Loader: Fix (all?) remaining bugs in ldr:pm.

Loader now works when booted as a KIP1. NOTE: ldr:ro still needs
debugging.
This commit is contained in:
Michael Scire 2018-05-01 16:49:20 -06:00
parent 9944d8e7e1
commit e05f199394
18 changed files with 331 additions and 417 deletions

View file

@ -1,375 +0,0 @@
/*
The MIT License (MIT)
Copyright (C) 2017 okdshin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifndef PICOSHA2_H
#define PICOSHA2_H
// picosha2:20140213
#ifndef PICOSHA2_BUFFER_SIZE_FOR_INPUT_ITERATOR
#define PICOSHA2_BUFFER_SIZE_FOR_INPUT_ITERATOR \
1048576 //=1024*1024: default is 1MB memory
#endif
#include <algorithm>
#include <cassert>
#include <iterator>
#include <sstream>
#include <vector>
namespace picosha2 {
typedef uint32_t word_t;
typedef uint8_t byte_t;
static const size_t k_digest_size = 32;
namespace detail {
inline byte_t mask_8bit(byte_t x) { return x & 0xff; }
inline word_t mask_32bit(word_t x) { return x & 0xffffffff; }
const word_t add_constant[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
const word_t initial_message_digest[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372,
0xa54ff53a, 0x510e527f, 0x9b05688c,
0x1f83d9ab, 0x5be0cd19};
inline word_t ch(word_t x, word_t y, word_t z) { return (x & y) ^ ((~x) & z); }
inline word_t maj(word_t x, word_t y, word_t z) {
return (x & y) ^ (x & z) ^ (y & z);
}
inline word_t rotr(word_t x, std::size_t n) {
assert(n < 32);
return mask_32bit((x >> n) | (x << (32 - n)));
}
inline word_t bsig0(word_t x) { return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22); }
inline word_t bsig1(word_t x) { return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25); }
inline word_t shr(word_t x, std::size_t n) {
assert(n < 32);
return x >> n;
}
inline word_t ssig0(word_t x) { return rotr(x, 7) ^ rotr(x, 18) ^ shr(x, 3); }
inline word_t ssig1(word_t x) { return rotr(x, 17) ^ rotr(x, 19) ^ shr(x, 10); }
template <typename RaIter1, typename RaIter2>
void hash256_block(RaIter1 message_digest, RaIter2 first, RaIter2 last) {
assert(first + 64 == last);
static_cast<void>(last); // for avoiding unused-variable warning
word_t w[64];
std::fill(w, w + 64, 0);
for (std::size_t i = 0; i < 16; ++i) {
w[i] = (static_cast<word_t>(mask_8bit(*(first + i * 4))) << 24) |
(static_cast<word_t>(mask_8bit(*(first + i * 4 + 1))) << 16) |
(static_cast<word_t>(mask_8bit(*(first + i * 4 + 2))) << 8) |
(static_cast<word_t>(mask_8bit(*(first + i * 4 + 3))));
}
for (std::size_t i = 16; i < 64; ++i) {
w[i] = mask_32bit(ssig1(w[i - 2]) + w[i - 7] + ssig0(w[i - 15]) +
w[i - 16]);
}
word_t a = *message_digest;
word_t b = *(message_digest + 1);
word_t c = *(message_digest + 2);
word_t d = *(message_digest + 3);
word_t e = *(message_digest + 4);
word_t f = *(message_digest + 5);
word_t g = *(message_digest + 6);
word_t h = *(message_digest + 7);
for (std::size_t i = 0; i < 64; ++i) {
word_t temp1 = h + bsig1(e) + ch(e, f, g) + add_constant[i] + w[i];
word_t temp2 = bsig0(a) + maj(a, b, c);
h = g;
g = f;
f = e;
e = mask_32bit(d + temp1);
d = c;
c = b;
b = a;
a = mask_32bit(temp1 + temp2);
}
*message_digest += a;
*(message_digest + 1) += b;
*(message_digest + 2) += c;
*(message_digest + 3) += d;
*(message_digest + 4) += e;
*(message_digest + 5) += f;
*(message_digest + 6) += g;
*(message_digest + 7) += h;
for (std::size_t i = 0; i < 8; ++i) {
*(message_digest + i) = mask_32bit(*(message_digest + i));
}
}
} // namespace detail
template <typename InIter>
void output_hex(InIter first, InIter last, std::ostream& os) {
os.setf(std::ios::hex, std::ios::basefield);
while (first != last) {
os.width(2);
os.fill('0');
os << static_cast<unsigned int>(*first);
++first;
}
os.setf(std::ios::dec, std::ios::basefield);
}
template <typename InIter>
void bytes_to_hex_string(InIter first, InIter last, std::string& hex_str) {
std::ostringstream oss;
output_hex(first, last, oss);
hex_str.assign(oss.str());
}
template <typename InContainer>
void bytes_to_hex_string(const InContainer& bytes, std::string& hex_str) {
bytes_to_hex_string(bytes.begin(), bytes.end(), hex_str);
}
template <typename InIter>
std::string bytes_to_hex_string(InIter first, InIter last) {
std::string hex_str;
bytes_to_hex_string(first, last, hex_str);
return hex_str;
}
template <typename InContainer>
std::string bytes_to_hex_string(const InContainer& bytes) {
std::string hex_str;
bytes_to_hex_string(bytes, hex_str);
return hex_str;
}
class hash256_one_by_one {
public:
hash256_one_by_one() { init(); }
void init() {
buffer_.clear();
std::fill(data_length_digits_, data_length_digits_ + 4, 0);
std::copy(detail::initial_message_digest,
detail::initial_message_digest + 8, h_);
}
template <typename RaIter>
void process(RaIter first, RaIter last) {
add_to_data_length(std::distance(first, last));
std::copy(first, last, std::back_inserter(buffer_));
std::size_t i = 0;
for (; i + 64 <= buffer_.size(); i += 64) {
detail::hash256_block(h_, buffer_.begin() + i,
buffer_.begin() + i + 64);
}
buffer_.erase(buffer_.begin(), buffer_.begin() + i);
}
void finish() {
byte_t temp[64];
std::fill(temp, temp + 64, 0);
std::size_t remains = buffer_.size();
std::copy(buffer_.begin(), buffer_.end(), temp);
temp[remains] = 0x80;
if (remains > 55) {
std::fill(temp + remains + 1, temp + 64, 0);
detail::hash256_block(h_, temp, temp + 64);
std::fill(temp, temp + 64 - 4, 0);
} else {
std::fill(temp + remains + 1, temp + 64 - 4, 0);
}
write_data_bit_length(&(temp[56]));
detail::hash256_block(h_, temp, temp + 64);
}
template <typename OutIter>
void get_hash_bytes(OutIter first, OutIter last) const {
for (const word_t* iter = h_; iter != h_ + 8; ++iter) {
for (std::size_t i = 0; i < 4 && first != last; ++i) {
*(first++) = detail::mask_8bit(
static_cast<byte_t>((*iter >> (24 - 8 * i))));
}
}
}
private:
void add_to_data_length(word_t n) {
word_t carry = 0;
data_length_digits_[0] += n;
for (std::size_t i = 0; i < 4; ++i) {
data_length_digits_[i] += carry;
if (data_length_digits_[i] >= 65536u) {
carry = data_length_digits_[i] >> 16;
data_length_digits_[i] &= 65535u;
} else {
break;
}
}
}
void write_data_bit_length(byte_t* begin) {
word_t data_bit_length_digits[4];
std::copy(data_length_digits_, data_length_digits_ + 4,
data_bit_length_digits);
// convert byte length to bit length (multiply 8 or shift 3 times left)
word_t carry = 0;
for (std::size_t i = 0; i < 4; ++i) {
word_t before_val = data_bit_length_digits[i];
data_bit_length_digits[i] <<= 3;
data_bit_length_digits[i] |= carry;
data_bit_length_digits[i] &= 65535u;
carry = (before_val >> (16 - 3)) & 65535u;
}
// write data_bit_length
for (int i = 3; i >= 0; --i) {
(*begin++) = static_cast<byte_t>(data_bit_length_digits[i] >> 8);
(*begin++) = static_cast<byte_t>(data_bit_length_digits[i]);
}
}
std::vector<byte_t> buffer_;
word_t data_length_digits_[4]; // as 64bit integer (16bit x 4 integer)
word_t h_[8];
};
inline void get_hash_hex_string(const hash256_one_by_one& hasher,
std::string& hex_str) {
byte_t hash[k_digest_size];
hasher.get_hash_bytes(hash, hash + k_digest_size);
return bytes_to_hex_string(hash, hash + k_digest_size, hex_str);
}
inline std::string get_hash_hex_string(const hash256_one_by_one& hasher) {
std::string hex_str;
get_hash_hex_string(hasher, hex_str);
return hex_str;
}
namespace impl {
template <typename RaIter, typename OutIter>
void hash256_impl(RaIter first, RaIter last, OutIter first2, OutIter last2, int,
std::random_access_iterator_tag) {
hash256_one_by_one hasher;
// hasher.init();
hasher.process(first, last);
hasher.finish();
hasher.get_hash_bytes(first2, last2);
}
template <typename InputIter, typename OutIter>
void hash256_impl(InputIter first, InputIter last, OutIter first2,
OutIter last2, int buffer_size, std::input_iterator_tag) {
std::vector<byte_t> buffer(buffer_size);
hash256_one_by_one hasher;
// hasher.init();
while (first != last) {
int size = buffer_size;
for (int i = 0; i != buffer_size; ++i, ++first) {
if (first == last) {
size = i;
break;
}
buffer[i] = *first;
}
hasher.process(buffer.begin(), buffer.begin() + size);
}
hasher.finish();
hasher.get_hash_bytes(first2, last2);
}
}
template <typename InIter, typename OutIter>
void hash256(InIter first, InIter last, OutIter first2, OutIter last2,
int buffer_size = PICOSHA2_BUFFER_SIZE_FOR_INPUT_ITERATOR) {
picosha2::impl::hash256_impl(
first, last, first2, last2, buffer_size,
typename std::iterator_traits<InIter>::iterator_category());
}
template <typename InIter, typename OutContainer>
void hash256(InIter first, InIter last, OutContainer& dst) {
hash256(first, last, dst.begin(), dst.end());
}
template <typename InContainer, typename OutIter>
void hash256(const InContainer& src, OutIter first, OutIter last) {
hash256(src.begin(), src.end(), first, last);
}
template <typename InContainer, typename OutContainer>
void hash256(const InContainer& src, OutContainer& dst) {
hash256(src.begin(), src.end(), dst.begin(), dst.end());
}
template <typename InIter>
void hash256_hex_string(InIter first, InIter last, std::string& hex_str) {
byte_t hashed[k_digest_size];
hash256(first, last, hashed, hashed + k_digest_size);
std::ostringstream oss;
output_hex(hashed, hashed + k_digest_size, oss);
hex_str.assign(oss.str());
}
template <typename InIter>
std::string hash256_hex_string(InIter first, InIter last) {
std::string hex_str;
hash256_hex_string(first, last, hex_str);
return hex_str;
}
inline void hash256_hex_string(const std::string& src, std::string& hex_str) {
hash256_hex_string(src.begin(), src.end(), hex_str);
}
template <typename InContainer>
void hash256_hex_string(const InContainer& src, std::string& hex_str) {
hash256_hex_string(src.begin(), src.end(), hex_str);
}
template <typename InContainer>
std::string hash256_hex_string(const InContainer& src) {
return hash256_hex_string(src.begin(), src.end());
}
} // namespace picosha2
#endif // PICOSHA2_H

View file

@ -1,15 +1,23 @@
#include <switch.h> #include <switch.h>
#include <string.h> #include <string.h>
#include <vector>
#include <algorithm>
#include "ldr_registration.hpp" #include "ldr_registration.hpp"
#include "ldr_content_management.hpp" #include "ldr_content_management.hpp"
static FsFileSystem g_CodeFileSystem = {0}; static FsFileSystem g_CodeFileSystem = {0};
static std::vector<u64> g_created_titles;
static bool g_has_initialized_fs_dev = false;
Result ContentManagement::MountCode(u64 tid, FsStorageId sid) { Result ContentManagement::MountCode(u64 tid, FsStorageId sid) {
char path[FS_MAX_PATH] = {0}; char path[FS_MAX_PATH] = {0};
Result rc; Result rc;
/* We defer SD card mounting, so if relevant ensure it is mounted. */
TryMountSdCard();
if (R_FAILED(rc = GetContentPath(path, tid, sid))) { if (R_FAILED(rc = GetContentPath(path, tid, sid))) {
return rc; return rc;
} }
@ -100,3 +108,22 @@ Result ContentManagement::SetContentPath(const char *path, u64 tid, FsStorageId
Result ContentManagement::SetContentPathForTidSid(const char *path, Registration::TidSid *tid_sid) { Result ContentManagement::SetContentPathForTidSid(const char *path, Registration::TidSid *tid_sid) {
return SetContentPath(path, tid_sid->title_id, tid_sid->storage_id); return SetContentPath(path, tid_sid->title_id, tid_sid->storage_id);
} }
bool ContentManagement::HasCreatedTitle(u64 tid) {
return std::find(g_created_titles.begin(), g_created_titles.end(), tid) != g_created_titles.end();
}
void ContentManagement::SetCreatedTitle(u64 tid) {
if (!HasCreatedTitle(tid)) {
g_created_titles.push_back(tid);
}
}
void ContentManagement::TryMountSdCard() {
/* Mount SD card, if psc, bus, and pcv have been created. */
if (!g_has_initialized_fs_dev && HasCreatedTitle(0x0100000000000021) && HasCreatedTitle(0x010000000000000A) && HasCreatedTitle(0x010000000000001A)) {
if (R_SUCCEEDED(fsdevMountSdmc())) {
g_has_initialized_fs_dev = true;
}
}
}

View file

@ -13,4 +13,8 @@ class ContentManagement {
static Result SetContentPath(const char *path, u64 tid, FsStorageId sid); static Result SetContentPath(const char *path, u64 tid, FsStorageId sid);
static Result GetContentPathForTidSid(char *out_path, Registration::TidSid *tid_sid); static Result GetContentPathForTidSid(char *out_path, Registration::TidSid *tid_sid);
static Result SetContentPathForTidSid(const char *path, Registration::TidSid *tid_sid); static Result SetContentPathForTidSid(const char *path, Registration::TidSid *tid_sid);
static bool HasCreatedTitle(u64 tid);
static void SetCreatedTitle(u64 tid);
static void TryMountSdCard();
}; };

View file

@ -44,29 +44,30 @@ void __appInit(void) {
/* Initialize services we need (TODO: SPL) */ /* Initialize services we need (TODO: SPL) */
rc = smInitialize(); rc = smInitialize();
if (R_FAILED(rc)) if (R_FAILED(rc)) {
fatalSimple(MAKERESULT(Module_Libnx, LibnxError_InitFail_SM)); fatalSimple(MAKERESULT(Module_Libnx, LibnxError_InitFail_SM));
}
rc = fsInitialize(); rc = fsInitialize();
if (R_FAILED(rc)) if (R_FAILED(rc)) {
fatalSimple(MAKERESULT(Module_Libnx, LibnxError_InitFail_FS)); fatalSimple(MAKERESULT(Module_Libnx, LibnxError_InitFail_FS));
}
rc = lrInitialize(); rc = lrInitialize();
if (R_FAILED(rc)) if (R_FAILED(rc)) {
fatalSimple(0xCAFE << 4 | 1); fatalSimple(0xCAFE << 4 | 1);
}
/* Disable.
rc = fsldrInitialize(); rc = fsldrInitialize();
if (R_FAILED(rc)) if (R_FAILED(rc)) {
fatalSimple(0xCAFE << 4 | 2); fatalSimple(0xCAFE << 4 | 2);
*/ }
fsdevInit();
} }
void __appExit(void) { void __appExit(void) {
/* Cleanup services. */ /* Cleanup services. */
fsdevExit(); fsdevUnmountAll();
fsldrExit(); fsldrExit();
lrExit(); lrExit();
fsExit(); fsExit();
@ -81,12 +82,12 @@ int main(int argc, char **argv)
WaitableManager *server_manager = new WaitableManager(U64_MAX); WaitableManager *server_manager = new WaitableManager(U64_MAX);
/* Add services to manager. */ /* Add services to manager. */
server_manager->add_waitable(new ServiceServer<ProcessManagerService>("dbg:pm", 1)); server_manager->add_waitable(new ServiceServer<ProcessManagerService>("ldr:pm", 1));
server_manager->add_waitable(new ServiceServer<ShellService>("dbg:shel", 3)); server_manager->add_waitable(new ServiceServer<ShellService>("ldr:shel", 3));
server_manager->add_waitable(new ServiceServer<DebugMonitorService>("dbg:dmnt", 2)); server_manager->add_waitable(new ServiceServer<DebugMonitorService>("ldr:dmnt", 2));
if (!kernelAbove300()) { if (!kernelAbove300()) {
/* On 1.0.0-2.3.0, Loader services ldr:ro instead of ro. */ /* On 1.0.0-2.3.0, Loader services ldr:ro instead of ro. */
server_manager->add_waitable(new ServiceServer<RelocatableObjectsService>("dbg:ro", 0x20)); server_manager->add_waitable(new ServiceServer<RelocatableObjectsService>("ldr:ro", 0x20));
} }
/* Loop forever, servicing our services. */ /* Loop forever, servicing our services. */

View file

@ -48,7 +48,7 @@ class AutoCloseMap {
return rc; return rc;
} }
if (R_FAILED((rc = svcMapProcessMemory((void *)try_address, process_h, try_address, size)))) { if (R_FAILED((rc = svcMapProcessMemory((void *)try_address, process_h, address, size)))) {
return rc; return rc;
} }
@ -128,7 +128,7 @@ struct MappedCodeMemory {
return rc; return rc;
} }
if (R_FAILED((rc = svcMapProcessMemory((void *)try_address, this->process_handle, try_address, size)))) { if (R_FAILED((rc = svcMapProcessMemory((void *)try_address, this->process_handle, this->code_memory_address, size)))) {
return rc; return rc;
} }
@ -138,7 +138,7 @@ struct MappedCodeMemory {
void Unmap() { void Unmap() {
if (this->IsMapped()) { if (this->IsMapped()) {
if (R_FAILED(svcUnmapProcessMemory(this->mapped_address, this->process_handle, this->base_address, this->size))) { if (R_FAILED(svcUnmapProcessMemory(this->mapped_address, this->process_handle, this->code_memory_address, this->size))) {
/* TODO: panic(). */ /* TODO: panic(). */
} }
} }

View file

@ -5,6 +5,7 @@
#include "ldr_registration.hpp" #include "ldr_registration.hpp"
static NpdmUtils::NpdmCache g_npdm_cache = {0}; static NpdmUtils::NpdmCache g_npdm_cache = {0};
static char g_npdm_path[FS_MAX_PATH] = {0};
Result NpdmUtils::LoadNpdmFromCache(u64 tid, NpdmInfo *out) { Result NpdmUtils::LoadNpdmFromCache(u64 tid, NpdmInfo *out) {
if (g_npdm_cache.info.title_id != tid) { if (g_npdm_cache.info.title_id != tid) {
@ -14,12 +15,33 @@ Result NpdmUtils::LoadNpdmFromCache(u64 tid, NpdmInfo *out) {
return 0; return 0;
} }
FILE *NpdmUtils::OpenNpdmFromExeFS() {
std::fill(g_npdm_path, g_npdm_path + FS_MAX_PATH, 0);
snprintf(g_npdm_path, FS_MAX_PATH, "code:/main.npdm");
return fopen(g_npdm_path, "rb");
}
FILE *NpdmUtils::OpenNpdmFromSdCard(u64 title_id) {
std::fill(g_npdm_path, g_npdm_path + FS_MAX_PATH, 0);
snprintf(g_npdm_path, FS_MAX_PATH, "sdmc:/atmosphere/titles/%016lx/exefs/main.npdm", title_id);
return fopen(g_npdm_path, "rb");
}
FILE *NpdmUtils::OpenNpdm(u64 title_id) {
FILE *f_out = OpenNpdmFromSdCard(title_id);
if (f_out != NULL) {
return f_out;
}
return OpenNpdmFromExeFS();
}
Result NpdmUtils::LoadNpdm(u64 tid, NpdmInfo *out) { Result NpdmUtils::LoadNpdm(u64 tid, NpdmInfo *out) {
Result rc; Result rc;
g_npdm_cache.info = (const NpdmUtils::NpdmInfo){0}; g_npdm_cache.info = (const NpdmUtils::NpdmInfo){0};
FILE *f_npdm = fopen("code:/main.npdm", "rb"); FILE *f_npdm = OpenNpdm(tid);
if (f_npdm == NULL) { if (f_npdm == NULL) {
/* For generic "Couldn't open the file" error, just say the file doesn't exist. */ /* For generic "Couldn't open the file" error, just say the file doesn't exist. */
return 0x202; return 0x202;
@ -220,10 +242,10 @@ Result NpdmUtils::ValidateCapabilityAgainstRestrictions(u32 *restrict_caps, size
for (size_t i = 0; i < num_restrict_caps - 1; i++) { for (size_t i = 0; i < num_restrict_caps - 1; i++) {
if ((restrict_caps[i] & 0x7F) == 0x3F) { if ((restrict_caps[i] & 0x7F) == 0x3F) {
r_desc = restrict_caps[i] >> 7; r_desc = restrict_caps[i] >> 7;
if ((restrict_caps[i+1] & 0x7F) != 0x3F) { if ((restrict_caps[i+1] & 0x7F) != 0x3F) {
break; break;
} }
u32 r_next_desc = restrict_caps[i++] >> 7; u32 r_next_desc = restrict_caps[++i] >> 7;
u32 r_base_addr = r_desc & 0xFFFFFF; u32 r_base_addr = r_desc & 0xFFFFFF;
u32 r_base_size = r_next_desc & 0xFFFFFF; u32 r_base_size = r_next_desc & 0xFFFFFF;
/* Size check the mapping. */ /* Size check the mapping. */
@ -329,7 +351,7 @@ Result NpdmUtils::ValidateCapabilityAgainstRestrictions(u32 *restrict_caps, size
r_desc = restrict_caps[i] >> 16; r_desc = restrict_caps[i] >> 16;
desc &= 0x3FF; desc &= 0x3FF;
r_desc &= 0x3FF; r_desc &= 0x3FF;
if (desc <= r_desc) { if (desc > r_desc) {
break; break;
} }
/* Valid! */ /* Valid! */

View file

@ -1,5 +1,6 @@
#pragma once #pragma once
#include <switch.h> #include <switch.h>
#include <cstdio>
#include "ldr_registration.hpp" #include "ldr_registration.hpp"
@ -83,6 +84,10 @@ class NpdmUtils {
static Result ValidateCapabilityAgainstRestrictions(u32 *restrict_caps, size_t num_restrict_caps, u32 *&cur_cap, size_t &caps_remaining); static Result ValidateCapabilityAgainstRestrictions(u32 *restrict_caps, size_t num_restrict_caps, u32 *&cur_cap, size_t &caps_remaining);
static Result ValidateCapabilities(u32 *acid_caps, size_t num_acid_caps, u32 *aci0_caps, size_t num_aci0_caps); static Result ValidateCapabilities(u32 *acid_caps, size_t num_acid_caps, u32 *aci0_caps, size_t num_aci0_caps);
static FILE *OpenNpdmFromExeFS();
static FILE *OpenNpdmFromSdCard(u64 tid);
static FILE *OpenNpdm(u64 tid);
static Result LoadNpdm(u64 tid, NpdmInfo *out); static Result LoadNpdm(u64 tid, NpdmInfo *out);
static Result LoadNpdmFromCache(u64 tid, NpdmInfo *out); static Result LoadNpdmFromCache(u64 tid, NpdmInfo *out);
}; };

View file

@ -2,7 +2,7 @@
#include <algorithm> #include <algorithm>
#include <cstdio> #include <cstdio>
#include <cstring> #include <cstring>
#include <picosha2.hpp> #include "sha256.h"
#include "ldr_nro.hpp" #include "ldr_nro.hpp"
#include "ldr_registration.hpp" #include "ldr_registration.hpp"
#include "ldr_map.hpp" #include "ldr_map.hpp"
@ -35,6 +35,7 @@ Result NroUtils::LoadNro(Registration::Process *target_proc, Handle process_h, u
unsigned int i; unsigned int i;
Result rc; Result rc;
u8 nro_hash[0x20]; u8 nro_hash[0x20];
SHA256_CTX sha_ctx;
/* Ensure there is an available NRO slot. */ /* Ensure there is an available NRO slot. */
for (i = 0; i < NRO_INFO_MAX; i++) { for (i = 0; i < NRO_INFO_MAX; i++) {
if (!target_proc->nro_infos[i].in_use) { if (!target_proc->nro_infos[i].in_use) {
@ -78,7 +79,10 @@ Result NroUtils::LoadNro(Registration::Process *target_proc, Handle process_h, u
goto LOAD_NRO_END; goto LOAD_NRO_END;
} }
picosha2::hash256((u8 *)nro, (u8 *)nro + nro->nro_size, nro_hash, nro_hash + sizeof(nro_hash));
sha256_init(&sha_ctx);
sha256_update(&sha_ctx, (u8 *)nro, nro->nro_size);
sha256_final(&sha_ctx, nro_hash);
if (!Registration::IsNroHashPresent(target_proc->index, nro_hash)) { if (!Registration::IsNroHashPresent(target_proc->index, nro_hash)) {
rc = 0x6C09; rc = 0x6C09;

View file

@ -2,7 +2,7 @@
#include <algorithm> #include <algorithm>
#include <cstdio> #include <cstdio>
#include <cstring> #include <cstring>
#include <picosha2.hpp> #include "sha256.h"
#include "lz4.h" #include "lz4.h"
#include "ldr_nso.hpp" #include "ldr_nso.hpp"
#include "ldr_map.hpp" #include "ldr_map.hpp"
@ -25,12 +25,26 @@ FILE *NsoUtils::OpenNsoFromSdCard(unsigned int index, u64 title_id) {
return fopen(g_nso_path, "rb"); return fopen(g_nso_path, "rb");
} }
bool NsoUtils::CheckNsoStubbed(unsigned int index, u64 title_id) {
std::fill(g_nso_path, g_nso_path + FS_MAX_PATH, 0);
snprintf(g_nso_path, FS_MAX_PATH, "sdmc:/atmosphere/titles/%016lx/exefs/%s.stub", title_id, NsoUtils::GetNsoFileName(index));
FILE *f = fopen(g_nso_path, "rb");
bool ret = (f != NULL);
if (ret) {
fclose(f);
}
return ret;
}
FILE *NsoUtils::OpenNso(unsigned int index, u64 title_id) { FILE *NsoUtils::OpenNso(unsigned int index, u64 title_id) {
FILE *f_out = OpenNsoFromSdCard(index, title_id); FILE *f_out = OpenNsoFromSdCard(index, title_id);
if (f_out != NULL) { if (f_out != NULL) {
return f_out; return f_out;
} else if (CheckNsoStubbed(index, title_id)) {
return NULL;
} else {
return OpenNsoFromExeFS(index);
} }
return OpenNsoFromExeFS(index);
} }
bool NsoUtils::IsNsoPresent(unsigned int index) { bool NsoUtils::IsNsoPresent(unsigned int index) {
@ -198,20 +212,28 @@ Result NsoUtils::LoadNsoSegment(unsigned int index, unsigned int segment, FILE *
u8 *dst_addr = map_base + g_nso_headers[index].segments[segment].dst_offset; u8 *dst_addr = map_base + g_nso_headers[index].segments[segment].dst_offset;
u8 *load_addr = is_compressed ? map_end - size : dst_addr; u8 *load_addr = is_compressed ? map_end - size : dst_addr;
fseek(f_nso, g_nso_headers[index].segments[segment].file_offset, SEEK_SET); fseek(f_nso, g_nso_headers[index].segments[segment].file_offset, SEEK_SET);
if (fread(load_addr, 1, size, f_nso) != size) { if (fread(load_addr, 1, size, f_nso) != size) {
return 0xA09; return 0xA09;
} }
if (is_compressed) { if (is_compressed) {
if (LZ4_decompress_safe((char *)load_addr, (char *)dst_addr, size, out_size) != (int)out_size) { if (LZ4_decompress_safe((char *)load_addr, (char *)dst_addr, size, out_size) != (int)out_size) {
return 0xA09; return 0xA09;
} }
} }
if (check_hash) { if (check_hash) {
u8 hash[0x20] = {0}; u8 hash[0x20] = {0};
picosha2::hash256(dst_addr, dst_addr + out_size, hash, hash + sizeof(hash)); SHA256_CTX sha_ctx;
sha256_init(&sha_ctx);
sha256_update(&sha_ctx, dst_addr, out_size);
sha256_final(&sha_ctx, hash);
if (std::memcmp(g_nso_headers[index].section_hashes[segment], hash, sizeof(hash))) { if (std::memcmp(g_nso_headers[index].section_hashes[segment], hash, sizeof(hash))) {
return 0xA09; return 0xA09;
} }
@ -242,6 +264,7 @@ Result NsoUtils::LoadNsosIntoProcessMemory(Handle process_h, u64 title_id, NsoLo
return rc; return rc;
} }
} }
fclose(f_nso); fclose(f_nso);
f_nso = NULL; f_nso = NULL;
/* Zero out memory before .text. */ /* Zero out memory before .text. */
@ -254,7 +277,7 @@ Result NsoUtils::LoadNsosIntoProcessMemory(Handle process_h, u64 title_id, NsoLo
u64 rw_base = ro_start + g_nso_headers[i].segments[1].decomp_size, rw_start = g_nso_headers[i].segments[2].dst_offset; u64 rw_base = ro_start + g_nso_headers[i].segments[1].decomp_size, rw_start = g_nso_headers[i].segments[2].dst_offset;
std::fill(map_base + rw_base, map_base + rw_start, 0); std::fill(map_base + rw_base, map_base + rw_start, 0);
/* Zero out .bss. */ /* Zero out .bss. */
u64 bss_base = rw_base + g_nso_headers[i].segments[2].decomp_size, bss_size = g_nso_headers[i].segments[2].align_or_total_size; u64 bss_base = rw_start + g_nso_headers[i].segments[2].decomp_size, bss_size = g_nso_headers[i].segments[2].align_or_total_size;
std::fill(map_base + bss_base, map_base + bss_base + bss_size, 0); std::fill(map_base + bss_base, map_base + bss_base + bss_size, 0);
nso_map.Close(); nso_map.Close();

View file

@ -83,6 +83,7 @@ class NsoUtils {
static FILE *OpenNsoFromExeFS(unsigned int index); static FILE *OpenNsoFromExeFS(unsigned int index);
static FILE *OpenNsoFromSdCard(unsigned int index, u64 title_id); static FILE *OpenNsoFromSdCard(unsigned int index, u64 title_id);
static bool CheckNsoStubbed(unsigned int index, u64 title_id);
static FILE *OpenNso(unsigned int index, u64 title_id); static FILE *OpenNso(unsigned int index, u64 title_id);
static bool IsNsoPresent(unsigned int index); static bool IsNsoPresent(unsigned int index);

View file

@ -168,7 +168,6 @@ Result ProcessCreation::CreateProcess(Handle *out_process_h, u64 index, char *nc
rc = NsoUtils::LoadNsosIntoProcessMemory(process_h, npdm_info.aci0->title_id, &nso_extents, NULL, 0); rc = NsoUtils::LoadNsosIntoProcessMemory(process_h, npdm_info.aci0->title_id, &nso_extents, NULL, 0);
} }
if (R_FAILED(rc)) { if (R_FAILED(rc)) {
svcCloseHandle(process_h);
goto CREATE_PROCESS_END; goto CREATE_PROCESS_END;
} }
@ -180,7 +179,7 @@ Result ProcessCreation::CreateProcess(Handle *out_process_h, u64 index, char *nc
} else { } else {
is_64_bit_addspace = (npdm_info.header->mmu_flags & 0xE) == 0x2; is_64_bit_addspace = (npdm_info.header->mmu_flags & 0xE) == 0x2;
} }
Registration::SetProcessIdTidMinAndIs64BitAddressSpace(index, process_id, npdm_info.aci0->title_id, is_64_bit_addspace); Registration::SetProcessIdTidAndIs64BitAddressSpace(index, process_id, npdm_info.aci0->title_id, is_64_bit_addspace);
for (unsigned int i = 0; i < NSO_NUM_MAX; i++) { for (unsigned int i = 0; i < NSO_NUM_MAX; i++) {
if (NsoUtils::IsNsoPresent(i)) { if (NsoUtils::IsNsoPresent(i)) {
Registration::AddNsoInfo(index, nso_extents.nso_addresses[i], nso_extents.nso_sizes[i], NsoUtils::GetNsoBuildId(i)); Registration::AddNsoInfo(index, nso_extents.nso_addresses[i], nso_extents.nso_sizes[i], NsoUtils::GetNsoBuildId(i));

View file

@ -6,7 +6,6 @@
#include "ldr_npdm.hpp" #include "ldr_npdm.hpp"
Result ProcessManagerService::dispatch(IpcParsedCommand &r, IpcCommand &out_c, u64 cmd_id, u8 *pointer_buffer, size_t pointer_buffer_size) { Result ProcessManagerService::dispatch(IpcParsedCommand &r, IpcCommand &out_c, u64 cmd_id, u8 *pointer_buffer, size_t pointer_buffer_size) {
Result rc = 0xF601; Result rc = 0xF601;
switch ((ProcessManagerServiceCmd)cmd_id) { switch ((ProcessManagerServiceCmd)cmd_id) {
@ -25,6 +24,7 @@ Result ProcessManagerService::dispatch(IpcParsedCommand &r, IpcCommand &out_c, u
default: default:
break; break;
} }
return rc; return rc;
} }
@ -51,6 +51,10 @@ std::tuple<Result, MovedHandle> ProcessManagerService::create_process(u64 flags,
rc = ProcessCreation::CreateProcess(&process_h, index, nca_path, launch_item, flags, reslimit_h.handle); rc = ProcessCreation::CreateProcess(&process_h, index, nca_path, launch_item, flags, reslimit_h.handle);
if (R_SUCCEEDED(rc)) {
ContentManagement::SetCreatedTitle(tid_sid.title_id);
}
return std::make_tuple(rc, MovedHandle{process_h}); return std::make_tuple(rc, MovedHandle{process_h});
} }
@ -66,18 +70,18 @@ std::tuple<Result> ProcessManagerService::get_program_info(Registration::TidSid
return std::make_tuple(rc); return std::make_tuple(rc);
} }
if (tid_sid.title_id != out_program_info.pointer->title_id_min) { if (tid_sid.title_id != out_program_info.pointer->title_id) {
rc = ContentManagement::GetContentPathForTidSid(nca_path, &tid_sid); rc = ContentManagement::GetContentPathForTidSid(nca_path, &tid_sid);
if (R_FAILED(rc)) { if (R_FAILED(rc)) {
return std::make_tuple(rc); return std::make_tuple(rc);
} }
rc = ContentManagement::SetContentPath(nca_path, out_program_info.pointer->title_id_min, tid_sid.storage_id); rc = ContentManagement::SetContentPath(nca_path, out_program_info.pointer->title_id, tid_sid.storage_id);
if (R_FAILED(rc)) { if (R_FAILED(rc)) {
return std::make_tuple(rc); return std::make_tuple(rc);
} }
rc = LaunchQueue::add_copy(tid_sid.title_id, out_program_info.pointer->title_id_min); rc = LaunchQueue::add_copy(tid_sid.title_id, out_program_info.pointer->title_id);
} }
return std::make_tuple(rc); return std::make_tuple(rc);
@ -120,7 +124,7 @@ Result ProcessManagerService::populate_program_info_buffer(ProcessManagerService
out->main_thread_priority = info.header->main_thread_prio; out->main_thread_priority = info.header->main_thread_prio;
out->default_cpu_id = info.header->default_cpuid; out->default_cpu_id = info.header->default_cpuid;
out->main_thread_stack_size = info.header->main_stack_size; out->main_thread_stack_size = info.header->main_stack_size;
out->title_id_min = info.acid->title_id_range_min; out->title_id = info.aci0->title_id;
out->acid_fac_size = info.acid->fac_size; out->acid_fac_size = info.acid->fac_size;
out->aci0_sac_size = info.aci0->sac_size; out->aci0_sac_size = info.aci0->sac_size;

View file

@ -18,7 +18,7 @@ class ProcessManagerService : IServiceObject {
u8 default_cpu_id; u8 default_cpu_id;
u16 application_type; u16 application_type;
u32 main_thread_stack_size; u32 main_thread_stack_size;
u64 title_id_min; u64 title_id;
u32 acid_sac_size; u32 acid_sac_size;
u32 aci0_sac_size; u32 aci0_sac_size;
u32 acid_fac_size; u32 acid_fac_size;

View file

@ -82,14 +82,14 @@ Result Registration::GetRegisteredTidSid(u64 index, Registration::TidSid *out) {
return 0; return 0;
} }
void Registration::SetProcessIdTidMinAndIs64BitAddressSpace(u64 index, u64 process_id, u64 tid_min, bool is_64_bit_addspace) { void Registration::SetProcessIdTidAndIs64BitAddressSpace(u64 index, u64 process_id, u64 tid, bool is_64_bit_addspace) {
Registration::Process *target_process = GetProcess(index); Registration::Process *target_process = GetProcess(index);
if (target_process == NULL) { if (target_process == NULL) {
return; return;
} }
target_process->process_id = process_id; target_process->process_id = process_id;
target_process->title_id_min = tid_min; target_process->title_id = tid;
target_process->is_64_bit_addspace = is_64_bit_addspace; target_process->is_64_bit_addspace = is_64_bit_addspace;
} }

View file

@ -46,7 +46,7 @@ class Registration {
bool is_64_bit_addspace; bool is_64_bit_addspace;
u64 index; u64 index;
u64 process_id; u64 process_id;
u64 title_id_min; u64 title_id;
Registration::TidSid tid_sid; Registration::TidSid tid_sid;
Registration::NsoInfoHolder nso_infos[NSO_INFO_MAX]; Registration::NsoInfoHolder nso_infos[NSO_INFO_MAX];
Registration::NroInfo nro_infos[NRO_INFO_MAX]; Registration::NroInfo nro_infos[NRO_INFO_MAX];
@ -66,7 +66,7 @@ class Registration {
static Result GetRegisteredTidSid(u64 index, Registration::TidSid *out); static Result GetRegisteredTidSid(u64 index, Registration::TidSid *out);
static bool RegisterTidSid(const TidSid *tid_sid, u64 *out_index); static bool RegisterTidSid(const TidSid *tid_sid, u64 *out_index);
static bool UnregisterIndex(u64 index); static bool UnregisterIndex(u64 index);
static void SetProcessIdTidMinAndIs64BitAddressSpace(u64 index, u64 process_id, u64 tid_min, bool is_64_bit_addspace); static void SetProcessIdTidAndIs64BitAddressSpace(u64 index, u64 process_id, u64 tid, bool is_64_bit_addspace);
static void AddNsoInfo(u64 index, u64 base_address, u64 size, const unsigned char *build_id); static void AddNsoInfo(u64 index, u64 base_address, u64 size, const unsigned char *build_id);
static void CloseRoService(void *service, Handle process_h); static void CloseRoService(void *service, Handle process_h);
static Result AddNrrInfo(u64 index, MappedCodeMemory *nrr_info); static Result AddNrrInfo(u64 index, MappedCodeMemory *nrr_info);

View file

@ -120,7 +120,7 @@ std::tuple<Result> RelocatableObjectsService::load_nrr(PidDescriptor pid_desc, u
goto LOAD_NRR_END; goto LOAD_NRR_END;
} }
rc = NroUtils::ValidateNrrHeader((NroUtils::NrrHeader *)nrr_info.mapped_address, nrr_size, target_proc->title_id_min); rc = NroUtils::ValidateNrrHeader((NroUtils::NrrHeader *)nrr_info.mapped_address, nrr_size, target_proc->title_id);
if (R_SUCCEEDED(rc)) { if (R_SUCCEEDED(rc)) {
Registration::AddNrrInfo(target_proc->index, &nrr_info); Registration::AddNrrInfo(target_proc->index, &nrr_info);
} }

View file

@ -0,0 +1,158 @@
/*********************************************************************
* Filename: sha256.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA-256 hashing algorithm.
SHA-256 is one of the three algorithms in the SHA2
specification. The others, SHA-384 and SHA-512, are not
offered in this implementation.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "sha256.h"
/****************************** MACROS ******************************/
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
/**************************** VARIABLES *****************************/
static const WORD k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
/*********************** FUNCTION DEFINITIONS ***********************/
void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
{
WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
{
WORD i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void sha256_final(SHA256_CTX *ctx, BYTE hash[])
{
WORD i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha256_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}

View file

@ -0,0 +1,41 @@
/*********************************************************************
* Filename: sha256.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding SHA1 implementation.
*********************************************************************/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef SHA256_H
#define SHA256_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/****************************** MACROS ******************************/
#define SHA256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct {
BYTE data[64];
WORD datalen;
unsigned long long bitlen;
WORD state[8];
} SHA256_CTX;
/*********************** FUNCTION DECLARATIONS **********************/
void sha256_init(SHA256_CTX *ctx);
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len);
void sha256_final(SHA256_CTX *ctx, BYTE hash[]);
#endif // SHA256_H
#if defined (__cplusplus)
}
#endif