kern: implement interrupt thread init

This commit is contained in:
Michael Scire 2020-02-14 02:20:33 -08:00
parent 19e6d2e1c0
commit c91386b0fa
7 changed files with 322 additions and 33 deletions

View file

@ -22,16 +22,20 @@ namespace ams::kern::arm64::cpu {
#if defined(ATMOSPHERE_CPU_ARM_CORTEX_A57) || defined(ATMOSPHERE_CPU_ARM_CORTEX_A53) #if defined(ATMOSPHERE_CPU_ARM_CORTEX_A57) || defined(ATMOSPHERE_CPU_ARM_CORTEX_A53)
constexpr inline size_t InstructionCacheLineSize = 0x40; constexpr inline size_t InstructionCacheLineSize = 0x40;
constexpr inline size_t DataCacheLineSize = 0x40; constexpr inline size_t DataCacheLineSize = 0x40;
constexpr inline size_t NumPerformanceCounters = 6;
#else #else
#error "Unknown CPU for cache line sizes" #error "Unknown CPU for cache line sizes"
#endif #endif
#if defined(ATMOSPHERE_BOARD_NINTENDO_SWITCH) #if defined(ATMOSPHERE_BOARD_NINTENDO_SWITCH)
static constexpr size_t NumCores = 4; constexpr inline size_t NumCores = 4;
#else #else
#error "Unknown Board for cpu::NumCores" #error "Unknown Board for cpu::NumCores"
#endif #endif
/* Initialization. */
NOINLINE void InitializeInterruptThreads(s32 core_id);
/* Helpers for managing memory state. */ /* Helpers for managing memory state. */
ALWAYS_INLINE void DataSynchronizationBarrier() { ALWAYS_INLINE void DataSynchronizationBarrier() {
__asm__ __volatile__("dsb sy" ::: "memory"); __asm__ __volatile__("dsb sy" ::: "memory");
@ -65,6 +69,40 @@ namespace ams::kern::arm64::cpu {
InstructionMemoryBarrier(); InstructionMemoryBarrier();
} }
/* Performance counter helpers. */
ALWAYS_INLINE u64 GetCycleCounter() {
return cpu::GetPmcCntrEl0();
}
ALWAYS_INLINE u32 GetPerformanceCounter(s32 n) {
u64 counter = 0;
if (n < static_cast<s32>(NumPerformanceCounters)) {
switch (n) {
case 0:
counter = cpu::GetPmevCntr0El0();
break;
case 1:
counter = cpu::GetPmevCntr1El0();
break;
case 2:
counter = cpu::GetPmevCntr2El0();
break;
case 3:
counter = cpu::GetPmevCntr3El0();
break;
case 4:
counter = cpu::GetPmevCntr4El0();
break;
case 5:
counter = cpu::GetPmevCntr5El0();
break;
default:
break;
}
}
return static_cast<u32>(counter);
}
/* Helper for address access. */ /* Helper for address access. */
ALWAYS_INLINE bool GetPhysicalAddressWritable(KPhysicalAddress *out, KVirtualAddress addr, bool privileged = false) { ALWAYS_INLINE bool GetPhysicalAddressWritable(KPhysicalAddress *out, KVirtualAddress addr, bool privileged = false) {
const uintptr_t va = GetInteger(addr); const uintptr_t va = GetInteger(addr);
@ -115,8 +153,8 @@ namespace ams::kern::arm64::cpu {
/* Cache management helpers. */ /* Cache management helpers. */
void ClearPageToZeroImpl(void *); void ClearPageToZeroImpl(void *);
void FlushEntireDataCacheShared(); void FlushEntireDataCacheSharedForInit();
void FlushEntireDataCacheLocal(); void FlushEntireDataCacheLocalForInit();
ALWAYS_INLINE void ClearPageToZero(void *page) { ALWAYS_INLINE void ClearPageToZero(void *page) {
MESOSPHERE_ASSERT(util::IsAligned(reinterpret_cast<uintptr_t>(page), PageSize)); MESOSPHERE_ASSERT(util::IsAligned(reinterpret_cast<uintptr_t>(page), PageSize));

View file

@ -52,6 +52,7 @@ namespace ams::kern::arm64::cpu {
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(CpuEctlrEl1, s3_1_c15_c2_1) MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(CpuEctlrEl1, s3_1_c15_c2_1)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(CsselrEl1, csselr_el1) MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(CsselrEl1, csselr_el1)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(CcsidrEl1, ccsidr_el1)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(OslarEl1, oslar_el1) MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(OslarEl1, oslar_el1)
@ -61,6 +62,15 @@ namespace ams::kern::arm64::cpu {
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(Afsr0El1, afsr0_el1) MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(Afsr0El1, afsr0_el1)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(Afsr1El1, afsr1_el1) MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(Afsr1El1, afsr1_el1)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(PmUserEnrEl0, pmuserenr_el0)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(PmcCntrEl0, pmccntr_el0)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(PmevCntr0El0, pmevcntr0_el0)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(PmevCntr1El0, pmevcntr1_el0)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(PmevCntr2El0, pmevcntr2_el0)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(PmevCntr3El0, pmevcntr3_el0)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(PmevCntr4El0, pmevcntr4_el0)
MESOSPHERE_CPU_DEFINE_SYSREG_ACCESSORS(PmevCntr5El0, pmevcntr5_el0)
#define FOR_I_IN_0_TO_15(HANDLER, ...) \ #define FOR_I_IN_0_TO_15(HANDLER, ...) \
HANDLER(0, ## __VA_ARGS__) HANDLER(1, ## __VA_ARGS__) HANDLER(2, ## __VA_ARGS__) HANDLER(3, ## __VA_ARGS__) \ HANDLER(0, ## __VA_ARGS__) HANDLER(1, ## __VA_ARGS__) HANDLER(2, ## __VA_ARGS__) HANDLER(3, ## __VA_ARGS__) \
HANDLER(4, ## __VA_ARGS__) HANDLER(5, ## __VA_ARGS__) HANDLER(6, ## __VA_ARGS__) HANDLER(7, ## __VA_ARGS__) \ HANDLER(4, ## __VA_ARGS__) HANDLER(5, ## __VA_ARGS__) HANDLER(6, ## __VA_ARGS__) HANDLER(7, ## __VA_ARGS__) \

View file

@ -18,14 +18,31 @@
namespace ams::kern::arm64 { namespace ams::kern::arm64 {
namespace interrupt_name { namespace interrupt_name {
enum KInterruptName : s32 { enum KInterruptName : s32 {
/* SGIs */
KInterruptName_ThreadTerminate = 4,
KInterruptName_CacheOperation = 5,
KInterruptName_Scheduler = 6, KInterruptName_Scheduler = 6,
KInterruptName_HardwareTimerEl1 = 30,
KInterruptName_PerformanceCounter = 8,
/* PPIs */
#if defined(ATMOSPHERE_BOARD_NINTENDO_SWITCH)
KInterruptName_VirtualMaintenance = 25,
KInterruptName_HypervisorTimer = 26,
KInterruptName_VirtualTimer = 27,
KInterruptName_LegacyNFiq = 38,
KInterruptName_SecurePhysicalTimer = 29,
KInterruptName_NonSecurePhysicalTimer = 30,
KInterruptName_LegacyNIrq = 31,
#endif
#if defined(ATMOSPHERE_BOARD_NINTENDO_SWITCH) #if defined(ATMOSPHERE_BOARD_NINTENDO_SWITCH)
KInterruptName_MemoryController = 109, KInterruptName_MemoryController = 109,
#endif #endif
}; };
}; };
} }

View file

@ -23,19 +23,196 @@ namespace ams::kern::arm64::cpu {
namespace { namespace {
/* Nintendo registers a handler for a SGI on thread termination, but does not handle anything. */
/* This is sufficient, because post-interrupt scheduling is all they really intend to occur. */
class KThreadTerminationInterruptHandler : public KInterruptHandler {
public:
constexpr KThreadTerminationInterruptHandler() : KInterruptHandler() { /* ... */ }
virtual KInterruptTask *OnInterrupt(s32 interrupt_id) override {
return nullptr;
}
};
class KPerformanceCounterInterruptHandler : public KInterruptHandler {
private:
static inline KLightLock s_lock;
private:
u64 counter;
s32 which;
bool done;
public:
constexpr KPerformanceCounterInterruptHandler() : KInterruptHandler(), counter(), which(), done() { /* ... */ }
static KLightLock &GetLock() { return s_lock; }
void Setup(s32 w) {
this->done = false;
this->which = w;
}
void Wait() {
while (!this->done) {
__asm__ __volatile__("yield");
}
}
u64 GetCounter() const { return this->counter; }
/* Nintendo misuses this per their own API, but it's functional. */
virtual KInterruptTask *OnInterrupt(s32 interrupt_id) override {
if (this->which < 0) {
this->counter = cpu::GetCycleCounter();
} else {
this->counter = cpu::GetPerformanceCounter(this->which);
}
DataMemoryBarrier();
this->done = true;
return nullptr;
}
};
class KCacheHelperInterruptHandler : public KInterruptHandler {
private:
static constexpr s32 ThreadPriority = 8;
public:
enum class Operation {
Idle,
InvalidateInstructionCache,
StoreDataCache,
FlushDataCache,
};
private:
KLightLock lock;
KLightLock cv_lock;
KLightConditionVariable cv;
std::atomic<u64> target_cores;
volatile Operation operation;
private:
static void ThreadFunction(uintptr_t _this) {
reinterpret_cast<KCacheHelperInterruptHandler *>(_this)->ThreadFunctionImpl();
}
void ThreadFunctionImpl() {
const s32 core_id = GetCurrentCoreId();
while (true) {
/* Wait for a request to come in. */
{
KScopedLightLock lk(this->cv_lock);
while ((this->target_cores & (1ul << core_id)) == 0) {
this->cv.Wait(std::addressof(this->cv_lock));
}
}
/* Process the request. */
this->ProcessOperation();
/* Broadcast, if there's nothing pending. */
{
KScopedLightLock lk(this->cv_lock);
if (this->target_cores == 0) {
this->cv.Broadcast();
}
}
}
}
void ProcessOperation();
public:
constexpr KCacheHelperInterruptHandler() : KInterruptHandler(), lock(), cv_lock(), cv(), target_cores(), operation(Operation::Idle) { /* ... */ }
void Initialize(s32 core_id) {
/* Reserve a thread from the system limit. */
MESOSPHERE_ABORT_UNLESS(Kernel::GetSystemResourceLimit().Reserve(ams::svc::LimitableResource_ThreadCountMax, 1));
/* Create a new thread. */
KThread *new_thread = KThread::Create();
MESOSPHERE_ABORT_UNLESS(new_thread != nullptr);
MESOSPHERE_R_ABORT_UNLESS(KThread::InitializeKernelThread(new_thread, ThreadFunction, reinterpret_cast<uintptr_t>(this), ThreadPriority, core_id));
/* Register the new thread. */
KThread::Register(new_thread);
/* Run the thread. */
new_thread->Run();
}
virtual KInterruptTask *OnInterrupt(s32 interrupt_id) override {
this->ProcessOperation();
return nullptr;
}
void RequestOperation(Operation op) {
KScopedLightLock lk(this->lock);
MESOSPHERE_ABORT_UNLESS(this->operation == Operation::Idle);
/* Send and wait for acknowledgement of request. */
{
KScopedLightLock cv_lk(this->cv_lock);
MESOSPHERE_ABORT_UNLESS(this->target_cores == 0);
/* Set operation. */
this->operation = op;
/* Create core masks for us to use. */
constexpr u64 AllCoresMask = (1ul << cpu::NumCores) - 1ul;
const u64 other_cores_mask = AllCoresMask & ~(1ul << GetCurrentCoreId());
if ((op == Operation::InvalidateInstructionCache) || (Kernel::GetState() == Kernel::State::Initializing)) {
/* For certain operations, we want to send an interrupt. */
this->target_cores = other_cores_mask;
DataSynchronizationBarrier();
const u64 target_mask = this->target_cores;
DataSynchronizationBarrier();
Kernel::GetInterruptManager().SendInterProcessorInterrupt(KInterruptName_CacheOperation, target_mask);
this->ProcessOperation();
while (this->target_cores != 0) {
__asm__ __volatile__("yield");
}
} else {
/* Request all cores. */
this->target_cores = AllCoresMask;
/* Use the condvar. */
this->cv.Broadcast();
while (this->target_cores != 0) {
this->cv.Wait(std::addressof(this->cv_lock));
}
}
}
/* Go idle again. */
this->operation = Operation::Idle;
}
};
/* Instances of the interrupt handlers. */
KThreadTerminationInterruptHandler g_thread_termination_handler;
KCacheHelperInterruptHandler g_cache_operation_handler;
KPerformanceCounterInterruptHandler g_performance_counter_handler[cpu::NumCores];
/* Expose this as a global, for asm to use. */ /* Expose this as a global, for asm to use. */
s32 g_all_core_sync_count; s32 g_all_core_sync_count;
void FlushEntireDataCacheImpl(int level) { template<bool Init, typename F>
ALWAYS_INLINE void PerformCacheOperationBySetWayImpl(int level, F f) {
/* Used in multiple locations. */ /* Used in multiple locations. */
const u64 level_sel_value = static_cast<u64>(level << 1); const u64 level_sel_value = static_cast<u64>(level << 1);
/* Set selection register. */ u64 ccsidr_value;
cpu::SetCsselrEl1(level_sel_value); if constexpr (Init) {
cpu::InstructionMemoryBarrier(); /* During init, we can just set the selection register directly. */
cpu::SetCsselrEl1(level_sel_value);
cpu::InstructionMemoryBarrier();
ccsidr_value = cpu::GetCcsidrEl1();
} else {
/* After init, we need to care about interrupts. */
KScopedInterruptDisable di;
cpu::SetCsselrEl1(level_sel_value);
cpu::InstructionMemoryBarrier();
ccsidr_value = cpu::GetCcsidrEl1();
}
/* Get cache size id info. */ /* Get cache size id info. */
CacheSizeIdRegisterAccessor ccsidr_el1; CacheSizeIdRegisterAccessor ccsidr_el1(ccsidr_value);
const int num_sets = ccsidr_el1.GetNumberOfSets(); const int num_sets = ccsidr_el1.GetNumberOfSets();
const int num_ways = ccsidr_el1.GetAssociativity(); const int num_ways = ccsidr_el1.GetAssociativity();
const int line_size = ccsidr_el1.GetLineSize(); const int line_size = ccsidr_el1.GetLineSize();
@ -47,12 +224,58 @@ namespace ams::kern::arm64::cpu {
for (int set = 0; set <= num_sets; set++) { for (int set = 0; set <= num_sets; set++) {
const u64 way_value = static_cast<u64>(way) << way_shift; const u64 way_value = static_cast<u64>(way) << way_shift;
const u64 set_value = static_cast<u64>(set) << set_shift; const u64 set_value = static_cast<u64>(set) << set_shift;
const u64 cisw_value = way_value | set_value | level_sel_value; f(way_value | set_value | level_sel_value);
__asm__ __volatile__("dc cisw, %0" ::"r"(cisw_value) : "memory");
} }
} }
} }
ALWAYS_INLINE void FlushDataCacheLineBySetWayImpl(const u64 sw_value) {
__asm__ __volatile__("dc cisw, %[v]" :: [v]"r"(sw_value) : "memory");
}
ALWAYS_INLINE void StoreDataCacheLineBySetWayImpl(const u64 sw_value) {
__asm__ __volatile__("dc csw, %[v]" :: [v]"r"(sw_value) : "memory");
}
template<bool Init, typename F>
ALWAYS_INLINE void PerformCacheOperationBySetWayShared(F f) {
CacheLineIdRegisterAccessor clidr_el1;
const int levels_of_coherency = clidr_el1.GetLevelsOfCoherency();
const int levels_of_unification = clidr_el1.GetLevelsOfUnification();
for (int level = levels_of_coherency; level >= levels_of_unification; level--) {
PerformCacheOperationBySetWayImpl<Init>(level, f);
}
}
template<bool Init, typename F>
ALWAYS_INLINE void PerformCacheOperationBySetWayLocal(F f) {
CacheLineIdRegisterAccessor clidr_el1;
const int levels_of_unification = clidr_el1.GetLevelsOfUnification();
for (int level = levels_of_unification - 1; level >= 0; level--) {
PerformCacheOperationBySetWayImpl<Init>(level, f);
}
}
void KCacheHelperInterruptHandler::ProcessOperation() {
switch (this->operation) {
case Operation::Idle:
break;
case Operation::InvalidateInstructionCache:
InstructionMemoryBarrier();
break;
case Operation::StoreDataCache:
PerformCacheOperationBySetWayLocal<false>(StoreDataCacheLineBySetWayImpl);
DataSynchronizationBarrier();
break;
case Operation::FlushDataCache:
PerformCacheOperationBySetWayLocal<false>(FlushDataCacheLineBySetWayImpl);
DataSynchronizationBarrier();
break;
}
}
ALWAYS_INLINE void SetEventLocally() { ALWAYS_INLINE void SetEventLocally() {
__asm__ __volatile__("sevl" ::: "memory"); __asm__ __volatile__("sevl" ::: "memory");
} }
@ -63,26 +286,27 @@ namespace ams::kern::arm64::cpu {
} }
void FlushEntireDataCacheShared() { void FlushEntireDataCacheSharedForInit() {
CacheLineIdRegisterAccessor clidr_el1; return PerformCacheOperationBySetWayShared<true>(FlushDataCacheLineBySetWayImpl);
const int levels_of_coherency = clidr_el1.GetLevelsOfCoherency();
const int levels_of_unification = clidr_el1.GetLevelsOfUnification();
for (int level = levels_of_coherency; level >= levels_of_unification; level--) {
FlushEntireDataCacheImpl(level);
}
} }
void FlushEntireDataCacheLocal() { void FlushEntireDataCacheLocalForInit() {
CacheLineIdRegisterAccessor clidr_el1; return PerformCacheOperationBySetWayLocal<true>(FlushDataCacheLineBySetWayImpl);
const int levels_of_unification = clidr_el1.GetLevelsOfUnification();
for (int level = levels_of_unification - 1; level >= 0; level--) {
FlushEntireDataCacheImpl(level);
}
} }
NOINLINE void SynchronizeAllCores() { void InitializeInterruptThreads(s32 core_id) {
/* Initialize the cache operation handler. */
g_cache_operation_handler.Initialize(core_id);
/* Bind all handlers to the relevant interrupts. */
Kernel::GetInterruptManager().BindHandler(std::addressof(g_cache_operation_handler), KInterruptName_CacheOperation, core_id, KInterruptController::PriorityLevel_High, false, false);
Kernel::GetInterruptManager().BindHandler(std::addressof(g_thread_termination_handler), KInterruptName_ThreadTerminate, core_id, KInterruptController::PriorityLevel_Scheduler, false, false);
if (KTargetSystem::IsUserPmuAccessEnabled()) { SetPmUserEnrEl0(1ul); }
Kernel::GetInterruptManager().BindHandler(std::addressof(g_performance_counter_handler[core_id]), KInterruptName_PerformanceCounter, core_id, KInterruptController::PriorityLevel_Timer, false, false);
}
void SynchronizeAllCores() {
SynchronizeAllCoresImpl(&g_all_core_sync_count, static_cast<s32>(cpu::NumCores)); SynchronizeAllCoresImpl(&g_all_core_sync_count, static_cast<s32>(cpu::NumCores));
} }

View file

@ -50,7 +50,7 @@ namespace ams::kern::arm64 {
InitializeGlobalTimer(); InitializeGlobalTimer();
/* Bind the interrupt task for this core. */ /* Bind the interrupt task for this core. */
Kernel::GetInterruptManager().BindHandler(GetHardwareTimerInterruptTask(core_id), KInterruptName_HardwareTimerEl1, core_id, KInterruptController::PriorityLevel_Timer, true, true); Kernel::GetInterruptManager().BindHandler(GetHardwareTimerInterruptTask(core_id), KInterruptName_NonSecurePhysicalTimer, core_id, KInterruptController::PriorityLevel_Timer, true, true);
} }
void KHardwareTimer::Finalize() { void KHardwareTimer::Finalize() {
@ -74,7 +74,7 @@ namespace ams::kern::arm64 {
} }
/* Clear the timer interrupt. */ /* Clear the timer interrupt. */
Kernel::GetInterruptManager().ClearInterrupt(KInterruptName_HardwareTimerEl1, GetCurrentCoreId()); Kernel::GetInterruptManager().ClearInterrupt(KInterruptName_NonSecurePhysicalTimer, GetCurrentCoreId());
} }
} }

View file

@ -99,7 +99,7 @@ namespace ams::kern {
}); });
/* Initialize cpu interrupt threads. */ /* Initialize cpu interrupt threads. */
MESOSPHERE_TODO("cpu::InitializeInterruptThreads(core_id);"); cpu::InitializeInterruptThreads(core_id);
/* Initialize the DPC manager. */ /* Initialize the DPC manager. */
KDpcManager::Initialize(); KDpcManager::Initialize();

View file

@ -53,15 +53,15 @@ namespace ams::kern::init::loader {
void EnsureEntireDataCacheFlushed() { void EnsureEntireDataCacheFlushed() {
/* Flush shared cache. */ /* Flush shared cache. */
cpu::FlushEntireDataCacheShared(); cpu::FlushEntireDataCacheSharedForInit();
cpu::DataSynchronizationBarrier(); cpu::DataSynchronizationBarrier();
/* Flush local cache. */ /* Flush local cache. */
cpu::FlushEntireDataCacheLocal(); cpu::FlushEntireDataCacheLocalForInit();
cpu::DataSynchronizationBarrier(); cpu::DataSynchronizationBarrier();
/* Flush shared cache. */ /* Flush shared cache. */
cpu::FlushEntireDataCacheShared(); cpu::FlushEntireDataCacheSharedForInit();
cpu::DataSynchronizationBarrier(); cpu::DataSynchronizationBarrier();
/* Invalidate entire instruction cache. */ /* Invalidate entire instruction cache. */