kern: update KPageTable::Map for new refactor

This commit is contained in:
Michael Scire 2024-10-10 15:29:29 -07:00
parent c9df4f8e26
commit ac1a8e749e
3 changed files with 128 additions and 216 deletions

View file

@ -201,32 +201,9 @@ namespace ams::kern::arch::arm64 {
NOINLINE Result InitializeForProcess(ams::svc::CreateProcessFlag flags, bool from_back, KMemoryManager::Pool pool, KProcessAddress code_address, size_t code_size, KSystemResource *system_resource, KResourceLimit *resource_limit, size_t process_index); NOINLINE Result InitializeForProcess(ams::svc::CreateProcessFlag flags, bool from_back, KMemoryManager::Pool pool, KProcessAddress code_address, size_t code_size, KSystemResource *system_resource, KResourceLimit *resource_limit, size_t process_index);
Result Finalize(); Result Finalize();
private: private:
Result MapL1Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll);
Result MapL2Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll);
Result MapL3Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll);
Result Unmap(KProcessAddress virt_addr, size_t num_pages, PageLinkedList *page_list, bool force, bool reuse_ll); Result Unmap(KProcessAddress virt_addr, size_t num_pages, PageLinkedList *page_list, bool force, bool reuse_ll);
Result Map(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, size_t page_size, PageLinkedList *page_list, bool reuse_ll) { Result Map(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, size_t page_size, PageLinkedList *page_list, bool reuse_ll);
switch (page_size) {
case L1BlockSize:
R_RETURN(this->MapL1Blocks(virt_addr, phys_addr, num_pages, entry_template, disable_head_merge, page_list, reuse_ll));
case L2ContiguousBlockSize:
entry_template.SetContiguous(true);
[[fallthrough]];
#ifdef ATMOSPHERE_BOARD_NINTENDO_NX
case L2TegraSmmuBlockSize:
#endif
case L2BlockSize:
R_RETURN(this->MapL2Blocks(virt_addr, phys_addr, num_pages, entry_template, disable_head_merge, page_list, reuse_ll));
case L3ContiguousBlockSize:
entry_template.SetContiguous(true);
[[fallthrough]];
case L3BlockSize:
R_RETURN(this->MapL3Blocks(virt_addr, phys_addr, num_pages, entry_template, disable_head_merge, page_list, reuse_ll));
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
}
Result MapContiguous(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll); Result MapContiguous(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll);
Result MapGroup(KProcessAddress virt_addr, const KPageGroup &pg, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, bool not_first, PageLinkedList *page_list, bool reuse_ll); Result MapGroup(KProcessAddress virt_addr, const KPageGroup &pg, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, bool not_first, PageLinkedList *page_list, bool reuse_ll);

View file

@ -78,8 +78,6 @@ namespace ams::kern::arch::arm64 {
static constexpr ALWAYS_INLINE uintptr_t GetL2Index(KProcessAddress addr) { return GetBits<PageBits + LevelBits * (NumLevels - 2), LevelBits>(GetInteger(addr)); } static constexpr ALWAYS_INLINE uintptr_t GetL2Index(KProcessAddress addr) { return GetBits<PageBits + LevelBits * (NumLevels - 2), LevelBits>(GetInteger(addr)); }
static constexpr ALWAYS_INLINE uintptr_t GetL3Index(KProcessAddress addr) { return GetBits<PageBits + LevelBits * (NumLevels - 3), LevelBits>(GetInteger(addr)); } static constexpr ALWAYS_INLINE uintptr_t GetL3Index(KProcessAddress addr) { return GetBits<PageBits + LevelBits * (NumLevels - 3), LevelBits>(GetInteger(addr)); }
static constexpr ALWAYS_INLINE uintptr_t GetLevelIndex(KProcessAddress addr, EntryLevel level) { return GetBits(GetInteger(addr), PageBits + LevelBits * level, LevelBits); }
static constexpr ALWAYS_INLINE uintptr_t GetL1Offset(KProcessAddress addr) { return GetBits<0, PageBits + LevelBits * (NumLevels - 1)>(GetInteger(addr)); } static constexpr ALWAYS_INLINE uintptr_t GetL1Offset(KProcessAddress addr) { return GetBits<0, PageBits + LevelBits * (NumLevels - 1)>(GetInteger(addr)); }
static constexpr ALWAYS_INLINE uintptr_t GetL2Offset(KProcessAddress addr) { return GetBits<0, PageBits + LevelBits * (NumLevels - 2)>(GetInteger(addr)); } static constexpr ALWAYS_INLINE uintptr_t GetL2Offset(KProcessAddress addr) { return GetBits<0, PageBits + LevelBits * (NumLevels - 2)>(GetInteger(addr)); }
static constexpr ALWAYS_INLINE uintptr_t GetL3Offset(KProcessAddress addr) { return GetBits<0, PageBits + LevelBits * (NumLevels - 3)>(GetInteger(addr)); } static constexpr ALWAYS_INLINE uintptr_t GetL3Offset(KProcessAddress addr) { return GetBits<0, PageBits + LevelBits * (NumLevels - 3)>(GetInteger(addr)); }
@ -93,10 +91,8 @@ namespace ams::kern::arch::arm64 {
static ALWAYS_INLINE KVirtualAddress GetPageTableVirtualAddress(KPhysicalAddress addr) { static ALWAYS_INLINE KVirtualAddress GetPageTableVirtualAddress(KPhysicalAddress addr) {
return KMemoryLayout::GetLinearVirtualAddress(addr); return KMemoryLayout::GetLinearVirtualAddress(addr);
} }
public:
//ALWAYS_INLINE bool ExtractL1Entry(TraversalEntry *out_entry, TraversalContext *out_context, const L1PageTableEntry *l1_entry, KProcessAddress virt_addr) const; static constexpr ALWAYS_INLINE uintptr_t GetLevelIndex(KProcessAddress addr, EntryLevel level) { return GetBits(GetInteger(addr), PageBits + LevelBits * level, LevelBits); }
//ALWAYS_INLINE bool ExtractL2Entry(TraversalEntry *out_entry, TraversalContext *out_context, const L2PageTableEntry *l2_entry, KProcessAddress virt_addr) const;
//ALWAYS_INLINE bool ExtractL3Entry(TraversalEntry *out_entry, TraversalContext *out_context, const L3PageTableEntry *l3_entry, KProcessAddress virt_addr) const;
private: private:
L1PageTableEntry *m_table; L1PageTableEntry *m_table;
bool m_is_kernel; bool m_is_kernel;
@ -134,6 +130,8 @@ namespace ams::kern::arch::arm64 {
explicit KPageTableImpl() { /* ... */ } explicit KPageTableImpl() { /* ... */ }
size_t GetNumL1Entries() const { return m_num_entries; }
NOINLINE void InitializeForKernel(void *tb, KVirtualAddress start, KVirtualAddress end); NOINLINE void InitializeForKernel(void *tb, KVirtualAddress start, KVirtualAddress end);
NOINLINE void InitializeForProcess(void *tb, KVirtualAddress start, KVirtualAddress end); NOINLINE void InitializeForProcess(void *tb, KVirtualAddress start, KVirtualAddress end);
L1PageTableEntry *Finalize(); L1PageTableEntry *Finalize();

View file

@ -330,195 +330,12 @@ namespace ams::kern::arch::arm64 {
} }
} }
Result KPageTable::MapL1Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), L1BlockSize));
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), L1BlockSize));
MESOSPHERE_ASSERT(util::IsAligned(num_pages * PageSize, L1BlockSize));
/* Allocation is never needed for L1 block mapping. */
MESOSPHERE_UNUSED(page_list, reuse_ll);
auto &impl = this->GetImpl();
u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false);
/* Iterate, mapping each block. */
for (size_t i = 0; i < num_pages; i += L1BlockSize / PageSize) {
/* Map the block. */
*impl.GetL1Entry(virt_addr) = L1PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
virt_addr += L1BlockSize;
phys_addr += L1BlockSize;
}
R_SUCCEED();
}
Result KPageTable::MapL2Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), L2BlockSize));
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), L2BlockSize));
MESOSPHERE_ASSERT(util::IsAligned(num_pages * PageSize, L2BlockSize));
auto &impl = this->GetImpl();
KVirtualAddress l2_virt = Null<KVirtualAddress>;
int l2_open_count = 0;
u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false);
/* Iterate, mapping each block. */
for (size_t i = 0; i < num_pages; i += L2BlockSize / PageSize) {
KPhysicalAddress l2_phys = Null<KPhysicalAddress>;
/* If we have no L2 table, we should get or allocate one. */
if (l2_virt == Null<KVirtualAddress>) {
if (L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr); !l1_entry->GetTable(l2_phys)) {
/* Allocate table. */
l2_virt = AllocatePageTable(page_list, reuse_ll);
R_UNLESS(l2_virt != Null<KVirtualAddress>, svc::ResultOutOfResource());
/* Set the entry. */
l2_phys = GetPageTablePhysicalAddress(l2_virt);
PteDataMemoryBarrier();
*l1_entry = L1PageTableEntry(PageTableEntry::TableTag{}, l2_phys, this->IsKernel(), true);
} else {
l2_virt = GetPageTableVirtualAddress(l2_phys);
}
}
MESOSPHERE_ASSERT(l2_virt != Null<KVirtualAddress>);
/* Map the block. */
*impl.GetL2EntryFromTable(l2_virt, virt_addr) = L2PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
l2_open_count++;
virt_addr += L2BlockSize;
phys_addr += L2BlockSize;
/* Account for hitting end of table. */
if (util::IsAligned(GetInteger(virt_addr), L1BlockSize)) {
if (this->GetPageTableManager().IsInPageTableHeap(l2_virt)) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
l2_virt = Null<KVirtualAddress>;
l2_open_count = 0;
}
}
/* Perform any remaining opens. */
if (l2_open_count > 0 && this->GetPageTableManager().IsInPageTableHeap(l2_virt)) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
R_SUCCEED();
}
Result KPageTable::MapL3Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize));
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize));
auto &impl = this->GetImpl();
KVirtualAddress l2_virt = Null<KVirtualAddress>;
KVirtualAddress l3_virt = Null<KVirtualAddress>;
int l2_open_count = 0;
int l3_open_count = 0;
u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false);
/* Iterate, mapping each page. */
for (size_t i = 0; i < num_pages; i++) {
KPhysicalAddress l3_phys = Null<KPhysicalAddress>;
bool l2_allocated = false;
/* If we have no L3 table, we should get or allocate one. */
if (l3_virt == Null<KVirtualAddress>) {
KPhysicalAddress l2_phys = Null<KPhysicalAddress>;
/* If we have no L2 table, we should get or allocate one. */
if (l2_virt == Null<KVirtualAddress>) {
if (L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr); !l1_entry->GetTable(l2_phys)) {
/* Allocate table. */
l2_virt = AllocatePageTable(page_list, reuse_ll);
R_UNLESS(l2_virt != Null<KVirtualAddress>, svc::ResultOutOfResource());
/* Set the entry. */
l2_phys = GetPageTablePhysicalAddress(l2_virt);
PteDataMemoryBarrier();
*l1_entry = L1PageTableEntry(PageTableEntry::TableTag{}, l2_phys, this->IsKernel(), true);
l2_allocated = true;
} else {
l2_virt = GetPageTableVirtualAddress(l2_phys);
}
}
MESOSPHERE_ASSERT(l2_virt != Null<KVirtualAddress>);
if (L2PageTableEntry *l2_entry = impl.GetL2EntryFromTable(l2_virt, virt_addr); !l2_entry->GetTable(l3_phys)) {
/* Allocate table. */
l3_virt = AllocatePageTable(page_list, reuse_ll);
if (l3_virt == Null<KVirtualAddress>) {
/* Cleanup the L2 entry. */
if (l2_allocated) {
*impl.GetL1Entry(virt_addr) = InvalidL1PageTableEntry;
this->NoteUpdated();
FreePageTable(page_list, l2_virt);
} else if (this->GetPageTableManager().IsInPageTableHeap(l2_virt) && l2_open_count > 0) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
R_THROW(svc::ResultOutOfResource());
}
/* Set the entry. */
l3_phys = GetPageTablePhysicalAddress(l3_virt);
PteDataMemoryBarrier();
*l2_entry = L2PageTableEntry(PageTableEntry::TableTag{}, l3_phys, this->IsKernel(), true);
l2_open_count++;
} else {
l3_virt = GetPageTableVirtualAddress(l3_phys);
}
}
MESOSPHERE_ASSERT(l3_virt != Null<KVirtualAddress>);
/* Map the page. */
*impl.GetL3EntryFromTable(l3_virt, virt_addr) = L3PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
l3_open_count++;
virt_addr += PageSize;
phys_addr += PageSize;
/* Account for hitting end of table. */
if (util::IsAligned(GetInteger(virt_addr), L2BlockSize)) {
if (this->GetPageTableManager().IsInPageTableHeap(l3_virt)) {
this->GetPageTableManager().Open(l3_virt, l3_open_count);
}
l3_virt = Null<KVirtualAddress>;
l3_open_count = 0;
if (util::IsAligned(GetInteger(virt_addr), L1BlockSize)) {
if (this->GetPageTableManager().IsInPageTableHeap(l2_virt) && l2_open_count > 0) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
l2_virt = Null<KVirtualAddress>;
l2_open_count = 0;
}
}
}
/* Perform any remaining opens. */
if (l2_open_count > 0 && this->GetPageTableManager().IsInPageTableHeap(l2_virt)) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
if (l3_open_count > 0 && this->GetPageTableManager().IsInPageTableHeap(l3_virt)) {
this->GetPageTableManager().Open(l3_virt, l3_open_count);
}
R_SUCCEED();
}
Result KPageTable::Unmap(KProcessAddress virt_addr, size_t num_pages, PageLinkedList *page_list, bool force, bool reuse_ll) { Result KPageTable::Unmap(KProcessAddress virt_addr, size_t num_pages, PageLinkedList *page_list, bool force, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
/* Ensure there are no pending data writes. */
cpu::DataSynchronizationBarrier();
auto &impl = this->GetImpl(); auto &impl = this->GetImpl();
/* If we're not forcing an unmap, separate pages immediately. */ /* If we're not forcing an unmap, separate pages immediately. */
@ -632,6 +449,126 @@ namespace ams::kern::arch::arm64 {
R_SUCCEED(); R_SUCCEED();
} }
Result KPageTable::Map(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, size_t page_size, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
/* MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize)); */
/* MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize)); */
auto &impl = this->GetImpl();
u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false);
/* Begin traversal. */
TraversalContext context;
TraversalEntry entry;
bool valid = impl.BeginTraversal(std::addressof(entry), std::addressof(context), virt_addr);
/* Iterate, mapping each page. */
while (num_pages > 0) {
/* If we're mapping at the address, there must be nothing there. */
MESOSPHERE_ABORT_UNLESS(!valid);
/* If we fail, clean up any empty tables we may have allocated. */
ON_RESULT_FAILURE {
/* Remove entries for and free any tables. */
while (context.level < KPageTableImpl::EntryLevel_L1) {
/* If the higher-level table has entries, we don't need to do a free. */
if (context.level_entries[context.level + 1]->GetTableNumEntries() != 0) {
break;
}
/* If there's no table, we also don't need to do a free. */
const KVirtualAddress table = KVirtualAddress(util::AlignDown(reinterpret_cast<uintptr_t>(context.level_entries[context.level]), PageSize));
if (table == Null<KVirtualAddress>) {
break;
}
/* Clear the entry for the table we're removing. */
*context.level_entries[context.level + 1] = InvalidPageTableEntry;
/* Remove the entry for the table one level higher. */
if (context.level + 1 < KPageTableImpl::EntryLevel_L1) {
context.level_entries[context.level + 2]->RemoveTableEntries(1);
}
/* Advance our level. */
context.level = static_cast<KPageTableImpl::EntryLevel>(util::ToUnderlying(context.level) + 1);
/* Note that we performed an update and free the table. */
this->NoteUpdated();
this->FreePageTable(page_list, table);
}
};
/* If necessary, allocate page tables for the entry. */
size_t mapping_size = entry.block_size;
while (mapping_size > page_size) {
/* Allocate the table. */
const auto table = AllocatePageTable(page_list, reuse_ll);
R_UNLESS(table != Null<KVirtualAddress>, svc::ResultOutOfResource());
/* Wait for pending stores to complete. */
cpu::DataSynchronizationBarrierInnerShareableStore();
/* Update the block entry to be a table entry. */
*context.level_entries[context.level] = PageTableEntry(PageTableEntry::TableTag{}, KPageTable::GetPageTablePhysicalAddress(table), this->IsKernel(), true, 0);
/* Add the entry to the table containing this one. */
if (context.level != KPageTableImpl::EntryLevel_L1) {
context.level_entries[context.level + 1]->AddTableEntries(1);
}
/* Decrease our level. */
context.level = static_cast<KPageTableImpl::EntryLevel>(util::ToUnderlying(context.level) - 1);
/* Add our new entry to the context. */
context.level_entries[context.level] = GetPointer<PageTableEntry>(table) + impl.GetLevelIndex(virt_addr, context.level);
/* Update our mapping size. */
mapping_size = impl.GetBlockSize(context.level);
}
/* Determine how many pages we can set up on this iteration. */
const size_t block_size = impl.GetBlockSize(context.level);
const size_t max_ptes = (context.level == KPageTableImpl::EntryLevel_L1 ? impl.GetNumL1Entries() : BlocksPerTable) - ((reinterpret_cast<uintptr_t>(context.level_entries[context.level]) / sizeof(PageTableEntry)) & (BlocksPerTable - 1));
const size_t max_pages = (block_size * max_ptes) / PageSize;
const size_t cur_pages = std::min(max_pages, num_pages);
/* Determine the new base attribute. */
const bool contig = page_size >= BlocksPerContiguousBlock * mapping_size;
const size_t num_ptes = cur_pages / (block_size / PageSize);
auto *pte = context.level_entries[context.level];
for (size_t i = 0; i < num_ptes; ++i) {
*pte = PageTableEntry(PageTableEntry::BlockTag{}, phys_addr + i * block_size, entry_template, sw_reserved_bits, contig, context.level == KPageTableImpl::EntryLevel_L3);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
}
/* Add the entries to the table containing this one. */
if (context.level != KPageTableImpl::EntryLevel_L1) {
context.level_entries[context.level + 1]->AddTableEntries(num_ptes);
}
/* Update our context. */
context.is_contiguous = contig;
context.level_entries[context.level] = pte + num_ptes - (contig ? BlocksPerContiguousBlock : 1);
/* Advance our addresses. */
phys_addr += cur_pages * PageSize;
virt_addr += cur_pages * PageSize;
num_pages -= cur_pages;
/* Continue traversal. */
valid = impl.ContinueTraversal(std::addressof(entry), std::addressof(context));
}
/* We mapped, so wait for our writes to take. */
cpu::DataSynchronizationBarrierInnerShareableStore();
R_SUCCEED();
}
Result KPageTable::MapContiguous(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) { Result KPageTable::MapContiguous(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread()); MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());