_COUNTERID(n) SYSCTR0_COUNTERID##n #define SYSCTR0_COUNTERID(n) SYSCTR0_COUNTERID##n
#define SYSCTR0_REG_BITS_MASK(NAME) REG_NAMED_BITS_MASK (SYSCTR0, NAME)
#define SYSCTR0_REG_BITS_VALUE(NAME, VALUE) REG_NAMED_BITS_VALUE (SYSCTR0, NAME, VALUE)
#define SYSCTR0_REG_BITS_ENUM(NAME, ENUM) REG_NAMED_BITS_ENUM (SYSCTR0, NAME, ENUM)
#define SYSCTR0_REG_BITS_ENUM_SEL(NAME, __COND__, TRUE_ENUM, FALSE_ENUM) REG_NAMED_BITS_ENUM_SEL(SYSCTR0, NAME, __COND__, TRUE_ENUM, FALSE_ENUM)
#define DEFINE_SYSCTR0_REG(NAME, __OFFSET__, __WIDTH__) REG_DEFINE_NAMED_REG (SYSCTR0, NAME, __OFFSET__, __WIDTH__)
#define DEFINE_SYSCTR0_REG_BIT_ENUM(NAME, __OFFSET__, ZERO, ONE) REG_DEFINE_NAMED_BIT_ENUM (SYSCTR0, NAME, __OFFSET__, ZERO, ONE)
#define DEFINE_SYSCTR0_REG_TWO_BIT_ENUM(NAME, __OFFSET__, ZERO, ONE, TWO, THREE) REG_DEFINE_NAMED_TWO_BIT_ENUM (SYSCTR0, NAME, __OFFSET__, ZERO, ONE, TWO, THREE)
#define DEFINE_SYSCTR0_REG_THREE_BIT_ENUM(NAME, __OFFSET__, ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN) REG_DEFINE_NAMED_THREE_BIT_ENUM(SYSCTR0, NAME, __OFFSET__, ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN)
#define DEFINE_SYSCTR0_REG_FOUR_BIT_ENUM(NAME, __OFFSET__, ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN, TWELVE, THIRTEEN, FOURTEEN, FIFTEEN) REG_DEFINE_NAMED_FOUR_BIT_ENUM (SYSCTR0, NAME, __OFFSET__, ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN, TWELVE, THIRTEEN, FOURTEEN, FIFTEEN)
DEFINE_SYSCTR0_REG_BIT_ENUM(CNTCR_EN, 0, DISABLE, ENABLE);
DEFINE_SYSCTR0_REG_BIT_ENUM(CNTCR_HDBG, 1, DISABLE, ENABLE);

View file

@ -118,4 +118,28 @@ namespace ams::fuse {
return pmic::Regulator_Erista_Max77621; return pmic::Regulator_Erista_Max77621;
} }
void GetEcid(br::BootEcid *out) {
/* Get the registers. */
const volatile auto &chip = GetChipRegisters();
/* Read the ecid components. */
const u32 vendor = reg::Read(chip.FUSE_OPT_VENDOR_CODE);
const u32 fab = reg::Read(chip.FUSE_OPT_FAB_CODE);
const u32 lot0 = reg::Read(chip.FUSE_OPT_LOT_CODE_0);
const u32 lot1 = reg::Read(chip.FUSE_OPT_LOT_CODE_1);
const u32 wafer = reg::Read(chip.FUSE_OPT_WAFER_ID);
const u32 x_coord = reg::Read(chip.FUSE_OPT_X_COORDINATE);
const u32 y_coord = reg::Read(chip.FUSE_OPT_Y_COORDINATE);
const u32 reserved = reg::Read(chip.FUSE_OPT_OPS_RESERVED);
/* Clear the output. */
util::ClearMemory(out, sizeof(*out));
/* Copy the component bits. */
out->ecid[0] = static_cast<u32>((lot1 << 30) | (wafer << 24) | (x_coord << 15) | (y_coord << 6) | (reserved));
out->ecid[1] = static_cast<u32>((lot0 << 26) | (lot1 >> 2));
out->ecid[2] = static_cast<u32>((fab << 26) | (lot0 >> 6));
out->ecid[3] = static_cast<u32>(vendor);
}
} }

View file

@ -0,0 +1,40 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
namespace ams::pkg1 {
namespace {
bool IsProductionImpl() {
return fuse::GetHardwareState() != fuse::HardwareState_Development;
}
}
bool IsProduction() {
return IsProductionImpl();
}
bool IsProductionForVersionCheck() {
return IsProductionImpl();
}
bool IsProductionForPublicKey() {
return IsProductionImpl();
}
}

View file

@ -0,0 +1,72 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "se_execute.hpp"
namespace ams::se {
namespace {
void SetMessageSize(volatile SecurityEngineRegisters *SE, size_t src_size) {
/* Set the message size. */
reg::Write(SE->SE_SHA_MSG_LENGTH[0], src_size * BITSIZEOF(u8));
reg::Write(SE->SE_SHA_MSG_LENGTH[1], 0);
reg::Write(SE->SE_SHA_MSG_LENGTH[2], 0);
reg::Write(SE->SE_SHA_MSG_LENGTH[3], 0);
/* Set the message remaining size. */
reg::Write(SE->SE_SHA_MSG_LEFT[0], src_size * BITSIZEOF(u8));
reg::Write(SE->SE_SHA_MSG_LEFT[1], 0);
reg::Write(SE->SE_SHA_MSG_LEFT[2], 0);
reg::Write(SE->SE_SHA_MSG_LEFT[3], 0);
}
void GetHashResult(volatile SecurityEngineRegisters *SE, void *dst, size_t dst_size) {
/* Copy out the words. */
const int num_words = dst_size / sizeof(u32);
for (int i = 0; i < num_words; ++i) {
const u32 word = reg::Read(SE->SE_HASH_RESULT[i]);
util::StoreBigEndian(static_cast<u32 *>(dst) + i, word);
}
}
}
void CalculateSha256(Sha256Hash *dst, const void *src, size_t src_size) {
/* Get the engine. */
auto *SE = GetRegisters();
/* Configure the engine to perform SHA256 "encryption". */
reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_MODE, SHA256),
SE_REG_BITS_ENUM(CONFIG_DEC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_ENC_ALG, SHA),
SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP),
SE_REG_BITS_ENUM(CONFIG_DST, HASH_REG));
/* Begin a hardware hash operation. */
reg::Write(SE->SE_SHA_CONFIG, SE_REG_BITS_VALUE(SHA_CONFIG_HW_INIT_HASH, 1));
/* Set the message size. */
SetMessageSize(SE, src_size);
/* Execute the operation. */
ExecuteOperation(SE, SE_OPERATION_OP_START, nullptr, 0, src, src_size);
/* Get the result. */
GetHashResult(SE, dst, sizeof(*dst));
}
}

View file

@ -133,32 +133,12 @@ namespace ams::se {
DEFINE_SE_REG_BIT_ENUM_WITH_SW_CLEAR(INT_STATUS_ERR_STAT, 16); DEFINE_SE_REG_BIT_ENUM_WITH_SW_CLEAR(INT_STATUS_ERR_STAT, 16);
/* SE_CONFIG */ /* SE_CONFIG */
DEFINE_SE_REG(CONFIG_DST, 2, 3);
DEFINE_SE_REG(CONFIG_DEC_ALG, 8, 4);
DEFINE_SE_REG(CONFIG_ENC_ALG, 12, 4);
DEFINE_SE_REG(CONFIG_DEC_MODE, 16, 8); DEFINE_SE_REG(CONFIG_DEC_MODE, 16, 8);
DEFINE_SE_REG(CONFIG_ENC_MODE, 24, 8); DEFINE_SE_REG(CONFIG_ENC_MODE, 24, 8);
enum SE_CONFIG_DST { DEFINE_SE_REG_THREE_BIT_ENUM(CONFIG_DST, 2, MEMORY, HASH_REG, KEYTABLE, SRK, RSA_REG, RESERVED5, RESERVED6, RESERVED7);
SE_CONFIG_DST_MEMORY = 0, DEFINE_SE_REG_FOUR_BIT_ENUM(CONFIG_DEC_ALG, 8, NOP, AES_DEC, RESERVED2, RESERVED3, RESERVED4, RESERVED5, RESERVED6, RESERVED7, RESERVED8, RESERVED9, RESERVED10, RESERVED11, RESERVED12, RESERVED13, RESERVED14, RESERVED15);
SE_CONFIG_DST_HASH_REG = 1, DEFINE_SE_REG_FOUR_BIT_ENUM(CONFIG_ENC_ALG, 12, NOP, AES_ENC, RNG, SHA, RSA, RESERVED5, RESERVED6, RESERVED7, RESERVED8, RESERVED9, RESERVED10, RESERVED11, RESERVED12, RESERVED13, RESERVED14, RESERVED15);
SE_CONFIG_DST_KEYTABLE = 2,
SE_CONFIG_DST_SRK = 3,
SE_CONFIG_DST_RSA_REG = 4,
};
enum SE_CONFIG_DEC_ALG {
SE_CONFIG_DEC_ALG_NOP = 0,
SE_CONFIG_DEC_ALG_AES_DEC = 1,
};
enum SE_CONFIG_ENC_ALG {
SE_CONFIG_ENC_ALG_NOP = 0,
SE_CONFIG_ENC_ALG_AES_ENC = 1,
SE_CONFIG_ENC_ALG_RNG = 2,
SE_CONFIG_ENC_ALG_SHA = 3,
SE_CONFIG_ENC_ALG_RSA = 4,
};
enum SE_CONFIG_DEC_MODE { enum SE_CONFIG_DEC_MODE {
SE_CONFIG_DEC_MODE_AESMODE_KEY128 = 0, SE_CONFIG_DEC_MODE_AESMODE_KEY128 = 0,
@ -171,13 +151,16 @@ namespace ams::se {
SE_CONFIG_ENC_MODE_AESMODE_KEY192 = 1, SE_CONFIG_ENC_MODE_AESMODE_KEY192 = 1,
SE_CONFIG_ENC_MODE_AESMODE_KEY256 = 2, SE_CONFIG_ENC_MODE_AESMODE_KEY256 = 2,
SE_CONFIG_ENC_MODE_AESMODE_SHA1 = 1, SE_CONFIG_ENC_MODE_SHA1 = 1,
SE_CONFIG_ENC_MODE_AESMODE_SHA224 = 4, SE_CONFIG_ENC_MODE_SHA224 = 4,
SE_CONFIG_ENC_MODE_AESMODE_SHA256 = 5, SE_CONFIG_ENC_MODE_SHA256 = 5,
SE_CONFIG_ENC_MODE_AESMODE_SHA384 = 6, SE_CONFIG_ENC_MODE_SHA384 = 6,
SE_CONFIG_ENC_MODE_AESMODE_SHA512 = 7, SE_CONFIG_ENC_MODE_SHA512 = 7,
}; };
/* SE_SHA_CONFIG */
DEFINE_SE_REG(SHA_CONFIG_HW_INIT_HASH, 0, 1);
/* SE_CRYPTO_KEYTABLE_ADDR */ /* SE_CRYPTO_KEYTABLE_ADDR */
DEFINE_SE_REG(CRYPTO_KEYTABLE_ADDR_KEYIV_WORD, 0, 4); DEFINE_SE_REG(CRYPTO_KEYTABLE_ADDR_KEYIV_WORD, 0, 4);
@ -208,6 +191,9 @@ namespace ams::se {
DEFINE_SE_REG(CRYPTO_KEYTABLE_ADDR_KEYIV_KEY_SLOT, 4, 4); DEFINE_SE_REG(CRYPTO_KEYTABLE_ADDR_KEYIV_KEY_SLOT, 4, 4);
/* SE_RSA_CONFIG */
DEFINE_SE_REG(RSA_CONFIG_KEY_SLOT, 24, 1);
/* SE_RSA_KEYTABLE_ADDR */ /* SE_RSA_KEYTABLE_ADDR */
DEFINE_SE_REG(RSA_KEYTABLE_ADDR_WORD_ADDR, 0, 6); DEFINE_SE_REG(RSA_KEYTABLE_ADDR_WORD_ADDR, 0, 6);
DEFINE_SE_REG_BIT_ENUM(RSA_KEYTABLE_ADDR_EXPMOD_SEL, 6, EXPONENT, MODULUS); DEFINE_SE_REG_BIT_ENUM(RSA_KEYTABLE_ADDR_EXPMOD_SEL, 6, EXPONENT, MODULUS);

View file

@ -27,10 +27,7 @@ namespace ams::se {
constinit RsaKeyInfo g_rsa_key_infos[RsaKeySlotCount] = {}; constinit RsaKeyInfo g_rsa_key_infos[RsaKeySlotCount] = {};
void ClearRsaKeySlot(int slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL expmod) { void ClearRsaKeySlot(volatile SecurityEngineRegisters *SE, int slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL expmod) {
/* Get the engine. */
auto *SE = GetRegisters();
constexpr int NumWords = se::RsaSize / sizeof(u32); constexpr int NumWords = se::RsaSize / sizeof(u32);
for (int i = 0; i < NumWords; ++i) { for (int i = 0; i < NumWords; ++i) {
/* Select the keyslot word. */ /* Select the keyslot word. */
@ -44,10 +41,7 @@ namespace ams::se {
} }
} }
void SetRsaKey(int slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL expmod, const void *key, size_t key_size) { void SetRsaKey(volatile SecurityEngineRegisters *SE, int slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL expmod, const void *key, size_t key_size) {
/* Get the engine. */
auto *SE = GetRegisters();
const int num_words = key_size / sizeof(u32); const int num_words = key_size / sizeof(u32);
for (int i = 0; i < num_words; ++i) { for (int i = 0; i < num_words; ++i) {
/* Select the keyslot word. */ /* Select the keyslot word. */
@ -64,6 +58,15 @@ namespace ams::se {
} }
} }
void GetRsaResult(volatile SecurityEngineRegisters *SE, void *dst, size_t size) {
/* Copy out the words. */
const int num_words = size / sizeof(u32);
for (int i = 0; i < num_words; ++i) {
const u32 word = reg::Read(SE->SE_RSA_OUTPUT[i]);
util::StoreBigEndian(static_cast<u32 *>(dst) + num_words - 1 - i, word);
}
}
} }
void ClearRsaKeySlot(int slot) { void ClearRsaKeySlot(int slot) {
@ -73,11 +76,14 @@ namespace ams::se {
/* Clear the info. */ /* Clear the info. */
g_rsa_key_infos[slot] = {}; g_rsa_key_infos[slot] = {};
/* Get the engine. */
auto *SE = GetRegisters();
/* Clear the modulus. */ /* Clear the modulus. */
ClearRsaKeySlot(slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_MODULUS); ClearRsaKeySlot(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_MODULUS);
/* Clear the exponent. */ /* Clear the exponent. */
ClearRsaKeySlot(slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_EXPONENT); ClearRsaKeySlot(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_EXPONENT);
} }
void LockRsaKeySlot(int slot, u32 flags) { void LockRsaKeySlot(int slot, u32 flags) {
@ -117,9 +123,55 @@ namespace ams::se {
info.modulus_size_val = (mod_size / 64) - 1; info.modulus_size_val = (mod_size / 64) - 1;
info.exponent_size_val = (exp_size / 4); info.exponent_size_val = (exp_size / 4);
/* Get the engine. */
auto *SE = GetRegisters();
/* Set the modulus and exponent. */ /* Set the modulus and exponent. */
SetRsaKey(slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_MODULUS, mod, mod_size); SetRsaKey(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_MODULUS, mod, mod_size);
SetRsaKey(slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_EXPONENT, exp, exp_size); SetRsaKey(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_EXPONENT, exp, exp_size);
}
void ModularExponentiate(void *dst, size_t dst_size, int slot, const void *src, size_t src_size) {
/* Validate the slot and sizes. */
AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount);
AMS_ABORT_UNLESS(src_size <= RsaSize);
AMS_ABORT_UNLESS(dst_size <= RsaSize);
/* Get the engine. */
auto *SE = GetRegisters();
/* Create a work buffer. */
u8 work[RsaSize];
util::ClearMemory(work, sizeof(work));
/* Copy the input into the work buffer (reversing endianness). */
const u8 *src_u8 = static_cast<const u8 *>(src);
for (size_t i = 0; i < src_size; ++i) {
work[src_size - 1 - i] = src_u8[i];
}
/* Flush the work buffer to ensure the SE sees correct results. */
hw::FlushDataCache(work, sizeof(work));
hw::DataSynchronizationBarrierInnerShareable();
/* Configure the engine to perform RSA encryption. */
reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_DEC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_ENC_ALG, RSA),
SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP),
SE_REG_BITS_ENUM(CONFIG_DST, RSA_REG));
/* Configure the engine to use the keyslot and correct modulus/exp sizes. */
const auto &info = g_rsa_key_infos[slot];
reg::Write(SE->SE_RSA_CONFIG, SE_REG_BITS_VALUE(RSA_CONFIG_KEY_SLOT, slot));
reg::Write(SE->SE_RSA_KEY_SIZE, info.modulus_size_val);
reg::Write(SE->SE_RSA_EXP_SIZE, info.exponent_size_val);
/* Execute the operation. */
ExecuteOperation(SE, SE_OPERATION_OP_START, nullptr, 0, work, src_size);
/* Copy out the result. */
GetRsaResult(SE, dst, dst_size);
} }
} }