exo: implement remaining SE changes for mariko support

This commit is contained in:
Michael Scire 2020-06-28 21:11:29 -07:00
parent 5cb9fa510e
commit bf92daf055
9 changed files with 167 additions and 67 deletions

View file

@ -68,12 +68,56 @@ namespace ams::secmon::boot {
/* to the warmboot key? To be decided during the process of implementing ams-on-mariko support. */ /* to the warmboot key? To be decided during the process of implementing ams-on-mariko support. */
} }
constinit const u8 DeviceMasterKeySourceKekSource[se::AesBlockSize] = {
0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28
};
/* This function derives the master kek and device keys using the tsec root key. */ /* This function derives the master kek and device keys using the tsec root key. */
/* NOTE: Exosphere does not use this in practice, and expects the bootloader to set up keys already. */ void DeriveMasterKekAndDeviceKeyErista(bool is_prod) {
/* NOTE: This function is currently not implemented. If implemented, it will only be a reference implementation. */ /* NOTE: Exosphere does not use this in practice, and expects the bootloader to set up keys already. */
[[maybe_unused]] /* NOTE: This function is currently not implemented. If implemented, it will only be a reference implementation. */
void DeriveMasterKekAndDeviceKey() { if constexpr (false) {
/* TODO: Decide whether to implement this. */ /* TODO: Consider implementing this as a reference. */
}
}
constinit const u8 MarikoMasterKekSourceProd[se::AesBlockSize] = {
0x0E, 0x44, 0x0C, 0xED, 0xB4, 0x36, 0xC0, 0x3F, 0xAA, 0x1D, 0xAE, 0xBF, 0x62, 0xB1, 0x09, 0x82
};
constinit const u8 MarikoMasterKekSourceDev[se::AesBlockSize] = {
0xF9, 0x37, 0xCF, 0x9A, 0xBD, 0x86, 0xBB, 0xA9, 0x9C, 0x9E, 0x03, 0xC4, 0xFC, 0xBC, 0x3B, 0xCE
};
void DeriveMasterKekAndDeviceKeyMariko(bool is_prod) {
/* Clear all keyslots other than KEK and SBK in SE1. */
for (int i = 0; i < pkg1::AesKeySlot_Count; ++i) {
if (i != pkg1::AesKeySlot_MarikoKek && i != pkg1::AesKeySlot_SecureBoot) {
se::ClearAesKeySlot(i);
}
}
/* Clear all keyslots in SE2. */
for (int i = 0; i < pkg1::AesKeySlot_Count; ++i) {
se::ClearAesKeySlot2(i);
}
/* Derive the master kek. */
se::SetEncryptedAesKey128(pkg1::AesKeySlot_MasterKek, pkg1::AesKeySlot_MarikoKek, is_prod ? MarikoMasterKekSourceProd : MarikoMasterKekSourceDev, se::AesBlockSize);
/* Derive the device master key source kek. */
se::SetEncryptedAesKey128(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko, pkg1::AesKeySlot_SecureBoot, DeviceMasterKeySourceKekSource, se::AesBlockSize);
/* Clear the KEK, now that we're done using it. */
se::ClearAesKeySlot(pkg1::AesKeySlot_MarikoKek);
}
void DeriveMasterKekAndDeviceKey(bool is_prod) {
if (GetSocType() == fuse::SocType_Mariko) {
DeriveMasterKekAndDeviceKeyMariko(is_prod);
} else /* if (GetSocType() == fuse::SocType_Erista) */ {
DeriveMasterKekAndDeviceKeyErista(is_prod);
}
} }
void SetupRandomKey(int slot, se::KeySlotLockFlags flags) { void SetupRandomKey(int slot, se::KeySlotLockFlags flags) {
@ -219,7 +263,7 @@ namespace ams::secmon::boot {
const int current_generation = secmon::GetKeyGeneration(); const int current_generation = secmon::GetKeyGeneration();
/* Get the kek slot. */ /* Get the kek slot. */
const int kek_slot = fuse::GetSocType() == fuse::SocType_Mariko ? pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko : pkg1::AesKeySlot_DeviceMasterKeySourceKekErista; const int kek_slot = GetSocType() == fuse::SocType_Mariko ? pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko : pkg1::AesKeySlot_DeviceMasterKeySourceKekErista;
/* Iterate for all generations. */ /* Iterate for all generations. */
for (int i = 0; i < pkg1::OldDeviceMasterKeyCount; ++i) { for (int i = 0; i < pkg1::OldDeviceMasterKeyCount; ++i) {
@ -251,10 +295,7 @@ namespace ams::secmon::boot {
se::LockAesKeySlot(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko, se::KeySlotLockFlags_AllLockKek); se::LockAesKeySlot(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko, se::KeySlotLockFlags_AllLockKek);
} }
void DeriveAllKeys() { void DeriveAllKeys(bool is_prod) {
/* Determine whether we're prod. */
const bool is_prod = IsProduction();
/* Get the ephemeral work block. */ /* Get the ephemeral work block. */
u8 * const work_block = se::GetEphemeralWorkBlock(); u8 * const work_block = se::GetEphemeralWorkBlock();
ON_SCOPE_EXIT { util::ClearMemory(work_block, se::AesBlockSize); }; ON_SCOPE_EXIT { util::ClearMemory(work_block, se::AesBlockSize); };
@ -303,16 +344,18 @@ namespace ams::secmon::boot {
/* Initialize the rng. */ /* Initialize the rng. */
se::InitializeRandom(); se::InitializeRandom();
/* Determine whether we're production. */
const bool is_prod = IsProduction();
/* Derive the master kek and device key. */ /* Derive the master kek and device key. */
if constexpr (false) { /* NOTE: This is a no-op on erista, because fusee will have set up keys. */
DeriveMasterKekAndDeviceKey(); DeriveMasterKekAndDeviceKey(is_prod);
}
/* Lock the device key as only usable as a kek. */ /* Lock the device key as only usable as a kek. */
se::LockAesKeySlot(pkg1::AesKeySlot_Device, se::KeySlotLockFlags_AllLockKek); se::LockAesKeySlot(pkg1::AesKeySlot_Device, se::KeySlotLockFlags_AllLockKek);
/* Derive all keys. */ /* Derive all keys. */
DeriveAllKeys(); DeriveAllKeys(is_prod);
} }
} }
@ -351,6 +394,9 @@ namespace ams::secmon::boot {
/* Set the security engine to Per Key Secure. */ /* Set the security engine to Per Key Secure. */
se::SetPerKeySecure(); se::SetPerKeySecure();
/* Set the security engine to Context Save Secure. */
se::SetContextSaveSecure();
/* Setup the PMC registers. */ /* Setup the PMC registers. */
SetupPmcRegisters(); SetupPmcRegisters();

View file

@ -257,7 +257,7 @@ namespace ams::secmon::smc {
} }
int PrepareDeviceMasterKey(int generation) { int PrepareDeviceMasterKey(int generation) {
if (generation == pkg1::KeyGeneration_1_0_0) { if (generation == pkg1::KeyGeneration_1_0_0 && GetSocType() == fuse::SocType_Erista) {
return pkg1::AesKeySlot_Device; return pkg1::AesKeySlot_Device;
} }
if (generation == GetKeyGeneration()) { if (generation == GetKeyGeneration()) {

View file

@ -37,7 +37,8 @@ namespace ams::pkg1 {
AesKeySlot_Master = 13, AesKeySlot_Master = 13,
AesKeySlot_Device = 15, AesKeySlot_Device = 15,
AesKeySlot_SecmonEnd = 16, AesKeySlot_Count = 16,
AesKeySlot_SecmonEnd = AesKeySlot_Count,
/* Used only during boot. */ /* Used only during boot. */
AesKeySlot_Tsec = 12, AesKeySlot_Tsec = 12,
@ -48,6 +49,10 @@ namespace ams::pkg1 {
AesKeySlot_DeviceMasterKeySourceKekErista = 10, AesKeySlot_DeviceMasterKeySourceKekErista = 10,
AesKeySlot_MasterKek = 13, AesKeySlot_MasterKek = 13,
AesKeySlot_DeviceMasterKeySourceKekMariko = 14, AesKeySlot_DeviceMasterKeySourceKekMariko = 14,
/* Mariko only keyslots, used during boot. */
AesKeySlot_MarikoKek = 12,
AesKeySlot_MarikoBek = 13,
}; };
enum RsaKeySlot { enum RsaKeySlot {

View file

@ -26,6 +26,9 @@ namespace ams::se {
void ClearAesKeyIv(int slot); void ClearAesKeyIv(int slot);
void LockAesKeySlot(int slot, u32 flags); void LockAesKeySlot(int slot, u32 flags);
/* NOTE: This is Nintendo's API, but if we actually want to use SE2 we should use a different one. */
void ClearAesKeySlot2(int slot);
void SetAesKey(int slot, const void *key, size_t key_size); void SetAesKey(int slot, const void *key, size_t key_size);
void SetEncryptedAesKey128(int dst_slot, int kek_slot, const void *key, size_t key_size); void SetEncryptedAesKey128(int dst_slot, int kek_slot, const void *key, size_t key_size);

View file

@ -25,6 +25,7 @@ namespace ams::se {
void SetSecure(bool secure); void SetSecure(bool secure);
void SetTzramSecure(); void SetTzramSecure();
void SetPerKeySecure(); void SetPerKeySecure();
void SetContextSaveSecure();
void Lockout(); void Lockout();

View file

@ -362,22 +362,29 @@ namespace ams::se {
StartOperationRaw(SE, SE_OPERATION_OP_START, out_ll_address, in_ll_address); StartOperationRaw(SE, SE_OPERATION_OP_START, out_ll_address, in_ll_address);
} }
void ClearAesKeySlot(volatile SecurityEngineRegisters *SE, int slot) {
/* Validate the key slot. */
AMS_ABORT_UNLESS(0 <= slot && slot < AesKeySlotCount);
for (int i = 0; i < 16; ++i) {
/* Select the keyslot. */
reg::Write(SE->SE_CRYPTO_KEYTABLE_ADDR, SE_REG_BITS_VALUE(CRYPTO_KEYTABLE_ADDR_KEYIV_KEY_SLOT, slot), SE_REG_BITS_VALUE(CRYPTO_KEYTABLE_ADDR_KEYIV_WORD, i));
/* Write the data. */
SE->SE_CRYPTO_KEYTABLE_DATA = 0;
}
}
} }
void ClearAesKeySlot(int slot) { void ClearAesKeySlot(int slot) {
/* Validate the key slot. */ /* Clear the slot in SE1. */
AMS_ABORT_UNLESS(0 <= slot && slot < AesKeySlotCount); ClearAesKeySlot(GetRegisters(), slot);
}
/* Get the engine. */ void ClearAesKeySlot2(int slot) {
auto *SE = GetRegisters(); /* Clear the slot in SE2. */
ClearAesKeySlot(GetRegisters2(), slot);
for (int i = 0; i < 16; ++i) {
/* Select the keyslot. */
reg::Write(SE->SE_CRYPTO_KEYTABLE_ADDR, SE_REG_BITS_VALUE(CRYPTO_KEYTABLE_ADDR_KEYIV_KEY_SLOT, slot), SE_REG_BITS_VALUE(CRYPTO_KEYTABLE_ADDR_KEYIV_WORD, i));
/* Write the data. */
SE->SE_CRYPTO_KEYTABLE_DATA = 0;
}
} }
void ClearAesKeyIv(int slot) { void ClearAesKeyIv(int slot) {

View file

@ -24,6 +24,18 @@ namespace ams::se {
constinit uintptr_t g_register2_address = secmon::MemoryRegionPhysicalDeviceSecurityEngine2.GetAddress(); constinit uintptr_t g_register2_address = secmon::MemoryRegionPhysicalDeviceSecurityEngine2.GetAddress();
constinit DoneHandler g_done_handler = nullptr; constinit DoneHandler g_done_handler = nullptr;
void SetSecure(volatile SecurityEngineRegisters *SE, bool secure) {
/* Set the security software setting. */
if (secure) {
reg::ReadWrite(SE->SE_SE_SECURITY, SE_REG_BITS_ENUM(SECURITY_SOFT_SETTING, SECURE));
} else {
reg::ReadWrite(SE->SE_SE_SECURITY, SE_REG_BITS_ENUM(SECURITY_SOFT_SETTING, NONSECURE));
}
/* Read the status register to force an update. */
reg::Read(SE->SE_SE_SECURITY);
}
} }
volatile SecurityEngineRegisters *GetRegisters() { volatile SecurityEngineRegisters *GetRegisters() {
@ -45,17 +57,13 @@ namespace ams::se {
} }
void SetSecure(bool secure) { void SetSecure(bool secure) {
auto *SE = GetRegisters(); /* Set security for SE1. */
SetSecure(GetRegisters(), secure);
/* Set the security software setting. */ /* If SE2 is present, set security for SE2. */
if (secure) { if (fuse::GetSocType() == fuse::SocType_Mariko) {
reg::ReadWrite(SE->SE_SE_SECURITY, SE_REG_BITS_ENUM(SECURITY_SOFT_SETTING, SECURE)); SetSecure(GetRegisters2(), secure);
} else {
reg::ReadWrite(SE->SE_SE_SECURITY, SE_REG_BITS_ENUM(SECURITY_SOFT_SETTING, NONSECURE));
} }
/* Read the status register to force an update. */
reg::Read(SE->SE_SE_SECURITY);
} }
void SetTzramSecure() { void SetTzramSecure() {
@ -72,6 +80,18 @@ namespace ams::se {
reg::ReadWrite(SE->SE_SE_SECURITY, SE_REG_BITS_ENUM(SECURITY_PERKEY_SETTING, SECURE)); reg::ReadWrite(SE->SE_SE_SECURITY, SE_REG_BITS_ENUM(SECURITY_PERKEY_SETTING, SECURE));
} }
void SetContextSaveSecure() {
/* Context save lock to trustzone secure is only available on mariko. */
if (fuse::GetSocType() == fuse::SocType_Mariko) {
auto *SE = GetRegisters();
auto *SE2 = GetRegisters2();
reg::ReadWrite(SE->SE_SE_SECURITY, SE_REG_BITS_ENUM(SECURITY_CTX_SAVE_TZ_LOCK, SECURE));
reg::ReadWrite(SE2->SE_SE_SECURITY, SE_REG_BITS_ENUM(SECURITY_CTX_SAVE_TZ_LOCK, SECURE));
}
}
void Lockout() { void Lockout() {
auto *SE = GetRegisters(); auto *SE = GetRegisters();

View file

@ -106,10 +106,12 @@ namespace ams::se {
DEFINE_SE_REG_BIT_ENUM(STATUS_MEM_INTERFACE, 2, IDLE, BUSY); DEFINE_SE_REG_BIT_ENUM(STATUS_MEM_INTERFACE, 2, IDLE, BUSY);
/* SE_SECURITY */ /* SE_SECURITY */
DEFINE_SE_REG_BIT_ENUM(SECURITY_HARD_SETTING, 0, SECURE, NONSECURE); DEFINE_SE_REG_BIT_ENUM(SECURITY_HARD_SETTING, 0, SECURE, NONSECURE);
DEFINE_SE_REG_BIT_ENUM(SECURITY_ENG_DIS, 1, DISABLE, ENABLE); DEFINE_SE_REG_BIT_ENUM(SECURITY_ENG_DIS, 1, DISABLE, ENABLE);
DEFINE_SE_REG_BIT_ENUM(SECURITY_PERKEY_SETTING, 2, SECURE, NONSECURE); DEFINE_SE_REG_BIT_ENUM(SECURITY_PERKEY_SETTING, 2, SECURE, NONSECURE);
DEFINE_SE_REG_BIT_ENUM(SECURITY_SOFT_SETTING, 16, SECURE, NONSECURE); DEFINE_SE_REG_BIT_ENUM(SECURITY_CTX_SAVE_TZ_LOCK, 4, SECURE, NONSECURE);
DEFINE_SE_REG_BIT_ENUM(SECURITY_CTX_TZ_LOCK_SOFT, 5, SECURE, NONSECURE);
DEFINE_SE_REG_BIT_ENUM(SECURITY_SOFT_SETTING, 16, SECURE, NONSECURE);
/* SE_TZRAM_SECURITY */ /* SE_TZRAM_SECURITY */
DEFINE_SE_REG(TZRAM_SETTING, 0, BITSIZEOF(u32)); DEFINE_SE_REG(TZRAM_SETTING, 0, BITSIZEOF(u32));

View file

@ -44,31 +44,50 @@ namespace ams::se {
reg::Write(SE->SE_RNG_CONFIG, SE_REG_BITS_ENUM(RNG_CONFIG_SRC, ENTROPY), SE_REG_BITS_VALUE(RNG_CONFIG_MODE, mode)); reg::Write(SE->SE_RNG_CONFIG, SE_REG_BITS_ENUM(RNG_CONFIG_SRC, ENTROPY), SE_REG_BITS_VALUE(RNG_CONFIG_MODE, mode));
} }
} void InitializeRandom(volatile SecurityEngineRegisters *SE) {
/* Lock the entropy source. */
reg::Write(SE->SE_RNG_SRC_CONFIG, SE_REG_BITS_ENUM(RNG_SRC_CONFIG_RO_ENTROPY_SOURCE, ENABLE),
SE_REG_BITS_ENUM(RNG_SRC_CONFIG_RO_ENTROPY_SOURCE_LOCK, ENABLE));
void InitializeRandom() { /* Set the reseed interval to force a reseed every 70000 blocks. */
/* Get the engine. */ SE->SE_RNG_RESEED_INTERVAL = RngReseedInterval;
auto *SE = GetRegisters();
/* Lock the entropy source. */ /* Initialize the DRBG. */
reg::Write(SE->SE_RNG_SRC_CONFIG, SE_REG_BITS_ENUM(RNG_SRC_CONFIG_RO_ENTROPY_SOURCE, ENABLE), {
SE_REG_BITS_ENUM(RNG_SRC_CONFIG_RO_ENTROPY_SOURCE_LOCK, ENABLE)); u8 dummy_buf[AesBlockSize];
/* Set the reseed interval to force a reseed every 70000 blocks. */ /* Configure the engine to force drbg instantiation by writing random to memory. */
SE->SE_RNG_RESEED_INTERVAL = RngReseedInterval; ConfigRng(SE, SE_CONFIG_DST_MEMORY, SE_RNG_CONFIG_MODE_FORCE_INSTANTIATION);
/* Initialize the DRBG. */ /* Configure to do a single RNG block operation to trigger DRBG init. */
{ SE->SE_CRYPTO_LAST_BLOCK = 0;
u8 dummy_buf[AesBlockSize];
/* Configure the engine to force drbg instantiation by writing random to memory. */ /* Execute the operation. */
ConfigRng(SE, SE_CONFIG_DST_MEMORY, SE_RNG_CONFIG_MODE_FORCE_INSTANTIATION); ExecuteOperation(SE, SE_OPERATION_OP_START, dummy_buf, sizeof(dummy_buf), nullptr, 0);
}
}
/* Configure to do a single RNG block operation to trigger DRBG init. */ void GenerateSrk(volatile SecurityEngineRegisters *SE) {
/* Configure the RNG to output to SRK and force a reseed. */
ConfigRng(SE, SE_CONFIG_DST_SRK, SE_RNG_CONFIG_MODE_FORCE_RESEED);
/* Configure a single block operation. */
SE->SE_CRYPTO_LAST_BLOCK = 0; SE->SE_CRYPTO_LAST_BLOCK = 0;
/* Execute the operation. */ /* Execute the operation. */
ExecuteOperation(SE, SE_OPERATION_OP_START, dummy_buf, sizeof(dummy_buf), nullptr, 0); ExecuteOperation(SE, SE_OPERATION_OP_START, nullptr, 0, nullptr, 0);
}
}
void InitializeRandom() {
/* Initialize random for SE1. */
InitializeRandom(GetRegisters());
/* If we have SE2, initialize random for SE2. */
/* NOTE: Nintendo's implementation of this is incorrect. */
if (fuse::GetSocType() == fuse::SocType_Mariko) {
InitializeRandom(GetRegisters2());
} }
} }
@ -130,17 +149,14 @@ namespace ams::se {
} }
void GenerateSrk() { void GenerateSrk() {
/* Get the engine. */ /* Generate SRK for SE1. */
auto *SE = GetRegisters(); GenerateSrk(GetRegisters());
/* Configure the RNG to output to SRK and force a reseed. */ /* If we have SE2, generate SRK for SE2. */
ConfigRng(SE, SE_CONFIG_DST_SRK, SE_RNG_CONFIG_MODE_FORCE_RESEED); /* NOTE: Nintendo's implementation of this is incorrect. */
if (fuse::GetSocType() == fuse::SocType_Mariko) {
/* Configure a single block operation. */ GenerateSrk(GetRegisters2());
SE->SE_CRYPTO_LAST_BLOCK = 0; }
/* Execute the operation. */
ExecuteOperation(SE, SE_OPERATION_OP_START, nullptr, 0, nullptr, 0);
} }
} }