kern: revise KPageTableBase region layout logic to match 18.0.0 changes

This commit is contained in:
Michael Scire 2024-03-28 01:47:36 -07:00
parent 4301e948cc
commit 8cacb07d5f
2 changed files with 363 additions and 186 deletions

View file

@ -86,6 +86,15 @@ namespace ams::kern {
MemoryFillValue_Heap = 'Z', MemoryFillValue_Heap = 'Z',
}; };
enum RegionType {
RegionType_KernelMap = 0,
RegionType_Stack = 1,
RegionType_Alias = 2,
RegionType_Heap = 3,
RegionType_Count,
};
enum OperationType { enum OperationType {
OperationType_Map = 0, OperationType_Map = 0,
OperationType_MapGroup = 1, OperationType_MapGroup = 1,
@ -165,15 +174,9 @@ namespace ams::kern {
private: private:
KProcessAddress m_address_space_start; KProcessAddress m_address_space_start;
KProcessAddress m_address_space_end; KProcessAddress m_address_space_end;
KProcessAddress m_heap_region_start; KProcessAddress m_region_starts[RegionType_Count];
KProcessAddress m_heap_region_end; KProcessAddress m_region_ends[RegionType_Count];
KProcessAddress m_current_heap_end; KProcessAddress m_current_heap_end;
KProcessAddress m_alias_region_start;
KProcessAddress m_alias_region_end;
KProcessAddress m_stack_region_start;
KProcessAddress m_stack_region_end;
KProcessAddress m_kernel_map_region_start;
KProcessAddress m_kernel_map_region_end;
KProcessAddress m_alias_code_region_start; KProcessAddress m_alias_code_region_start;
KProcessAddress m_alias_code_region_end; KProcessAddress m_alias_code_region_end;
KProcessAddress m_code_region_start; KProcessAddress m_code_region_start;
@ -203,10 +206,10 @@ namespace ams::kern {
MemoryFillValue m_stack_fill_value; MemoryFillValue m_stack_fill_value;
public: public:
constexpr explicit KPageTableBase(util::ConstantInitializeTag) constexpr explicit KPageTableBase(util::ConstantInitializeTag)
: m_address_space_start(Null<KProcessAddress>), m_address_space_end(Null<KProcessAddress>), m_heap_region_start(Null<KProcessAddress>), : m_address_space_start(Null<KProcessAddress>), m_address_space_end(Null<KProcessAddress>),
m_heap_region_end(Null<KProcessAddress>), m_current_heap_end(Null<KProcessAddress>), m_alias_region_start(Null<KProcessAddress>), m_region_starts{Null<KProcessAddress>, Null<KProcessAddress>, Null<KProcessAddress>, Null<KProcessAddress>},
m_alias_region_end(Null<KProcessAddress>), m_stack_region_start(Null<KProcessAddress>), m_stack_region_end(Null<KProcessAddress>), m_region_ends{Null<KProcessAddress>, Null<KProcessAddress>, Null<KProcessAddress>, Null<KProcessAddress>},
m_kernel_map_region_start(Null<KProcessAddress>), m_kernel_map_region_end(Null<KProcessAddress>), m_alias_code_region_start(Null<KProcessAddress>), m_current_heap_end(Null<KProcessAddress>), m_alias_code_region_start(Null<KProcessAddress>),
m_alias_code_region_end(Null<KProcessAddress>), m_code_region_start(Null<KProcessAddress>), m_code_region_end(Null<KProcessAddress>), m_alias_code_region_end(Null<KProcessAddress>), m_code_region_start(Null<KProcessAddress>), m_code_region_end(Null<KProcessAddress>),
m_max_heap_size(), m_mapped_physical_memory_size(), m_mapped_unsafe_physical_memory(), m_mapped_insecure_memory(), m_mapped_ipc_server_memory(), m_max_heap_size(), m_mapped_physical_memory_size(), m_mapped_unsafe_physical_memory(), m_mapped_insecure_memory(), m_mapped_ipc_server_memory(),
m_general_lock(), m_map_physical_memory_lock(), m_device_map_lock(), m_impl(util::ConstantInitialize), m_memory_block_manager(util::ConstantInitialize), m_general_lock(), m_map_physical_memory_lock(), m_device_map_lock(), m_impl(util::ConstantInitialize), m_memory_block_manager(util::ConstantInitialize),
@ -236,7 +239,7 @@ namespace ams::kern {
} }
constexpr bool IsInAliasRegion(KProcessAddress addr, size_t size) const { constexpr bool IsInAliasRegion(KProcessAddress addr, size_t size) const {
return this->Contains(addr, size) && m_alias_region_start <= addr && addr + size - 1 <= m_alias_region_end - 1; return this->Contains(addr, size) && m_region_starts[RegionType_Alias] <= addr && addr + size - 1 <= m_region_ends[RegionType_Alias] - 1;
} }
bool IsInUnsafeAliasRegion(KProcessAddress addr, size_t size) const { bool IsInUnsafeAliasRegion(KProcessAddress addr, size_t size) const {
@ -479,24 +482,28 @@ namespace ams::kern {
} }
public: public:
KProcessAddress GetAddressSpaceStart() const { return m_address_space_start; } KProcessAddress GetAddressSpaceStart() const { return m_address_space_start; }
KProcessAddress GetHeapRegionStart() const { return m_heap_region_start; }
KProcessAddress GetAliasRegionStart() const { return m_alias_region_start; } KProcessAddress GetHeapRegionStart() const { return m_region_starts[RegionType_Heap]; }
KProcessAddress GetStackRegionStart() const { return m_stack_region_start; } KProcessAddress GetAliasRegionStart() const { return m_region_starts[RegionType_Alias]; }
KProcessAddress GetKernelMapRegionStart() const { return m_kernel_map_region_start; } KProcessAddress GetStackRegionStart() const { return m_region_starts[RegionType_Stack]; }
KProcessAddress GetKernelMapRegionStart() const { return m_region_starts[RegionType_KernelMap]; }
KProcessAddress GetAliasCodeRegionStart() const { return m_alias_code_region_start; } KProcessAddress GetAliasCodeRegionStart() const { return m_alias_code_region_start; }
size_t GetAddressSpaceSize() const { return m_address_space_end - m_address_space_start; } size_t GetAddressSpaceSize() const { return m_address_space_end - m_address_space_start; }
size_t GetHeapRegionSize() const { return m_heap_region_end - m_heap_region_start; }
size_t GetAliasRegionSize() const { return m_alias_region_end - m_alias_region_start; } size_t GetHeapRegionSize() const { return m_region_ends[RegionType_Heap] - m_region_starts[RegionType_Heap]; }
size_t GetStackRegionSize() const { return m_stack_region_end - m_stack_region_start; } size_t GetAliasRegionSize() const { return m_region_ends[RegionType_Alias] - m_region_starts[RegionType_Alias]; }
size_t GetKernelMapRegionSize() const { return m_kernel_map_region_end - m_kernel_map_region_start; } size_t GetStackRegionSize() const { return m_region_ends[RegionType_Stack] - m_region_starts[RegionType_Stack]; }
size_t GetKernelMapRegionSize() const { return m_region_ends[RegionType_KernelMap] - m_region_starts[RegionType_KernelMap]; }
size_t GetAliasCodeRegionSize() const { return m_alias_code_region_end - m_alias_code_region_start; } size_t GetAliasCodeRegionSize() const { return m_alias_code_region_end - m_alias_code_region_start; }
size_t GetNormalMemorySize() const { size_t GetNormalMemorySize() const {
/* Lock the table. */ /* Lock the table. */
KScopedLightLock lk(m_general_lock); KScopedLightLock lk(m_general_lock);
return (m_current_heap_end - m_heap_region_start) + m_mapped_physical_memory_size; return (m_current_heap_end - m_region_starts[RegionType_Heap]) + m_mapped_physical_memory_size;
} }
size_t GetCodeSize() const; size_t GetCodeSize() const;

View file

@ -97,15 +97,12 @@ namespace ams::kern {
m_enable_aslr = true; m_enable_aslr = true;
m_enable_device_address_space_merge = false; m_enable_device_address_space_merge = false;
m_heap_region_start = 0; for (auto i = 0; i < RegionType_Count; ++i) {
m_heap_region_end = 0; m_region_starts[i] = 0;
m_region_ends[i] = 0;
}
m_current_heap_end = 0; m_current_heap_end = 0;
m_alias_region_start = 0;
m_alias_region_end = 0;
m_stack_region_start = 0;
m_stack_region_end = 0;
m_kernel_map_region_start = 0;
m_kernel_map_region_end = 0;
m_alias_code_region_start = 0; m_alias_code_region_start = 0;
m_alias_code_region_end = 0; m_alias_code_region_end = 0;
m_code_region_start = 0; m_code_region_start = 0;
@ -165,30 +162,44 @@ namespace ams::kern {
KProcessAddress process_code_end; KProcessAddress process_code_end;
size_t stack_region_size; size_t stack_region_size;
size_t kernel_map_region_size; size_t kernel_map_region_size;
KProcessAddress before_process_code_start, after_process_code_start;
size_t before_process_code_size, after_process_code_size;
if (m_address_space_width == 39) { if (m_address_space_width == 39) {
alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Alias); stack_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Stack);
heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Heap); kernel_map_region_size = GetSpaceSize(KAddressSpaceInfo::Type_MapSmall);
stack_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Stack);
kernel_map_region_size = GetSpaceSize(KAddressSpaceInfo::Type_MapSmall); m_code_region_start = GetSpaceStart(KAddressSpaceInfo::Type_Map39Bit);
m_code_region_start = GetSpaceStart(KAddressSpaceInfo::Type_Map39Bit); m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type_Map39Bit);
m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type_Map39Bit); m_alias_code_region_start = m_code_region_start;
m_alias_code_region_start = m_code_region_start; m_alias_code_region_end = m_code_region_end;
m_alias_code_region_end = m_code_region_end;
process_code_start = util::AlignDown(GetInteger(code_address), RegionAlignment); process_code_start = util::AlignDown(GetInteger(code_address), RegionAlignment);
process_code_end = util::AlignUp(GetInteger(code_address) + code_size, RegionAlignment); process_code_end = util::AlignUp(GetInteger(code_address) + code_size, RegionAlignment);
before_process_code_start = m_code_region_start;
before_process_code_size = process_code_start - before_process_code_start;
after_process_code_start = process_code_end;
after_process_code_size = m_code_region_end - process_code_end;
} else { } else {
stack_region_size = 0; stack_region_size = 0;
kernel_map_region_size = 0; kernel_map_region_size = 0;
m_code_region_start = GetSpaceStart(KAddressSpaceInfo::Type_MapSmall);
m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type_MapSmall); m_code_region_start = GetSpaceStart(KAddressSpaceInfo::Type_MapSmall);
m_stack_region_start = m_code_region_start; m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type_MapSmall);
m_alias_code_region_start = m_code_region_start; m_alias_code_region_start = m_code_region_start;
m_alias_code_region_end = GetSpaceStart(KAddressSpaceInfo::Type_MapLarge) + GetSpaceSize(KAddressSpaceInfo::Type_MapLarge); m_alias_code_region_end = GetSpaceStart(KAddressSpaceInfo::Type_MapLarge) + GetSpaceSize(KAddressSpaceInfo::Type_MapLarge);
m_stack_region_end = m_code_region_end; m_region_starts[RegionType_Stack] = m_code_region_start;
m_kernel_map_region_start = m_code_region_start; m_region_ends[RegionType_Stack] = m_code_region_end;
m_kernel_map_region_end = m_code_region_end; m_region_starts[RegionType_KernelMap] = m_code_region_start;
process_code_start = m_code_region_start; m_region_ends[RegionType_KernelMap] = m_code_region_end;
process_code_end = m_code_region_end;
process_code_start = m_code_region_start;
process_code_end = m_code_region_end;
before_process_code_start = m_code_region_start;
before_process_code_size = 0;
after_process_code_start = GetSpaceStart(KAddressSpaceInfo::Type_MapLarge);
after_process_code_size = GetSpaceSize(KAddressSpaceInfo::Type_MapLarge);
} }
/* Set other basic fields. */ /* Set other basic fields. */
@ -201,100 +212,285 @@ namespace ams::kern {
m_block_info_manager = system_resource->GetBlockInfoManagerPointer(); m_block_info_manager = system_resource->GetBlockInfoManagerPointer();
m_resource_limit = resource_limit; m_resource_limit = resource_limit;
/* Determine the region we can place our undetermineds in. */ /* Set up our undetermined regions. */
KProcessAddress alloc_start; {
size_t alloc_size; /* Declare helper structure for layout process. */
if ((GetInteger(process_code_start) - GetInteger(m_code_region_start)) >= (GetInteger(end) - GetInteger(process_code_end))) { struct RegionLayoutInfo {
alloc_start = m_code_region_start; size_t size;
alloc_size = GetInteger(process_code_start) - GetInteger(m_code_region_start); RegionType type;
} else { s32 alloc_index; /* 0 for before process code, 1 for after process code */
alloc_start = process_code_end; };
alloc_size = GetInteger(end) - GetInteger(process_code_end);
}
const size_t needed_size = (alias_region_size + heap_region_size + stack_region_size + kernel_map_region_size);
R_UNLESS(alloc_size >= needed_size, svc::ResultOutOfMemory());
const size_t remaining_size = alloc_size - needed_size; /* Create region layout info array, and add regions to it. */
RegionLayoutInfo region_layouts[RegionType_Count] = {};
size_t num_regions = 0;
/* Determine random placements for each region. */ if (kernel_map_region_size > 0) { region_layouts[num_regions++] = { .size = kernel_map_region_size, .type = RegionType_KernelMap, .alloc_index = 0, }; }
size_t alias_rnd = 0, heap_rnd = 0, stack_rnd = 0, kmap_rnd = 0; if (stack_region_size > 0) { region_layouts[num_regions++] = { .size = stack_region_size, .type = RegionType_Stack, .alloc_index = 0, }; }
if (enable_aslr) {
alias_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
heap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
stack_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
kmap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
}
/* Setup heap and alias regions. */ region_layouts[num_regions++] = { .size = alias_region_size, .type = RegionType_Alias, .alloc_index = 0, };
m_alias_region_start = alloc_start + alias_rnd; region_layouts[num_regions++] = { .size = heap_region_size, .type = RegionType_Heap, .alloc_index = 0, };
m_alias_region_end = m_alias_region_start + alias_region_size;
m_heap_region_start = alloc_start + heap_rnd;
m_heap_region_end = m_heap_region_start + heap_region_size;
if (alias_rnd <= heap_rnd) { /* Selection-sort the regions by size largest-to-smallest. */
m_heap_region_start += alias_region_size; for (size_t i = 0; i < num_regions - 1; ++i) {
m_heap_region_end += alias_region_size; for (size_t j = i + 1; j < num_regions; ++j) {
} else { if (region_layouts[i].size < region_layouts[j].size) {
m_alias_region_start += heap_region_size; std::swap(region_layouts[i], region_layouts[j]);
m_alias_region_end += heap_region_size; }
} }
/* Setup stack region. */
if (stack_region_size) {
m_stack_region_start = alloc_start + stack_rnd;
m_stack_region_end = m_stack_region_start + stack_region_size;
if (alias_rnd < stack_rnd) {
m_stack_region_start += alias_region_size;
m_stack_region_end += alias_region_size;
} else {
m_alias_region_start += stack_region_size;
m_alias_region_end += stack_region_size;
} }
if (heap_rnd < stack_rnd) { /* Layout the regions. */
m_stack_region_start += heap_region_size; constexpr auto AllocIndexCount = 2;
m_stack_region_end += heap_region_size; KProcessAddress alloc_starts[AllocIndexCount] = { before_process_code_start, after_process_code_start };
} else { size_t alloc_sizes[AllocIndexCount] = { before_process_code_size, after_process_code_size };
m_heap_region_start += stack_region_size; size_t alloc_counts[AllocIndexCount] = {};
m_heap_region_end += stack_region_size; for (size_t i = 0; i < num_regions; ++i) {
} /* Get reference to the current region. */
} auto &cur_region = region_layouts[i];
/* Setup kernel map region. */ /* Determine where the current region should go. */
if (kernel_map_region_size) { cur_region.alloc_index = alloc_sizes[1] >= alloc_sizes[0] ? 1 : 0;
m_kernel_map_region_start = alloc_start + kmap_rnd; ++alloc_counts[cur_region.alloc_index];
m_kernel_map_region_end = m_kernel_map_region_start + kernel_map_region_size;
if (alias_rnd < kmap_rnd) { /* Check that the current region can fit. */
m_kernel_map_region_start += alias_region_size; R_UNLESS(alloc_sizes[cur_region.alloc_index] >= cur_region.size, svc::ResultOutOfMemory());
m_kernel_map_region_end += alias_region_size;
} else { /* Update our remaining size tracking. */
m_alias_region_start += kernel_map_region_size; alloc_sizes[cur_region.alloc_index] -= cur_region.size;
m_alias_region_end += kernel_map_region_size;
} }
if (heap_rnd < kmap_rnd) { /* Selection sort the regions to coalesce them by alloc index. */
m_kernel_map_region_start += heap_region_size; for (size_t i = 0; i < num_regions - 1; ++i) {
m_kernel_map_region_end += heap_region_size; for (size_t j = i + 1; j < num_regions; ++j) {
} else { if (region_layouts[i].alloc_index > region_layouts[j].alloc_index) {
m_heap_region_start += kernel_map_region_size; std::swap(region_layouts[i], region_layouts[j]);
m_heap_region_end += kernel_map_region_size; }
}
} }
if (stack_region_size) { /* Layout the regions for each alloc index. */
if (stack_rnd < kmap_rnd) { for (auto cur_alloc_index = 0; cur_alloc_index < AllocIndexCount; ++cur_alloc_index) {
m_kernel_map_region_start += stack_region_size; /* If there are no regions to place, continue. */
m_kernel_map_region_end += stack_region_size; const size_t cur_alloc_count = alloc_counts[cur_alloc_index];
if (cur_alloc_count == 0) {
continue;
}
/* Determine the starting region index for the current alloc index. */
size_t cur_region_index = 0;
for (size_t i = 0; i < num_regions; ++i) {
if (region_layouts[i].alloc_index == cur_alloc_index) {
cur_region_index = i;
break;
}
}
/* If aslr is enabled, randomize the current region order. Otherwise, sort by type. */
if (m_enable_aslr) {
for (size_t i = 0; i < cur_alloc_count - 1; ++i) {
std::swap(region_layouts[i], region_layouts[KSystemControl::GenerateRandomRange(i, cur_alloc_count - 1)]);
}
} else { } else {
m_stack_region_start += kernel_map_region_size; for (size_t i = 0; i < cur_alloc_count - 1; ++i) {
m_stack_region_end += kernel_map_region_size; for (size_t j = i + 1; j < cur_alloc_count; ++j) {
if (region_layouts[cur_region_index + i].type > region_layouts[cur_region_index + j].type) {
std::swap(region_layouts[cur_region_index + i], region_layouts[cur_region_index + j]);
}
}
}
}
/* Determine aslr offsets for the current space. */
size_t aslr_offsets[RegionType_Count] = {};
if (m_enable_aslr) {
/* Generate the aslr offsets. */
for (size_t i = 0; i < cur_alloc_count; ++i) {
aslr_offsets[i] = KSystemControl::GenerateRandomRange(0, alloc_sizes[cur_alloc_index] / RegionAlignment) * RegionAlignment;
}
/* Sort the aslr offsets. */
for (size_t i = 0; i < cur_alloc_count - 1; ++i) {
for (size_t j = i + 1; j < cur_alloc_count; ++j) {
if (aslr_offsets[i] > aslr_offsets[j]) {
std::swap(aslr_offsets[i], aslr_offsets[j]);
}
}
}
}
/* Calculate final region positions. */
KProcessAddress prev_region_end = alloc_starts[cur_alloc_index];
size_t prev_aslr_offset = 0;
for (size_t i = 0; i < cur_alloc_count; ++i) {
/* Get the current region. */
auto &cur_region = region_layouts[cur_region_index + i];
/* Set the current region start/end. */
m_region_starts[cur_region.type] = (aslr_offsets[i] - prev_aslr_offset) + GetInteger(prev_region_end);
m_region_ends[cur_region.type] = m_region_starts[cur_region.type] + cur_region.size;
/* Update tracking variables. */
prev_region_end = m_region_ends[cur_region.type];
prev_aslr_offset = aslr_offsets[i];
}
}
/* Declare helpers to check that regions are inside our address space. */
const KProcessAddress process_code_last = process_code_end - 1;
auto IsInAddressSpace = [&](KProcessAddress addr) ALWAYS_INLINE_LAMBDA { return m_address_space_start <= addr && addr <= m_address_space_end; };
/* Ensure that the KernelMap region is valid. */
for (size_t k = 0; k < num_regions; ++k) {
if (const auto &kmap_region = region_layouts[k]; kmap_region.type == RegionType_KernelMap) {
/* If there's no kmap region, we have nothing to check. */
if (kmap_region.size == 0) {
break;
}
/* Check that the kmap region is within our address space. */
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_region_starts[RegionType_KernelMap]));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_region_ends[RegionType_KernelMap]));
/* Check for overlap with process code. */
const KProcessAddress kmap_start = m_region_starts[RegionType_KernelMap];
const KProcessAddress kmap_last = m_region_ends[RegionType_KernelMap] - 1;
MESOSPHERE_ABORT_UNLESS(kernel_map_region_size == 0 || kmap_last < process_code_start || process_code_last < kmap_start);
/* Check for overlap with stack. */
for (size_t s = 0; s < num_regions; ++s) {
if (const auto &stack_region = region_layouts[s]; stack_region.type == RegionType_Stack) {
if (stack_region.size != 0) {
const KProcessAddress stack_start = m_region_starts[RegionType_Stack];
const KProcessAddress stack_last = m_region_ends[RegionType_Stack] - 1;
MESOSPHERE_ABORT_UNLESS((kernel_map_region_size == 0 && stack_region_size == 0) || kmap_last < stack_start || stack_last < kmap_start);
}
break;
}
}
/* Check for overlap with alias. */
for (size_t a = 0; a < num_regions; ++a) {
if (const auto &alias_region = region_layouts[a]; alias_region.type == RegionType_Alias) {
if (alias_region.size != 0) {
const KProcessAddress alias_start = m_region_starts[RegionType_Alias];
const KProcessAddress alias_last = m_region_ends[RegionType_Alias] - 1;
MESOSPHERE_ABORT_UNLESS(kmap_last < alias_start || alias_last < kmap_start);
}
break;
}
}
/* Check for overlap with heap. */
for (size_t h = 0; h < num_regions; ++h) {
if (const auto &heap_region = region_layouts[h]; heap_region.type == RegionType_Heap) {
if (heap_region.size != 0) {
const KProcessAddress heap_start = m_region_starts[RegionType_Heap];
const KProcessAddress heap_last = m_region_ends[RegionType_Heap] - 1;
MESOSPHERE_ABORT_UNLESS(kmap_last < heap_start || heap_last < kmap_start);
}
break;
}
}
}
}
/* Check that the Stack region is valid. */
for (size_t s = 0; s < num_regions; ++s) {
if (const auto &stack_region = region_layouts[s]; stack_region.type == RegionType_Stack) {
/* If there's no stack region, we have nothing to check. */
if (stack_region.size == 0) {
break;
}
/* Check that the stack region is within our address space. */
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_region_starts[RegionType_Stack]));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_region_ends[RegionType_Stack]));
/* Check for overlap with process code. */
const KProcessAddress stack_start = m_region_starts[RegionType_Stack];
const KProcessAddress stack_last = m_region_ends[RegionType_Stack] - 1;
MESOSPHERE_ABORT_UNLESS(stack_region_size == 0 || stack_last < process_code_start || process_code_last < stack_start);
/* Check for overlap with alias. */
for (size_t a = 0; a < num_regions; ++a) {
if (const auto &alias_region = region_layouts[a]; alias_region.type == RegionType_Alias) {
if (alias_region.size != 0) {
const KProcessAddress alias_start = m_region_starts[RegionType_Alias];
const KProcessAddress alias_last = m_region_ends[RegionType_Alias] - 1;
MESOSPHERE_ABORT_UNLESS(stack_last < alias_start || alias_last < stack_start);
}
break;
}
}
/* Check for overlap with heap. */
for (size_t h = 0; h < num_regions; ++h) {
if (const auto &heap_region = region_layouts[h]; heap_region.type == RegionType_Heap) {
if (heap_region.size != 0) {
const KProcessAddress heap_start = m_region_starts[RegionType_Heap];
const KProcessAddress heap_last = m_region_ends[RegionType_Heap] - 1;
MESOSPHERE_ABORT_UNLESS(stack_last < heap_start || heap_last < stack_start);
}
break;
}
}
}
}
/* Check that the Alias region is valid. */
for (size_t a = 0; a < num_regions; ++a) {
if (const auto &alias_region = region_layouts[a]; alias_region.type == RegionType_Alias) {
/* If there's no alias region, we have nothing to check. */
if (alias_region.size == 0) {
break;
}
/* Check that the alias region is within our address space. */
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_region_starts[RegionType_Alias]));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_region_ends[RegionType_Alias]));
/* Check for overlap with process code. */
const KProcessAddress alias_start = m_region_starts[RegionType_Alias];
const KProcessAddress alias_last = m_region_ends[RegionType_Alias] - 1;
MESOSPHERE_ABORT_UNLESS(alias_last < process_code_start || process_code_last < alias_start);
/* Check for overlap with heap. */
for (size_t h = 0; h < num_regions; ++h) {
if (const auto &heap_region = region_layouts[h]; heap_region.type == RegionType_Heap) {
if (heap_region.size != 0) {
const KProcessAddress heap_start = m_region_starts[RegionType_Heap];
const KProcessAddress heap_last = m_region_ends[RegionType_Heap] - 1;
MESOSPHERE_ABORT_UNLESS(alias_last < heap_start || heap_last < alias_start);
}
break;
}
}
}
}
/* Check that the Heap region is valid. */
for (size_t h = 0; h < num_regions; ++h) {
if (const auto &heap_region = region_layouts[h]; heap_region.type == RegionType_Heap) {
/* If there's no heap region, we have nothing to check. */
if (heap_region.size == 0) {
break;
}
/* Check that the heap region is within our address space. */
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_region_starts[RegionType_Heap]));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_region_ends[RegionType_Heap]));
/* Check for overlap with process code. */
const KProcessAddress heap_start = m_region_starts[RegionType_Heap];
const KProcessAddress heap_last = m_region_ends[RegionType_Heap] - 1;
MESOSPHERE_ABORT_UNLESS(heap_last < process_code_start || process_code_last < heap_start);
} }
} }
} }
/* Set heap and fill members. */ /* Set heap and fill members. */
m_current_heap_end = m_heap_region_start; m_current_heap_end = m_region_starts[RegionType_Heap];
m_max_heap_size = 0; m_max_heap_size = 0;
m_mapped_physical_memory_size = 0; m_mapped_physical_memory_size = 0;
m_mapped_unsafe_physical_memory = 0; m_mapped_unsafe_physical_memory = 0;
@ -309,32 +505,6 @@ namespace ams::kern {
/* Set allocation option. */ /* Set allocation option. */
m_allocate_option = KMemoryManager::EncodeOption(pool, from_back ? KMemoryManager::Direction_FromBack : KMemoryManager::Direction_FromFront); m_allocate_option = KMemoryManager::EncodeOption(pool, from_back ? KMemoryManager::Direction_FromBack : KMemoryManager::Direction_FromFront);
/* Ensure that we regions inside our address space. */
auto IsInAddressSpace = [&](KProcessAddress addr) ALWAYS_INLINE_LAMBDA { return m_address_space_start <= addr && addr <= m_address_space_end; };
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_alias_region_start));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_alias_region_end));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_heap_region_start));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_heap_region_end));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_stack_region_start));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_stack_region_end));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_kernel_map_region_start));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(m_kernel_map_region_end));
/* Ensure that we selected regions that don't overlap. */
const KProcessAddress alias_start = m_alias_region_start;
const KProcessAddress alias_last = m_alias_region_end - 1;
const KProcessAddress heap_start = m_heap_region_start;
const KProcessAddress heap_last = m_heap_region_end - 1;
const KProcessAddress stack_start = m_stack_region_start;
const KProcessAddress stack_last = m_stack_region_end - 1;
const KProcessAddress kmap_start = m_kernel_map_region_start;
const KProcessAddress kmap_last = m_kernel_map_region_end - 1;
MESOSPHERE_ABORT_UNLESS(alias_last < heap_start || heap_last < alias_start);
MESOSPHERE_ABORT_UNLESS(alias_last < stack_start || stack_last < alias_start);
MESOSPHERE_ABORT_UNLESS(alias_last < kmap_start || kmap_last < alias_start);
MESOSPHERE_ABORT_UNLESS(heap_last < stack_start || stack_last < heap_start);
MESOSPHERE_ABORT_UNLESS(heap_last < kmap_start || kmap_last < heap_start);
/* Initialize our implementation. */ /* Initialize our implementation. */
m_impl.InitializeForProcess(table, GetInteger(start), GetInteger(end)); m_impl.InitializeForProcess(table, GetInteger(start), GetInteger(end));
@ -374,16 +544,16 @@ namespace ams::kern {
case ams::svc::MemoryState_Kernel: case ams::svc::MemoryState_Kernel:
return m_address_space_start; return m_address_space_start;
case ams::svc::MemoryState_Normal: case ams::svc::MemoryState_Normal:
return m_heap_region_start; return m_region_starts[RegionType_Heap];
case ams::svc::MemoryState_Ipc: case ams::svc::MemoryState_Ipc:
case ams::svc::MemoryState_NonSecureIpc: case ams::svc::MemoryState_NonSecureIpc:
case ams::svc::MemoryState_NonDeviceIpc: case ams::svc::MemoryState_NonDeviceIpc:
return m_alias_region_start; return m_region_starts[RegionType_Alias];
case ams::svc::MemoryState_Stack: case ams::svc::MemoryState_Stack:
return m_stack_region_start; return m_region_starts[RegionType_Stack];
case ams::svc::MemoryState_Static: case ams::svc::MemoryState_Static:
case ams::svc::MemoryState_ThreadLocal: case ams::svc::MemoryState_ThreadLocal:
return m_kernel_map_region_start; return m_region_starts[RegionType_KernelMap];
case ams::svc::MemoryState_Io: case ams::svc::MemoryState_Io:
case ams::svc::MemoryState_Shared: case ams::svc::MemoryState_Shared:
case ams::svc::MemoryState_AliasCode: case ams::svc::MemoryState_AliasCode:
@ -409,16 +579,16 @@ namespace ams::kern {
case ams::svc::MemoryState_Kernel: case ams::svc::MemoryState_Kernel:
return m_address_space_end - m_address_space_start; return m_address_space_end - m_address_space_start;
case ams::svc::MemoryState_Normal: case ams::svc::MemoryState_Normal:
return m_heap_region_end - m_heap_region_start; return m_region_ends[RegionType_Heap] - m_region_starts[RegionType_Heap];
case ams::svc::MemoryState_Ipc: case ams::svc::MemoryState_Ipc:
case ams::svc::MemoryState_NonSecureIpc: case ams::svc::MemoryState_NonSecureIpc:
case ams::svc::MemoryState_NonDeviceIpc: case ams::svc::MemoryState_NonDeviceIpc:
return m_alias_region_end - m_alias_region_start; return m_region_ends[RegionType_Alias] - m_region_starts[RegionType_Alias];
case ams::svc::MemoryState_Stack: case ams::svc::MemoryState_Stack:
return m_stack_region_end - m_stack_region_start; return m_region_ends[RegionType_Stack] - m_region_starts[RegionType_Stack];
case ams::svc::MemoryState_Static: case ams::svc::MemoryState_Static:
case ams::svc::MemoryState_ThreadLocal: case ams::svc::MemoryState_ThreadLocal:
return m_kernel_map_region_end - m_kernel_map_region_start; return m_region_ends[RegionType_KernelMap] - m_region_starts[RegionType_KernelMap];
case ams::svc::MemoryState_Io: case ams::svc::MemoryState_Io:
case ams::svc::MemoryState_Shared: case ams::svc::MemoryState_Shared:
case ams::svc::MemoryState_AliasCode: case ams::svc::MemoryState_AliasCode:
@ -446,8 +616,8 @@ namespace ams::kern {
const size_t region_size = this->GetRegionSize(state); const size_t region_size = this->GetRegionSize(state);
const bool is_in_region = region_start <= addr && addr < end && last <= region_start + region_size - 1; const bool is_in_region = region_start <= addr && addr < end && last <= region_start + region_size - 1;
const bool is_in_heap = !(end <= m_heap_region_start || m_heap_region_end <= addr || m_heap_region_start == m_heap_region_end); const bool is_in_heap = !(end <= m_region_starts[RegionType_Heap] || m_region_ends[RegionType_Heap] <= addr || m_region_starts[RegionType_Heap] == m_region_ends[RegionType_Heap]);
const bool is_in_alias = !(end <= m_alias_region_start || m_alias_region_end <= addr || m_alias_region_start == m_alias_region_end); const bool is_in_alias = !(end <= m_region_starts[RegionType_Alias] || m_region_ends[RegionType_Alias] <= addr || m_region_starts[RegionType_Alias] == m_region_ends[RegionType_Alias]);
switch (state) { switch (state) {
case ams::svc::MemoryState_Free: case ams::svc::MemoryState_Free:
case ams::svc::MemoryState_Kernel: case ams::svc::MemoryState_Kernel:
@ -1692,17 +1862,17 @@ namespace ams::kern {
KScopedLightLock lk(m_general_lock); KScopedLightLock lk(m_general_lock);
/* Validate that setting heap size is possible at all. */ /* Validate that setting heap size is possible at all. */
R_UNLESS(!m_is_kernel, svc::ResultOutOfMemory()); R_UNLESS(!m_is_kernel, svc::ResultOutOfMemory());
R_UNLESS(size <= static_cast<size_t>(m_heap_region_end - m_heap_region_start), svc::ResultOutOfMemory()); R_UNLESS(size <= static_cast<size_t>(m_region_ends[RegionType_Heap] - m_region_starts[RegionType_Heap]), svc::ResultOutOfMemory());
R_UNLESS(size <= m_max_heap_size, svc::ResultOutOfMemory()); R_UNLESS(size <= m_max_heap_size, svc::ResultOutOfMemory());
if (size < static_cast<size_t>(m_current_heap_end - m_heap_region_start)) { if (size < static_cast<size_t>(m_current_heap_end - m_region_starts[RegionType_Heap])) {
/* The size being requested is less than the current size, so we need to free the end of the heap. */ /* The size being requested is less than the current size, so we need to free the end of the heap. */
/* Validate memory state. */ /* Validate memory state. */
size_t num_allocator_blocks; size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks),
m_heap_region_start + size, (m_current_heap_end - m_heap_region_start) - size, m_region_starts[RegionType_Heap] + size, (m_current_heap_end - m_region_starts[RegionType_Heap]) - size,
KMemoryState_All, KMemoryState_Normal, KMemoryState_All, KMemoryState_Normal,
KMemoryPermission_All, KMemoryPermission_UserReadWrite, KMemoryPermission_All, KMemoryPermission_UserReadWrite,
KMemoryAttribute_All, KMemoryAttribute_None)); KMemoryAttribute_All, KMemoryAttribute_None));
@ -1716,30 +1886,30 @@ namespace ams::kern {
KScopedPageTableUpdater updater(this); KScopedPageTableUpdater updater(this);
/* Unmap the end of the heap. */ /* Unmap the end of the heap. */
const size_t num_pages = ((m_current_heap_end - m_heap_region_start) - size) / PageSize; const size_t num_pages = ((m_current_heap_end - m_region_starts[RegionType_Heap]) - size) / PageSize;
const KPageProperties unmap_properties = { KMemoryPermission_None, false, false, DisableMergeAttribute_None }; const KPageProperties unmap_properties = { KMemoryPermission_None, false, false, DisableMergeAttribute_None };
R_TRY(this->Operate(updater.GetPageList(), m_heap_region_start + size, num_pages, Null<KPhysicalAddress>, false, unmap_properties, OperationType_Unmap, false)); R_TRY(this->Operate(updater.GetPageList(), m_region_starts[RegionType_Heap] + size, num_pages, Null<KPhysicalAddress>, false, unmap_properties, OperationType_Unmap, false));
/* Release the memory from the resource limit. */ /* Release the memory from the resource limit. */
m_resource_limit->Release(ams::svc::LimitableResource_PhysicalMemoryMax, num_pages * PageSize); m_resource_limit->Release(ams::svc::LimitableResource_PhysicalMemoryMax, num_pages * PageSize);
/* Apply the memory block update. */ /* Apply the memory block update. */
m_memory_block_manager.Update(std::addressof(allocator), m_heap_region_start + size, num_pages, KMemoryState_Free, KMemoryPermission_None, KMemoryAttribute_None, KMemoryBlockDisableMergeAttribute_None, size == 0 ? KMemoryBlockDisableMergeAttribute_Normal : KMemoryBlockDisableMergeAttribute_None); m_memory_block_manager.Update(std::addressof(allocator), m_region_starts[RegionType_Heap] + size, num_pages, KMemoryState_Free, KMemoryPermission_None, KMemoryAttribute_None, KMemoryBlockDisableMergeAttribute_None, size == 0 ? KMemoryBlockDisableMergeAttribute_Normal : KMemoryBlockDisableMergeAttribute_None);
/* Update the current heap end. */ /* Update the current heap end. */
m_current_heap_end = m_heap_region_start + size; m_current_heap_end = m_region_starts[RegionType_Heap] + size;
/* Set the output. */ /* Set the output. */
*out = m_heap_region_start; *out = m_region_starts[RegionType_Heap];
R_SUCCEED(); R_SUCCEED();
} else if (size == static_cast<size_t>(m_current_heap_end - m_heap_region_start)) { } else if (size == static_cast<size_t>(m_current_heap_end - m_region_starts[RegionType_Heap])) {
/* The size requested is exactly the current size. */ /* The size requested is exactly the current size. */
*out = m_heap_region_start; *out = m_region_starts[RegionType_Heap];
R_SUCCEED(); R_SUCCEED();
} else { } else {
/* We have to allocate memory. Determine how much to allocate and where while the table is locked. */ /* We have to allocate memory. Determine how much to allocate and where while the table is locked. */
cur_address = m_current_heap_end; cur_address = m_current_heap_end;
allocation_size = size - (m_current_heap_end - m_heap_region_start); allocation_size = size - (m_current_heap_end - m_region_starts[RegionType_Heap]);
} }
} }
@ -1782,20 +1952,20 @@ namespace ams::kern {
/* Map the pages. */ /* Map the pages. */
const size_t num_pages = allocation_size / PageSize; const size_t num_pages = allocation_size / PageSize;
const KPageProperties map_properties = { KMemoryPermission_UserReadWrite, false, false, (m_current_heap_end == m_heap_region_start) ? DisableMergeAttribute_DisableHead : DisableMergeAttribute_None }; const KPageProperties map_properties = { KMemoryPermission_UserReadWrite, false, false, (m_current_heap_end == m_region_starts[RegionType_Heap]) ? DisableMergeAttribute_DisableHead : DisableMergeAttribute_None };
R_TRY(this->Operate(updater.GetPageList(), m_current_heap_end, num_pages, pg, map_properties, OperationType_MapGroup, false)); R_TRY(this->Operate(updater.GetPageList(), m_current_heap_end, num_pages, pg, map_properties, OperationType_MapGroup, false));
/* We succeeded, so commit our memory reservation. */ /* We succeeded, so commit our memory reservation. */
memory_reservation.Commit(); memory_reservation.Commit();
/* Apply the memory block update. */ /* Apply the memory block update. */
m_memory_block_manager.Update(std::addressof(allocator), m_current_heap_end, num_pages, KMemoryState_Normal, KMemoryPermission_UserReadWrite, KMemoryAttribute_None, m_heap_region_start == m_current_heap_end ? KMemoryBlockDisableMergeAttribute_Normal : KMemoryBlockDisableMergeAttribute_None, KMemoryBlockDisableMergeAttribute_None); m_memory_block_manager.Update(std::addressof(allocator), m_current_heap_end, num_pages, KMemoryState_Normal, KMemoryPermission_UserReadWrite, KMemoryAttribute_None, m_region_starts[RegionType_Heap] == m_current_heap_end ? KMemoryBlockDisableMergeAttribute_Normal : KMemoryBlockDisableMergeAttribute_None, KMemoryBlockDisableMergeAttribute_None);
/* Update the current heap end. */ /* Update the current heap end. */
m_current_heap_end = m_heap_region_start + size; m_current_heap_end = m_region_starts[RegionType_Heap] + size;
/* Set the output. */ /* Set the output. */
*out = m_heap_region_start; *out = m_region_starts[RegionType_Heap];
R_SUCCEED(); R_SUCCEED();
} }
} }
@ -1927,8 +2097,8 @@ namespace ams::kern {
const KPhysicalAddress last = phys_addr + size - 1; const KPhysicalAddress last = phys_addr + size - 1;
/* Get region extents. */ /* Get region extents. */
const KProcessAddress region_start = m_kernel_map_region_start; const KProcessAddress region_start = m_region_starts[RegionType_KernelMap];
const size_t region_size = m_kernel_map_region_end - m_kernel_map_region_start; const size_t region_size = m_region_ends[RegionType_KernelMap] - m_region_starts[RegionType_KernelMap];
const size_t region_num_pages = region_size / PageSize; const size_t region_num_pages = region_size / PageSize;
MESOSPHERE_ASSERT(this->CanContain(region_start, region_size, state)); MESOSPHERE_ASSERT(this->CanContain(region_start, region_size, state));
@ -3720,8 +3890,8 @@ namespace ams::kern {
MESOSPHERE_ASSERT(src_page_table.IsLockedByCurrentThread()); MESOSPHERE_ASSERT(src_page_table.IsLockedByCurrentThread());
/* Check that we can theoretically map. */ /* Check that we can theoretically map. */
const KProcessAddress region_start = m_alias_region_start; const KProcessAddress region_start = m_region_starts[RegionType_Alias];
const size_t region_size = m_alias_region_end - m_alias_region_start; const size_t region_size = m_region_ends[RegionType_Alias] - m_region_starts[RegionType_Alias];
R_UNLESS(size < region_size, svc::ResultOutOfAddressSpace()); R_UNLESS(size < region_size, svc::ResultOutOfAddressSpace());
/* Get aligned source extents. */ /* Get aligned source extents. */