kern: add KAddressArbiter::WaitIfEqual

This commit is contained in:
Michael Scire 2020-07-15 09:15:49 -07:00 committed by SciresM
parent 01a7606f95
commit a0cc22302c
8 changed files with 275 additions and 44 deletions

View file

@ -20,26 +20,9 @@
namespace ams::kern { namespace ams::kern {
struct KConditionVariableComparator {
static constexpr ALWAYS_INLINE int Compare(const KThread &lhs, const KThread &rhs) {
const uintptr_t l_key = lhs.GetConditionVariableKey();
const uintptr_t r_key = rhs.GetConditionVariableKey();
if (l_key < r_key) {
/* Sort first by key */
return -1;
} else if (l_key == r_key && lhs.GetPriority() < rhs.GetPriority()) {
/* And then by priority. */
return -1;
} else {
return 1;
}
}
};
class KConditionVariable { class KConditionVariable {
public: public:
using ThreadTree = util::IntrusiveRedBlackTreeMemberTraits<&KThread::condvar_arbiter_tree_node>::TreeType<KConditionVariableComparator>; using ThreadTree = typename KThread::ConditionVariableThreadTreeType;
private: private:
ThreadTree tree; ThreadTree tree;
public: public:
@ -52,20 +35,20 @@ namespace ams::kern {
/* Condition variable. */ /* Condition variable. */
void Signal(uintptr_t cv_key, s32 count); void Signal(uintptr_t cv_key, s32 count);
Result Wait(KProcessAddress addr, uintptr_t key, u32 value, s64 timeout); Result Wait(KProcessAddress addr, uintptr_t key, u32 value, s64 timeout);
ALWAYS_INLINE void BeforeUpdatePriority(KThread *thread) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
this->tree.erase(this->tree.iterator_to(*thread));
}
ALWAYS_INLINE void AfterUpdatePriority(KThread *thread) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
this->tree.insert(*thread);
}
private: private:
KThread *SignalImpl(KThread *thread); KThread *SignalImpl(KThread *thread);
}; };
ALWAYS_INLINE void BeforeUpdatePriority(KConditionVariable::ThreadTree *tree, KThread *thread) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
tree->erase(tree->iterator_to(*thread));
}
ALWAYS_INLINE void AfterUpdatePriority(KConditionVariable::ThreadTree *tree, KThread *thread) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
tree->insert(*thread);
}
} }

View file

@ -231,6 +231,14 @@ namespace ams::kern {
return this->cond_var.Wait(address, cv_key, tag, ns); return this->cond_var.Wait(address, cv_key, tag, ns);
} }
Result SignalAddressArbiter(uintptr_t address, ams::svc::SignalType signal_type, s32 value, s32 count) {
return this->address_arbiter.SignalToAddress(address, signal_type, value, count);
}
Result WaitAddressArbiter(uintptr_t address, ams::svc::ArbitrationType arb_type, s32 value, s64 timeout) {
return this->address_arbiter.WaitForAddress(address, arb_type, value, timeout);
}
static KProcess *GetProcessFromId(u64 process_id); static KProcess *GetProcessFromId(u64 process_id);
static Result GetProcessList(s32 *out_num_processes, ams::kern::svc::KUserPointer<u64 *> out_process_ids, s32 max_out_count); static Result GetProcessList(s32 *out_num_processes, ams::kern::svc::KUserPointer<u64 *> out_process_ids, s32 max_out_count);

View file

@ -119,6 +119,23 @@ namespace ams::kern {
constexpr SyncObjectBuffer() : sync_objects() { /* ... */ } constexpr SyncObjectBuffer() : sync_objects() { /* ... */ }
}; };
static_assert(sizeof(SyncObjectBuffer::sync_objects) == sizeof(SyncObjectBuffer::handles)); static_assert(sizeof(SyncObjectBuffer::sync_objects) == sizeof(SyncObjectBuffer::handles));
struct ConditionVariableComparator {
static constexpr ALWAYS_INLINE int Compare(const KThread &lhs, const KThread &rhs) {
const uintptr_t l_key = lhs.GetConditionVariableKey();
const uintptr_t r_key = rhs.GetConditionVariableKey();
if (l_key < r_key) {
/* Sort first by key */
return -1;
} else if (l_key == r_key && lhs.GetPriority() < rhs.GetPriority()) {
/* And then by priority. */
return -1;
} else {
return 1;
}
}
};
private: private:
static inline std::atomic<u64> s_next_thread_id = 0; static inline std::atomic<u64> s_next_thread_id = 0;
private: private:
@ -150,10 +167,13 @@ namespace ams::kern {
using WaiterListTraits = util::IntrusiveListMemberTraitsDeferredAssert<&KThread::waiter_list_node>; using WaiterListTraits = util::IntrusiveListMemberTraitsDeferredAssert<&KThread::waiter_list_node>;
using WaiterList = WaiterListTraits::ListType; using WaiterList = WaiterListTraits::ListType;
using ConditionVariableThreadTreeTraits = util::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<&KThread::condvar_arbiter_tree_node>;
using ConditionVariableThreadTree = ConditionVariableThreadTreeTraits::TreeType<ConditionVariableComparator>;
WaiterList waiter_list{}; WaiterList waiter_list{};
WaiterList paused_waiter_list{}; WaiterList paused_waiter_list{};
KThread *lock_owner{}; KThread *lock_owner{};
KConditionVariable *cond_var{}; ConditionVariableThreadTree *condvar_tree{};
uintptr_t debug_params[3]{}; uintptr_t debug_params[3]{};
u32 arbiter_value{}; u32 arbiter_value{};
u32 suspend_request_flags{}; u32 suspend_request_flags{};
@ -290,8 +310,21 @@ namespace ams::kern {
this->priority = priority; this->priority = priority;
} }
void ClearConditionVariable() { constexpr void ClearConditionVariableTree() {
this->cond_var = nullptr; this->condvar_tree = nullptr;
}
constexpr void SetAddressArbiter(ConditionVariableThreadTree *tree, uintptr_t address) {
this->condvar_tree = tree;
this->condvar_key = address;
}
constexpr void ClearAddressArbiter() {
this->condvar_tree = nullptr;
}
constexpr bool IsWaitingForAddressArbiter() const {
return this->condvar_tree != nullptr;
} }
constexpr s32 GetIdealCore() const { return this->ideal_core_id; } constexpr s32 GetIdealCore() const { return this->ideal_core_id; }
@ -308,7 +341,7 @@ namespace ams::kern {
constexpr const QueueEntry &GetSleepingQueueEntry() const { return this->sleeping_queue_entry; } constexpr const QueueEntry &GetSleepingQueueEntry() const { return this->sleeping_queue_entry; }
constexpr void SetSleepingQueue(KThreadQueue *q) { this->sleeping_queue = q; } constexpr void SetSleepingQueue(KThreadQueue *q) { this->sleeping_queue = q; }
constexpr KConditionVariable *GetConditionVariable() const { return this->cond_var; } constexpr ConditionVariableThreadTree *GetConditionVariableTree() const { return this->condvar_tree; }
constexpr s32 GetNumKernelWaiters() const { return this->num_kernel_waiters; } constexpr s32 GetNumKernelWaiters() const { return this->num_kernel_waiters; }
@ -416,9 +449,16 @@ namespace ams::kern {
static constexpr bool IsWaiterListValid() { static constexpr bool IsWaiterListValid() {
return WaiterListTraits::IsValid(); return WaiterListTraits::IsValid();
} }
static constexpr bool IsConditionVariableThreadTreeValid() {
return ConditionVariableThreadTreeTraits::IsValid();
}
using ConditionVariableThreadTreeType = ConditionVariableThreadTree;
}; };
static_assert(alignof(KThread) == 0x10); static_assert(alignof(KThread) == 0x10);
static_assert(KThread::IsWaiterListValid()); static_assert(KThread::IsWaiterListValid());
static_assert(KThread::IsConditionVariableThreadTreeValid());
class KScopedDisableDispatch { class KScopedDisableDispatch {
public: public:

View file

@ -0,0 +1,108 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
namespace {
constinit KThread g_arbiter_compare_thread;
ALWAYS_INLINE bool ReadFromUser(s32 *out, KProcessAddress address) {
return UserspaceAccess::CopyMemoryFromUserSize32Bit(out, GetVoidPointer(address));
}
}
Result KAddressArbiter::Signal(uintptr_t addr, s32 count) {
MESOSPHERE_UNIMPLEMENTED();
}
Result KAddressArbiter::SignalAndIncrementIfEqual(uintptr_t addr, s32 value, s32 count) {
MESOSPHERE_UNIMPLEMENTED();
}
Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(uintptr_t addr, s32 value, s32 count) {
MESOSPHERE_UNIMPLEMENTED();
}
Result KAddressArbiter::WaitIfLessThan(uintptr_t addr, s32 value, bool decrement, s64 timeout) {
MESOSPHERE_UNIMPLEMENTED();
}
Result KAddressArbiter::WaitIfEqual(uintptr_t addr, s32 value, s64 timeout) {
/* Prepare to wait. */
KThread *cur_thread = GetCurrentThreadPointer();
KHardwareTimer *timer;
{
KScopedSchedulerLockAndSleep slp(std::addressof(timer), cur_thread, timeout);
/* Check that the thread isn't terminating. */
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return svc::ResultTerminationRequested();
}
/* Set the synced object. */
cur_thread->SetSyncedObject(nullptr, ams::svc::ResultTimedOut());
/* Read the value from userspace. */
s32 user_value;
if (!ReadFromUser(std::addressof(user_value), addr)) {
slp.CancelSleep();
return svc::ResultInvalidCurrentMemory();
}
/* Check that the value is equal. */
if (value != user_value) {
slp.CancelSleep();
return svc::ResultInvalidState();
}
/* Check that the timeout is non-zero. */
if (timeout == 0) {
slp.CancelSleep();
return svc::ResultTimedOut();
}
/* Set the arbiter. */
cur_thread->SetAddressArbiter(std::addressof(this->tree), addr);
this->tree.insert(*cur_thread);
cur_thread->SetState(KThread::ThreadState_Waiting);
}
/* Cancel the timer wait. */
if (timer != nullptr) {
timer->CancelTask(cur_thread);
}
/* Remove from the address arbiter. */
{
KScopedSchedulerLock sl;
if (cur_thread->IsWaitingForAddressArbiter()) {
this->tree.erase(this->tree.iterator_to(*cur_thread));
cur_thread->ClearAddressArbiter();
}
}
/* Get the result. */
KSynchronizationObject *dummy;
return cur_thread->GetWaitResult(std::addressof(dummy));
}
}

View file

@ -146,7 +146,7 @@ namespace ams::kern {
} }
it = this->tree.erase(it); it = this->tree.erase(it);
target_thread->ClearConditionVariable(); target_thread->ClearConditionVariableTree();
++num_waiters; ++num_waiters;
} }
} }

View file

@ -94,7 +94,7 @@ namespace ams::kern {
/* Set parent and condvar tree. */ /* Set parent and condvar tree. */
this->parent = nullptr; this->parent = nullptr;
this->cond_var = nullptr; this->condvar_tree = nullptr;
/* Set sync booleans. */ /* Set sync booleans. */
this->signaled = false; this->signaled = false;
@ -519,8 +519,8 @@ namespace ams::kern {
} }
/* Ensure we don't violate condition variable red black tree invariants. */ /* Ensure we don't violate condition variable red black tree invariants. */
if (auto *cond_var = thread->GetConditionVariable(); cond_var != nullptr) { if (auto *cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
cond_var->BeforeUpdatePriority(thread); BeforeUpdatePriority(cv_tree, thread);
} }
/* Change the priority. */ /* Change the priority. */
@ -528,8 +528,8 @@ namespace ams::kern {
thread->SetPriority(new_priority); thread->SetPriority(new_priority);
/* Restore the condition variable, if relevant. */ /* Restore the condition variable, if relevant. */
if (auto *cond_var = thread->GetConditionVariable(); cond_var != nullptr) { if (auto *cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
cond_var->AfterUpdatePriority(thread); AfterUpdatePriority(cv_tree, thread);
} }
/* Update the scheduler. */ /* Update the scheduler. */

View file

@ -21,28 +21,86 @@ namespace ams::kern::svc {
namespace { namespace {
constexpr bool IsKernelAddress(uintptr_t address) {
return KernelVirtualAddressSpaceBase <= address && address < KernelVirtualAddressSpaceEnd;
}
constexpr bool IsValidSignalType(ams::svc::SignalType type) {
switch (type) {
case ams::svc::SignalType_Signal:
case ams::svc::SignalType_SignalAndIncrementIfEqual:
case ams::svc::SignalType_SignalAndModifyByWaitingCountIfEqual:
return true;
default:
return false;
}
}
constexpr bool IsValidArbitrationType(ams::svc::ArbitrationType type) {
switch (type) {
case ams::svc::ArbitrationType_WaitIfLessThan:
case ams::svc::ArbitrationType_DecrementAndWaitIfLessThan:
case ams::svc::ArbitrationType_WaitIfEqual:
return true;
default:
return false;
}
}
Result WaitForAddress(uintptr_t address, ams::svc::ArbitrationType arb_type, int32_t value, int64_t timeout_ns) {
/* Validate input. */
R_UNLESS(AMS_LIKELY(!IsKernelAddress(address)), svc::ResultInvalidCurrentMemory());
R_UNLESS(util::IsAligned(address, sizeof(int32_t)), svc::ResultInvalidAddress());
R_UNLESS(IsValidArbitrationType(arb_type), svc::ResultInvalidEnumValue());
/* Convert timeout from nanoseconds to ticks. */
s64 timeout;
if (timeout_ns > 0) {
const ams::svc::Tick offset_tick(TimeSpan::FromNanoSeconds(timeout_ns));
if (AMS_LIKELY(offset_tick > 0)) {
timeout = KHardwareTimer::GetTick() + offset_tick + 2;
if (AMS_UNLIKELY(timeout <= 0)) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = timeout_ns;
}
return GetCurrentProcess().WaitAddressArbiter(address, arb_type, value, timeout);
}
Result SignalToAddress(uintptr_t address, ams::svc::SignalType signal_type, int32_t value, int32_t count) {
/* Validate input. */
R_UNLESS(AMS_LIKELY(!IsKernelAddress(address)), svc::ResultInvalidCurrentMemory());
R_UNLESS(util::IsAligned(address, sizeof(int32_t)), svc::ResultInvalidAddress());
R_UNLESS(IsValidSignalType(signal_type), svc::ResultInvalidEnumValue());
return GetCurrentProcess().SignalAddressArbiter(address, signal_type, value, count);
}
} }
/* ============================= 64 ABI ============================= */ /* ============================= 64 ABI ============================= */
Result WaitForAddress64(ams::svc::Address address, ams::svc::ArbitrationType arb_type, int32_t value, int64_t timeout_ns) { Result WaitForAddress64(ams::svc::Address address, ams::svc::ArbitrationType arb_type, int32_t value, int64_t timeout_ns) {
MESOSPHERE_PANIC("Stubbed SvcWaitForAddress64 was called."); return WaitForAddress(address, arb_type, value, timeout_ns);
} }
Result SignalToAddress64(ams::svc::Address address, ams::svc::SignalType signal_type, int32_t value, int32_t count) { Result SignalToAddress64(ams::svc::Address address, ams::svc::SignalType signal_type, int32_t value, int32_t count) {
MESOSPHERE_PANIC("Stubbed SvcSignalToAddress64 was called."); return SignalToAddress(address, signal_type, value, count);
} }
/* ============================= 64From32 ABI ============================= */ /* ============================= 64From32 ABI ============================= */
Result WaitForAddress64From32(ams::svc::Address address, ams::svc::ArbitrationType arb_type, int32_t value, int64_t timeout_ns) { Result WaitForAddress64From32(ams::svc::Address address, ams::svc::ArbitrationType arb_type, int32_t value, int64_t timeout_ns) {
MESOSPHERE_PANIC("Stubbed SvcWaitForAddress64From32 was called."); return WaitForAddress(address, arb_type, value, timeout_ns);
} }
Result SignalToAddress64From32(ams::svc::Address address, ams::svc::SignalType signal_type, int32_t value, int32_t count) { Result SignalToAddress64From32(ams::svc::Address address, ams::svc::SignalType signal_type, int32_t value, int32_t count) {
MESOSPHERE_PANIC("Stubbed SvcSignalToAddress64From32 was called."); return SignalToAddress(address, signal_type, value, count);
} }
} }

View file

@ -279,6 +279,40 @@ namespace ams::util {
static_assert(GetParent(GetNode(GetPointer(DerivedStorage))) == GetPointer(DerivedStorage)); static_assert(GetParent(GetNode(GetPointer(DerivedStorage))) == GetPointer(DerivedStorage));
}; };
template<auto T, class Derived = util::impl::GetParentType<T>>
class IntrusiveRedBlackTreeMemberTraitsDeferredAssert;
template<class Parent, IntrusiveRedBlackTreeNode Parent::*Member, class Derived>
class IntrusiveRedBlackTreeMemberTraitsDeferredAssert<Member, Derived> {
public:
template<class Comparator>
using TreeType = IntrusiveRedBlackTree<Derived, IntrusiveRedBlackTreeMemberTraitsDeferredAssert, Comparator>;
static constexpr bool IsValid() {
TYPED_STORAGE(Derived) DerivedStorage = {};
return GetParent(GetNode(GetPointer(DerivedStorage))) == GetPointer(DerivedStorage);
}
private:
template<class, class, class>
friend class IntrusiveRedBlackTree;
static constexpr IntrusiveRedBlackTreeNode *GetNode(Derived *parent) {
return std::addressof(parent->*Member);
}
static constexpr IntrusiveRedBlackTreeNode const *GetNode(Derived const *parent) {
return std::addressof(parent->*Member);
}
static constexpr Derived *GetParent(IntrusiveRedBlackTreeNode *node) {
return util::GetParentPointer<Member, Derived>(node);
}
static constexpr Derived const *GetParent(IntrusiveRedBlackTreeNode const *node) {
return util::GetParentPointer<Member, Derived>(node);
}
};
template<class Derived> template<class Derived>
class IntrusiveRedBlackTreeBaseNode : public IntrusiveRedBlackTreeNode{}; class IntrusiveRedBlackTreeBaseNode : public IntrusiveRedBlackTreeNode{};