exo2: implement SmcPrepareEsDeviceUniqueKey, SmcPrepareEsCommonTitleKey, SmcLoadPreparedAesKey

This commit is contained in:
Michael Scire 2020-05-20 06:03:07 -07:00 committed by SciresM
parent 985e97cf78
commit ccba70abfe
13 changed files with 461 additions and 50 deletions

View file

@ -155,6 +155,15 @@ namespace ams::secmon::smc {
0xE2, 0xD6, 0xB8, 0x7A, 0x11, 0x9C, 0xB8, 0x80, 0xE8, 0x22, 0x88, 0x8A, 0x46, 0xFB, 0xA1, 0x95
};
constexpr const u8 EsCommonKeySources[EsCommonKeyType_Count][AesKeySize] = {
[EsCommonKeyType_TitleKey] = { 0x1E, 0xDC, 0x7B, 0x3B, 0x60, 0xE6, 0xB4, 0xD8, 0x78, 0xB8, 0x17, 0x15, 0x98, 0x5E, 0x62, 0x9B },
[EsCommonKeyType_ArchiveKey] = { 0x3B, 0x78, 0xF2, 0x61, 0x0F, 0x9D, 0x5A, 0xE2, 0x7B, 0x4E, 0x45, 0xAF, 0xCB, 0x0B, 0x67, 0x4D },
};
constexpr const u8 EsSealKeySource[AesKeySize] = {
0xCB, 0xB7, 0x6E, 0x38, 0xA1, 0xCB, 0x77, 0x0F, 0xB2, 0xA5, 0xB2, 0x9D, 0xD8, 0x56, 0x9F, 0x76
};
constexpr const u8 SecureDataSource[AesKeySize] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
@ -463,6 +472,51 @@ namespace ams::secmon::smc {
return SmcResult::Success;
}
SmcResult LoadPreparedAesKeyImpl(SmcArguments &args) {
/* Decode arguments. */
u8 access_key[AesKeySize];
const int slot = args.r[1];
std::memcpy(access_key, std::addressof(args.r[2]), sizeof(access_key));
/* Validate arguments. */
SMC_R_UNLESS(pkg1::IsUserAesKeySlot(slot), InvalidArgument);
/* Derive the seal key. */
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Smc, pkg1::AesKeySlot_RandomForUserWrap, EsSealKeySource, sizeof(EsSealKeySource));
/* Unseal the key. */
se::SetEncryptedAesKey128(slot, pkg1::AesKeySlot_Smc, access_key, sizeof(access_key));
return SmcResult::Success;
}
SmcResult PrepareEsCommonTitleKeyImpl(SmcArguments &args) {
/* Declare variables. */
u8 key_source[se::AesBlockSize];
u8 key[se::AesBlockSize];
u8 access_key[se::AesBlockSize];
/* Decode arguments. */
std::memcpy(key_source, std::addressof(args.r[1]), sizeof(key_source));
const int generation = GetTargetFirmware() >= TargetFirmware_3_0_0 ? std::max(0, static_cast<int>(args.r[3]) - 1) : 0;
/* Validate arguments. */
SMC_R_UNLESS(pkg1::IsValidKeyGeneration(generation), InvalidArgument);
SMC_R_UNLESS(generation <= GetKeyGeneration(), InvalidArgument);
/* Derive the key. */
DecryptWithEsCommonKey(key, sizeof(key), key_source, sizeof(key_source), EsCommonKeyType_TitleKey, generation);
/* Prepare the aes key. */
PrepareEsAesKey(access_key, sizeof(access_key), key, sizeof(key));
/* Copy the access key to output. */
std::memcpy(std::addressof(args.r[1]), access_key, sizeof(access_key));
return SmcResult::Success;
}
SmcResult DecryptDeviceUniqueDataImpl(SmcArguments &args) {
/* Decode arguments. */
u8 access_key[se::AesBlockSize];
@ -530,6 +584,7 @@ namespace ams::secmon::smc {
case DeviceUniqueData_ImportEsClientCertKey:
ImportRsaKeyExponent(ConvertToImportRsaKey(mode), work_buffer, se::RsaSize);
ImportRsaKeyModulusProvisionally(ConvertToImportRsaKey(mode), work_buffer + se::RsaSize, se::RsaSize);
CommitRsaKeyModulus(ConvertToImportRsaKey(mode));
break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
@ -579,8 +634,11 @@ namespace ams::secmon::smc {
}
SmcResult SmcLoadPreparedAesKey(SmcArguments &args) {
/* TODO */
return SmcResult::NotImplemented;
return LockSecurityEngineAndInvoke(args, LoadPreparedAesKeyImpl);
}
SmcResult SmcPrepareEsCommonTitleKey(SmcArguments &args) {
return LockSecurityEngineAndInvoke(args, PrepareEsCommonTitleKeyImpl);
}
/* Device unique data functionality. */
@ -604,6 +662,35 @@ namespace ams::secmon::smc {
return SmcResult::NotImplemented;
}
/* Es encryption utilities. */
void DecryptWithEsCommonKey(void *dst, size_t dst_size, const void *src, size_t src_size, EsCommonKeyType type, int generation) {
/* Validate pre-conditions. */
AMS_ABORT_UNLESS(dst_size == AesKeySize);
AMS_ABORT_UNLESS(src_size == AesKeySize);
AMS_ABORT_UNLESS(0 <= type && type < EsCommonKeyType_Count);
/* Prepare the master key for the generation. */
const int slot = PrepareMasterKey(generation);
/* Derive the es common key. */
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Smc, slot, EsCommonKeySources[type], AesKeySize);
/* Decrypt the input using the common key. */
se::DecryptAes128(dst, dst_size, pkg1::AesKeySlot_Smc, src, src_size);
}
void PrepareEsAesKey(void *dst, size_t dst_size, const void *src, size_t src_size) {
/* Validate pre-conditions. */
AMS_ABORT_UNLESS(dst_size == AesKeySize);
AMS_ABORT_UNLESS(src_size == AesKeySize);
/* Derive the seal key. */
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Smc, pkg1::AesKeySlot_RandomForUserWrap, EsSealKeySource, sizeof(EsSealKeySource));
/* Seal the key. */
se::EncryptAes128(dst, dst_size, pkg1::AesKeySlot_Smc, src, src_size);
}
/* 'Tis the last rose of summer, / Left blooming alone; */
/* Oh! who would inhabit / This bleak world alone? */
SmcResult SmcGetSecureData(SmcArguments &args) {

View file

@ -19,6 +19,13 @@
namespace ams::secmon::smc {
enum EsCommonKeyType {
EsCommonKeyType_TitleKey = 0,
EsCommonKeyType_ArchiveKey = 1,
EsCommonKeyType_Count,
};
/* General Aes functionality. */
SmcResult SmcGenerateAesKek(SmcArguments &args);
SmcResult SmcLoadAesKey(SmcArguments &args);
@ -26,6 +33,7 @@ namespace ams::secmon::smc {
SmcResult SmcGenerateSpecificAesKey(SmcArguments &args);
SmcResult SmcComputeCmac(SmcArguments &args);
SmcResult SmcLoadPreparedAesKey(SmcArguments &args);
SmcResult SmcPrepareEsCommonTitleKey(SmcArguments &args);
/* Device unique data functionality. */
SmcResult SmcDecryptDeviceUniqueData(SmcArguments &args);
@ -35,6 +43,10 @@ namespace ams::secmon::smc {
SmcResult SmcDecryptAndImportEsDeviceKey(SmcArguments &args);
SmcResult SmcDecryptAndImportLotusKey(SmcArguments &args);
/* Es encryption utilities. */
void DecryptWithEsCommonKey(void *dst, size_t dst_size, const void *src, size_t src_size, EsCommonKeyType type, int generation);
void PrepareEsAesKey(void *dst, size_t dst_size, const void *src, size_t src_size);
/* The last rose of summer. */
SmcResult SmcGetSecureData(SmcArguments &args);

View file

@ -1,32 +0,0 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "../secmon_error.hpp"
#include "secmon_smc_es.hpp"
namespace ams::secmon::smc {
SmcResult SmcPrepareEsDeviceUniqueKey(SmcArguments &args) {
/* TODO */
return SmcResult::NotImplemented;
}
SmcResult SmcPrepareEsCommonKey(SmcArguments &args) {
/* TODO */
return SmcResult::NotImplemented;
}
}

View file

@ -22,7 +22,6 @@
#include "secmon_smc_carveout.hpp"
#include "secmon_smc_device_unique_data.hpp"
#include "secmon_smc_error.hpp"
#include "secmon_smc_es.hpp"
#include "secmon_smc_info.hpp"
#include "secmon_smc_memory_access.hpp"
#include "secmon_smc_power_management.hpp"
@ -120,7 +119,7 @@ namespace ams::secmon::smc {
{ 0xC300060F, Restriction_DeviceUniqueDataNotAllowed, SmcModularExponentiateByStorageKey },
{ 0xC3000610, Restriction_SafeModeNotAllowed, SmcPrepareEsDeviceUniqueKey },
{ 0xC3000011, Restriction_SafeModeNotAllowed, SmcLoadPreparedAesKey },
{ 0xC3000012, Restriction_SafeModeNotAllowed, SmcPrepareEsCommonKey }
{ 0xC3000012, Restriction_SafeModeNotAllowed, SmcPrepareEsCommonTitleKey }
};
constinit HandlerInfo g_kern_handlers[] = {
@ -233,8 +232,8 @@ namespace ams::secmon::smc {
constinit std::atomic<int> g_logged = 0;
constexpr int LogMin = 0x4000;
constexpr int LogMax = 0x4200;
constexpr int LogMin = 0x1000000;
constexpr int LogMax = 0x1000000;
constexpr size_t LogBufSize = 0x5000;

View file

@ -15,10 +15,158 @@
*/
#include <exosphere.hpp>
#include "../secmon_error.hpp"
#include "../secmon_key_storage.hpp"
#include "secmon_smc_aes.hpp"
#include "secmon_smc_rsa.hpp"
#include "secmon_smc_se_lock.hpp"
#include "secmon_page_mapper.hpp"
namespace ams::secmon::smc {
namespace {
struct PrepareEsDeviceUniqueKeyOption {
using KeyGeneration = util::BitPack32::Field<0, 6, int>;
using Type = util::BitPack32::Field<6, 1, EsCommonKeyType>;
using Reserved = util::BitPack32::Field<7, 25, u32>;
};
class PrepareEsDeviceUniqueKeyAsyncArguments {
private:
int generation;
EsCommonKeyType type;
u8 label_digest[crypto::Sha256Generator::HashSize];
public:
void Set(int gen, EsCommonKeyType t, const u8 ld[crypto::Sha256Generator::HashSize]) {
this->generation = gen;
this->type = t;
std::memcpy(this->label_digest, ld, sizeof(this->label_digest));
}
int GetKeyGeneration() const { return this->generation; }
EsCommonKeyType GetCommonKeyType() const { return this->type; }
void GetLabelDigest(u8 dst[crypto::Sha256Generator::HashSize]) const { std::memcpy(dst, this->label_digest, sizeof(this->label_digest)); }
};
class ModularExponentiateByStorageKeyAsyncArguments {
private:
u8 msg[se::RsaSize];
public:
void Set(const void *m, size_t m_size) {
std::memcpy(this->msg, m, sizeof(this->msg));
}
void GetMessage(void *dst, size_t dst_size) const { std::memcpy(dst, this->msg, sizeof(this->msg)); }
};
constinit bool g_exp_mod_completed = false;
constinit union {
ModularExponentiateByStorageKeyAsyncArguments modular_exponentiate_by_storage_key;
PrepareEsDeviceUniqueKeyAsyncArguments prepare_es_device_unique_key;
} g_async_arguments;
ALWAYS_INLINE ModularExponentiateByStorageKeyAsyncArguments &GetModularExponentiateByStorageKeyAsyncArguments() {
return g_async_arguments.modular_exponentiate_by_storage_key;
}
ALWAYS_INLINE PrepareEsDeviceUniqueKeyAsyncArguments &GetPrepareEsDeviceUniqueKeyAsyncArguments() {
return g_async_arguments.prepare_es_device_unique_key;
}
void SecurityEngineDoneHandler() {
/* End the asynchronous operation. */
g_exp_mod_completed = true;
EndAsyncOperation();
}
SmcResult PrepareEsDeviceUniqueKeyImpl(SmcArguments &args) {
/* Decode arguments. */
u8 label_digest[crypto::Sha256Generator::HashSize];
const uintptr_t msg_address = args.r[1];
const uintptr_t mod_address = args.r[2];
std::memcpy(label_digest, std::addressof(args.r[3]), sizeof(label_digest));
const util::BitPack32 option = { static_cast<u32>(args.r[7]) };
const auto generation = GetTargetFirmware() >= TargetFirmware_3_0_0 ? std::max(0, option.Get<PrepareEsDeviceUniqueKeyOption::KeyGeneration>() - 1) : 0;
const auto type = option.Get<PrepareEsDeviceUniqueKeyOption::Type>();
const auto reserved = option.Get<PrepareEsDeviceUniqueKeyOption::Reserved>();
/* Validate arguments. */
SMC_R_UNLESS(reserved == 0, InvalidArgument);
SMC_R_UNLESS(pkg1::IsValidKeyGeneration(generation), InvalidArgument);
SMC_R_UNLESS(generation <= GetKeyGeneration(), InvalidArgument);
SMC_R_UNLESS(type < EsCommonKeyType_Count, InvalidArgument);
/* Copy the message and modulus from the user. */
alignas(8) u8 msg[se::RsaSize];
alignas(8) u8 mod[se::RsaSize];
{
UserPageMapper mapper(msg_address);
SMC_R_UNLESS(mapper.Map(), InvalidArgument);
SMC_R_UNLESS(mapper.CopyFromUser(msg, msg_address, sizeof(msg)), InvalidArgument);
SMC_R_UNLESS(mapper.CopyFromUser(mod, mod_address, sizeof(mod)), InvalidArgument);
}
/* We're performing an operation, so the operation is not completed. */
g_exp_mod_completed = false;
/* Set the async arguments. */
GetPrepareEsDeviceUniqueKeyAsyncArguments().Set(generation, type, label_digest);
/* Load the es drm key into the security engine. */
SMC_R_UNLESS(LoadRsaKey(pkg1::RsaKeySlot_Temporary, ImportRsaKey_EsDrmCert), NotInitialized);
/* Trigger the asynchronous modular exponentiation. */
se::ModularExponentiateAsync(pkg1::RsaKeySlot_Temporary, msg, sizeof(msg), SecurityEngineDoneHandler);
return SmcResult::Success;
}
SmcResult GetPrepareEsDeviceUniqueKeyResult(void *dst, size_t dst_size) {
/* Declare variables. */
u8 key_source[se::AesBlockSize];
u8 key[se::AesBlockSize];
u8 access_key[se::AesBlockSize];
/* Validate state. */
SMC_R_UNLESS(g_exp_mod_completed, Busy);
SMC_R_UNLESS(dst_size == sizeof(access_key), InvalidArgument);
/* We want to relinquish our security engine lock at the end of scope. */
ON_SCOPE_EXIT { UnlockSecurityEngine(); };
/* Get the async args. */
const auto &async_args = GetPrepareEsDeviceUniqueKeyAsyncArguments();
/* Get the exponentiation output. */
alignas(8) u8 msg[se::RsaSize];
se::GetRsaResult(msg, sizeof(msg));
/* Decode the key. */
{
/* Get the label digest. */
u8 label_digest[crypto::Sha256Generator::HashSize];
async_args.GetLabelDigest(label_digest);
/* Decode the key source. */
const size_t key_source_size = se::DecodeRsaOaepSha256(key_source, sizeof(key_source), msg, sizeof(msg), label_digest, sizeof(label_digest));
SMC_R_UNLESS(key_source_size == sizeof(key_source), InvalidArgument);
}
/* Decrypt the key. */
DecryptWithEsCommonKey(key, sizeof(key), key_source, sizeof(key_source), async_args.GetCommonKeyType(), async_args.GetKeyGeneration());
PrepareEsAesKey(access_key, sizeof(access_key), key, sizeof(key));
/* Copy the access key to output. */
std::memcpy(dst, access_key, sizeof(access_key));
return SmcResult::Success;
}
}
SmcResult SmcModularExponentiate(SmcArguments &args) {
/* TODO */
return SmcResult::NotImplemented;
@ -29,4 +177,8 @@ namespace ams::secmon::smc {
return SmcResult::NotImplemented;
}
SmcResult SmcPrepareEsDeviceUniqueKey(SmcArguments &args) {
return LockSecurityEngineAndInvokeAsync(args, PrepareEsDeviceUniqueKeyImpl, GetPrepareEsDeviceUniqueKeyResult);
}
}

View file

@ -22,4 +22,6 @@ namespace ams::secmon::smc {
SmcResult SmcModularExponentiate(SmcArguments &args);
SmcResult SmcModularExponentiateByStorageKey(SmcArguments &args);
SmcResult SmcPrepareEsDeviceUniqueKey(SmcArguments &args);
}

View file

@ -20,6 +20,7 @@
#include <exosphere/se/se_management.hpp>
#include <exosphere/se/se_aes.hpp>
#include <exosphere/se/se_hash.hpp>
#include <exosphere/se/se_oaep.hpp>
#include <exosphere/se/se_rsa.hpp>
#include <exosphere/se/se_rng.hpp>
#include <exosphere/se/se_suspend.hpp>

View file

@ -14,19 +14,10 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <exosphere.hpp>
#include "secmon_smc_common.hpp"
#include <vapours.hpp>
namespace ams::secmon::smc {
namespace ams::se {
enum EsKeyType {
EsKeyType_TitleKey = 0,
EsKeyType_ArchiveKey = 1,
EsKeyType_Count = 2,
};
SmcResult SmcPrepareEsDeviceUniqueKey(SmcArguments &args);
SmcResult SmcPrepareEsCommonKey(SmcArguments &args);
size_t DecodeRsaOaepSha256(void *dst, size_t dst_size, void *src, size_t src_size, const void *label_digest, size_t label_digest_size);
}

View file

@ -15,6 +15,7 @@
*/
#pragma once
#include <vapours.hpp>
#include <exosphere/se/se_common.hpp>
namespace ams::se {
@ -27,5 +28,8 @@ namespace ams::se {
void SetRsaKey(int slot, const void *mod, size_t mod_size, const void *exp, size_t exp_size);
void ModularExponentiate(void *dst, size_t dst_size, int slot, const void *src, size_t src_size);
void ModularExponentiateAsync(int slot, const void *src, size_t src_size, DoneHandler handler);
void GetRsaResult(void *dst, size_t dst_size);
}

View file

@ -131,6 +131,25 @@ namespace ams::se {
std::memcpy(dst, aligned, dst_size);
}
void StartInputOperation(volatile SecurityEngineRegisters *SE, const void *src, size_t src_size) {
/* Set the linked list entry. */
LinkedListEntry src_entry;
SetLinkedListEntry(std::addressof(src_entry), src, src_size);
/* Ensure the linked list entry data is seen correctly. */
hw::FlushDataCache(std::addressof(src_entry), sizeof(src_entry));
hw::DataSynchronizationBarrierInnerShareable();
/* Configure the linked list addresses. */
reg::Write(SE->SE_IN_LL_ADDR, static_cast<u32>(GetPhysicalAddress(std::addressof(src_entry))));
/* Start the operation. */
StartOperation(SE, SE_OPERATION_OP_START);
/* Ensure the operation is started. */
EnsureOperationStarted(SE);
}
void StartOperationRaw(volatile SecurityEngineRegisters *SE, SE_OPERATION_OP op, u32 out_ll_address, u32 in_ll_address) {
/* Configure the linked list addresses. */
reg::Write(SE->SE_IN_LL_ADDR, in_ll_address);

View file

@ -23,6 +23,7 @@ namespace ams::se {
void ExecuteOperation(volatile SecurityEngineRegisters *SE, SE_OPERATION_OP op, void *dst, size_t dst_size, const void *src, size_t src_size);
void ExecuteOperationSingleBlock(volatile SecurityEngineRegisters *SE, void *dst, size_t dst_size, const void *src, size_t src_size);
void StartInputOperation(volatile SecurityEngineRegisters *SE, const void *src, size_t src_size);
void StartOperationRaw(volatile SecurityEngineRegisters *SE, SE_OPERATION_OP op, u32 out_ll_address, u32 in_ll_address);
void SetDoneHandler(volatile SecurityEngineRegisters *SE, DoneHandler handler);

View file

@ -0,0 +1,122 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "se_execute.hpp"
namespace ams::se {
/* NOTE: This implementation is mostly copy/pasted from crypto::impl::RsaOaepImpl. */
namespace {
constexpr inline size_t HashSize = sizeof(Sha256Hash);
constexpr inline u8 HeadMagic = 0x00;
void ApplyMGF1(u8 *dst, size_t dst_size, const void *src, size_t src_size) {
/* Check our pre-conditions. */
AMS_ABORT_UNLESS(src_size <= RsaSize - (1 + HashSize));
/* Create a buffer. */
util::AlignedBuffer<hw::DataCacheLineSize, RsaSize - (1 + HashSize) + sizeof(u32)> buf;
u32 counter = 0;
while (dst_size > 0) {
/* Setup the current hash buffer. */
const size_t cur_size = std::min(HashSize, dst_size);
std::memcpy(static_cast<u8 *>(buf), src, src_size);
{
u32 counter_be;
util::StoreBigEndian(std::addressof(counter_be), counter++);
std::memcpy(static_cast<u8 *>(buf) + src_size, std::addressof(counter_be), sizeof(counter_be));
}
/* Ensure se sees correct data. */
hw::FlushDataCache(buf, src_size + sizeof(u32));
hw::DataSynchronizationBarrierInnerShareable();
/* Calculate the hash. */
Sha256Hash hash;
se::CalculateSha256(std::addressof(hash), buf, src_size + sizeof(u32));
/* Mask the current output. */
const u8 *mask = hash.bytes;
for (size_t i = 0; i < cur_size; ++i) {
*(dst++) ^= *(mask++);
}
/* Advance. */
dst_size -= cur_size;
}
}
}
size_t DecodeRsaOaepSha256(void *dst, size_t dst_size, void *src, size_t src_size, const void *label_digest, size_t label_digest_size) {
/* Check our preconditions. */
AMS_ABORT_UNLESS(src_size == RsaSize);
AMS_ABORT_UNLESS(label_digest_size == HashSize);
/* Get a byte-readable copy of the input. */
u8 *buf = static_cast<u8 *>(src);
/* Validate sanity byte. */
bool is_valid = buf[0] == HeadMagic;
/* Decrypt seed and masked db. */
size_t db_len = src_size - HashSize - 1;
u8 *seed = buf + 1;
u8 *db = seed + HashSize;
ApplyMGF1(seed, HashSize, db, db_len);
ApplyMGF1(db, db_len, seed, HashSize);
/* Check the label digest. */
is_valid &= crypto::IsSameBytes(label_digest, db, HashSize);
/* Skip past the label digest. */
db += HashSize;
db_len -= HashSize;
/* Verify that DB is of the form 0000...0001 < message > */
s32 msg_ofs = 0;
{
int looking_for_one = 1;
int invalid_db_padding = 0;
int is_zero;
int is_one;
for (size_t i = 0; i < db_len; /* ... */) {
is_zero = (db[i] == 0);
is_one = (db[i] == 1);
msg_ofs += (looking_for_one & is_one) * (static_cast<s32>(++i));
looking_for_one &= ~is_one;
invalid_db_padding |= (looking_for_one & ~is_zero);
}
is_valid &= (invalid_db_padding == 0);
}
/* If we're invalid, return zero size. */
const size_t valid_msg_size = db_len - msg_ofs;
const size_t msg_size = std::min(dst_size, static_cast<size_t>(is_valid) * valid_msg_size);
/* Copy to output. */
std::memcpy(dst, db + msg_ofs, msg_size);
/* Return copied size. */
return msg_size;
}
}

View file

@ -67,6 +67,10 @@ namespace ams::se {
}
}
void WaitForInputReadComplete(volatile SecurityEngineRegisters *SE) {
while (reg::HasValue(SE->SE_INT_STATUS, SE_REG_BITS_ENUM(INT_STATUS_IN_DONE, CLEAR))) { /* ... */ }
}
}
void ClearRsaKeySlot(int slot) {
@ -174,4 +178,53 @@ namespace ams::se {
GetRsaResult(SE, dst, dst_size);
}
void ModularExponentiateAsync(int slot, const void *src, size_t src_size, DoneHandler handler) {
/* Validate the slot and size. */
AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount);
AMS_ABORT_UNLESS(src_size <= RsaSize);
/* Get the engine. */
auto *SE = GetRegisters();
/* Create a work buffer. */
u8 work[RsaSize];
util::ClearMemory(work, sizeof(work));
/* Copy the input into the work buffer (reversing endianness). */
const u8 *src_u8 = static_cast<const u8 *>(src);
for (size_t i = 0; i < src_size; ++i) {
work[src_size - 1 - i] = src_u8[i];
}
/* Flush the work buffer to ensure the SE sees correct results. */
hw::FlushDataCache(work, sizeof(work));
hw::DataSynchronizationBarrierInnerShareable();
/* Configure the engine to perform RSA encryption. */
reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_DEC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_ENC_ALG, RSA),
SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP),
SE_REG_BITS_ENUM(CONFIG_DST, RSA_REG));
/* Configure the engine to use the keyslot and correct modulus/exp sizes. */
const auto &info = g_rsa_key_infos[slot];
reg::Write(SE->SE_RSA_CONFIG, SE_REG_BITS_VALUE(RSA_CONFIG_KEY_SLOT, slot));
reg::Write(SE->SE_RSA_KEY_SIZE, info.modulus_size_val);
reg::Write(SE->SE_RSA_EXP_SIZE, info.exponent_size_val);
/* Set the done handler. */
SetDoneHandler(SE, handler);
/* Trigger the input operation. */
StartInputOperation(SE, work, src_size);
/* Wait for input to be read by the se. */
WaitForInputReadComplete(SE);
}
void GetRsaResult(void *dst, size_t dst_size) {
GetRsaResult(GetRegisters(), dst, dst_size);
}
}