Implement support for parsing/interacting with NCAs. (#942)

* fs: implement support for interacting with ncas.

* spl: extend to use virtual keyslots
This commit is contained in:
SciresM 2020-05-11 15:04:51 -07:00 committed by GitHub
parent 3a1ccdd919
commit 81f91803ec
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
118 changed files with 13301 additions and 405 deletions

View file

@ -16,6 +16,7 @@
#pragma once #pragma once
#include <stratosphere/fs/fs_common.hpp> #include <stratosphere/fs/fs_common.hpp>
#include <stratosphere/fs/fs_storage_type.hpp>
#include <stratosphere/fs/fsa/fs_ifile.hpp> #include <stratosphere/fs/fsa/fs_ifile.hpp>
#include <stratosphere/fs/fsa/fs_idirectory.hpp> #include <stratosphere/fs/fsa/fs_idirectory.hpp>
#include <stratosphere/fs/fsa/fs_ifilesystem.hpp> #include <stratosphere/fs/fsa/fs_ifilesystem.hpp>
@ -29,6 +30,7 @@
#include <stratosphere/fs/fs_remote_storage.hpp> #include <stratosphere/fs/fs_remote_storage.hpp>
#include <stratosphere/fs/fs_file_storage.hpp> #include <stratosphere/fs/fs_file_storage.hpp>
#include <stratosphere/fs/fs_query_range.hpp> #include <stratosphere/fs/fs_query_range.hpp>
#include <stratosphere/fs/fs_speed_emulation.hpp>
#include <stratosphere/fs/impl/fs_common_mount_name.hpp> #include <stratosphere/fs/impl/fs_common_mount_name.hpp>
#include <stratosphere/fs/fs_mount.hpp> #include <stratosphere/fs/fs_mount.hpp>
#include <stratosphere/fs/fs_path_tool.hpp> #include <stratosphere/fs/fs_path_tool.hpp>

View file

@ -17,11 +17,14 @@
#include <stratosphere/fs/fs_common.hpp> #include <stratosphere/fs/fs_common.hpp>
#include <stratosphere/fs/fs_istorage.hpp> #include <stratosphere/fs/fs_istorage.hpp>
#include <stratosphere/fs/fsa/fs_ifile.hpp> #include <stratosphere/fs/fsa/fs_ifile.hpp>
#include <stratosphere/fs/fsa/fs_ifilesystem.hpp>
#include <stratosphere/fs/impl/fs_newable.hpp> #include <stratosphere/fs/impl/fs_newable.hpp>
namespace ams::fs { namespace ams::fs {
class FileStorage : public IStorage, public impl::Newable { class FileStorage : public IStorage, public impl::Newable {
NON_COPYABLE(FileStorage);
NON_MOVEABLE(FileStorage);
private: private:
static constexpr s64 InvalidSize = -1; static constexpr s64 InvalidSize = -1;
private: private:
@ -43,8 +46,25 @@ namespace ams::fs {
} }
virtual ~FileStorage() { /* ... */ } virtual ~FileStorage() { /* ... */ }
protected: private:
Result UpdateSize(); Result UpdateSize();
protected:
constexpr FileStorage() : unique_file(), shared_file(), base_file(nullptr), size(InvalidSize) { /* ... */ }
void SetFile(fs::fsa::IFile *file) {
AMS_ASSERT(file != nullptr);
AMS_ASSERT(this->base_file == nullptr);
this->base_file = file;
}
void SetFile(std::unique_ptr<fs::fsa::IFile> &&file) {
AMS_ASSERT(file != nullptr);
AMS_ASSERT(this->base_file == nullptr);
AMS_ASSERT(this->unique_file == nullptr);
this->unique_file = std::move(file);
this->base_file = this->unique_file.get();
}
public: public:
virtual Result Read(s64 offset, void *buffer, size_t size) override; virtual Result Read(s64 offset, void *buffer, size_t size) override;
virtual Result Write(s64 offset, const void *buffer, size_t size) override; virtual Result Write(s64 offset, const void *buffer, size_t size) override;
@ -54,6 +74,17 @@ namespace ams::fs {
virtual Result OperateRange(void *dst, size_t dst_size, OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override; virtual Result OperateRange(void *dst, size_t dst_size, OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override;
}; };
class FileStorageBasedFileSystem : public FileStorage {
NON_COPYABLE(FileStorageBasedFileSystem);
NON_MOVEABLE(FileStorageBasedFileSystem);
private:
std::shared_ptr<fs::fsa::IFileSystem> base_file_system;
public:
constexpr FileStorageBasedFileSystem() : FileStorage(), base_file_system(nullptr) { /* ... */ }
Result Initialize(std::shared_ptr<fs::fsa::IFileSystem> base_file_system, const char *path, fs::OpenMode mode);
};
class FileHandleStorage : public IStorage, public impl::Newable { class FileHandleStorage : public IStorage, public impl::Newable {
private: private:
static constexpr s64 InvalidSize = -1; static constexpr s64 InvalidSize = -1;

View file

@ -46,6 +46,17 @@ namespace ams::fs {
return std::unique_ptr<T, Deleter>(static_cast<T *>(::ams::fs::impl::Allocate(sizeof(T))), Deleter(sizeof(T))); return std::unique_ptr<T, Deleter>(static_cast<T *>(::ams::fs::impl::Allocate(sizeof(T))), Deleter(sizeof(T)));
} }
template<typename ArrayT>
std::unique_ptr<ArrayT, Deleter> MakeUnique(size_t size) {
using T = typename std::remove_extent<ArrayT>::type;
static_assert(std::is_pod<ArrayT>::value);
static_assert(std::is_array<ArrayT>::value);
const size_t alloc_size = sizeof(T) * size;
return std::unique_ptr<ArrayT, Deleter>(static_cast<T *>(::ams::fs::impl::Allocate(alloc_size)), Deleter(alloc_size));
}
} }
} }

View file

@ -47,6 +47,8 @@ namespace ams::fs {
enum class AesCtrKeyTypeFlag : s32 { enum class AesCtrKeyTypeFlag : s32 {
InternalKeyForSoftwareAes = (1 << 0), InternalKeyForSoftwareAes = (1 << 0),
InternalKeyForHardwareAes = (1 << 1),
ExternalKeyForHardwareAes = (1 << 2),
}; };
} }

View file

@ -156,4 +156,14 @@ namespace ams::fs {
static_assert(sizeof(SaveDataExtraData) == 0x200); static_assert(sizeof(SaveDataExtraData) == 0x200);
static_assert(util::is_pod<SaveDataExtraData>::value); static_assert(util::is_pod<SaveDataExtraData>::value);
struct HashSalt {
static constexpr size_t Size = 32;
u8 value[Size];
};
static_assert(std::is_pod<HashSalt>::value);
static_assert(sizeof(HashSalt) == HashSalt::Size);
using SaveDataHashSalt = std::optional<HashSalt>;
} }

View file

@ -0,0 +1,32 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere/fs/fs_common.hpp>
namespace ams::fs {
enum class SpeedEmulationMode {
None = 0,
Faster = 1,
Slower = 2,
Random = 3,
};
/* TODO */
/* Result SetSpeedEmulationMode(SpeedEmulationMode mode); */
/* Result GetSpeedEmulationMode(SpeedEmulationMode *out); */
}

View file

@ -0,0 +1,27 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fs {
enum StorageType : s32 {
StorageType_SaveData = 0,
StorageType_RomFs = 1,
StorageType_Authoring = 2,
};
}

View file

@ -15,5 +15,13 @@
*/ */
#pragma once #pragma once
#include "fssrv/fssrv_sf_path.hpp" #include <stratosphere/fssrv/fssrv_sf_path.hpp>
#include "fssrv/fssrv_path_normalizer.hpp" #include <stratosphere/fssrv/fssrv_path_normalizer.hpp>
#include <stratosphere/fssrv/fssrv_nca_crypto_configuration.hpp>
#include <stratosphere/fssrv/fssrv_memory_resource_from_standard_allocator.hpp>
#include <stratosphere/fssrv/fssrv_memory_resource_from_exp_heap.hpp>
#include <stratosphere/fssrv/fssrv_i_file_system_creator.hpp>
#include <stratosphere/fssrv/fscreator/fssrv_partition_file_system_creator.hpp>
#include <stratosphere/fssrv/fscreator/fssrv_rom_file_system_creator.hpp>
#include <stratosphere/fssrv/fscreator/fssrv_storage_on_nca_creator.hpp>
#include <stratosphere/fssrv/fssrv_file_system_proxy_api.hpp>

View file

@ -0,0 +1,31 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fssrv/fssrv_i_file_system_creator.hpp>
namespace ams::fssrv::fscreator {
class PartitionFileSystemCreator : public IPartitionFileSystemCreator {
NON_COPYABLE(PartitionFileSystemCreator);
NON_MOVEABLE(PartitionFileSystemCreator);
public:
PartitionFileSystemCreator() { /* ... */ }
virtual Result Create(std::shared_ptr<fs::fsa::IFileSystem> *out, std::shared_ptr<fs::IStorage> storage) override;
};
}

View file

@ -0,0 +1,33 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fssrv/fssrv_i_file_system_creator.hpp>
namespace ams::fssrv::fscreator {
class RomFileSystemCreator : public IRomFileSystemCreator {
NON_COPYABLE(RomFileSystemCreator);
NON_MOVEABLE(RomFileSystemCreator);
private:
MemoryResource *allocator;
public:
explicit RomFileSystemCreator(MemoryResource *mr) : allocator(mr) { /* ... */ }
virtual Result Create(std::shared_ptr<fs::fsa::IFileSystem> *out, std::shared_ptr<fs::IStorage> storage) override;
};
}

View file

@ -0,0 +1,52 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fssrv/fssrv_i_file_system_creator.hpp>
#include <stratosphere/fssystem/buffers/fssystem_i_buffer_manager.hpp>
namespace ams::fssystem {
struct NcaCryptoConfiguration;
}
namespace ams::fssrv::fscreator {
class StorageOnNcaCreator : public IStorageOnNcaCreator {
NON_COPYABLE(StorageOnNcaCreator);
NON_MOVEABLE(StorageOnNcaCreator);
private:
MemoryResource *allocator;
fssystem::IBufferManager * const buffer_manager;
const fssystem::NcaCryptoConfiguration &nca_crypto_cfg;
bool is_prod;
bool is_enabled_program_verification;
private:
Result VerifyNcaHeaderSign2(fssystem::NcaReader *nca_reader, fs::IStorage *storage);
public:
explicit StorageOnNcaCreator(MemoryResource *mr, const fssystem::NcaCryptoConfiguration &cfg, bool prod, fssystem::IBufferManager *bm) : allocator(mr), buffer_manager(bm), nca_crypto_cfg(cfg), is_prod(prod), is_enabled_program_verification(true) {
/* ... */
}
virtual Result Create(std::shared_ptr<fs::IStorage> *out, fssystem::NcaFsHeaderReader *out_header_reader, std::shared_ptr<fssystem::NcaReader> nca_reader, s32 index, bool verify_header_sign_2) override;
virtual Result CreateWithPatch(std::shared_ptr<fs::IStorage> *out, fssystem::NcaFsHeaderReader *out_header_reader, std::shared_ptr<fssystem::NcaReader> original_nca_reader, std::shared_ptr<fssystem::NcaReader> current_nca_reader, s32 index, bool verify_header_sign_2) override;
virtual Result CreateNcaReader(std::shared_ptr<fssystem::NcaReader> *out, std::shared_ptr<fs::IStorage> storage) override;
virtual Result VerifyAcid(fs::fsa::IFileSystem *fs, fssystem::NcaReader *nca_reader) override;
virtual void SetEnabledProgramVerification(bool en) override;
};
}

View file

@ -0,0 +1,35 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fssrv::fscreator {
struct FileSystemCreatorInterfaces;
}
namespace ams::fssystem {
class IBufferManager;
}
namespace ams::fssrv {
void InitializeForFileSystemProxy(fscreator::FileSystemCreatorInterfaces *fs_creator_interfaces, fssystem::IBufferManager *buffer_manager, bool is_development_function_enabled);
}

View file

@ -0,0 +1,78 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fs/impl/fs_newable.hpp>
namespace ams::fs {
class IStorage;
enum class BisPartitionId;
namespace fsa {
class IFileSystem;
}
}
namespace ams::fssystem {
class NcaReader;
class NcaFsHeaderReader;
namespace save {
/* TODO */
}
}
namespace ams::fssrv::fscreator {
class IRomFileSystemCreator {
public:
virtual ~IRomFileSystemCreator() { /* ... */ }
virtual Result Create(std::shared_ptr<fs::fsa::IFileSystem> *out, std::shared_ptr<fs::IStorage> storage) = 0;
};
class IPartitionFileSystemCreator {
public:
virtual ~IPartitionFileSystemCreator() { /* ... */ }
virtual Result Create(std::shared_ptr<fs::fsa::IFileSystem> *out, std::shared_ptr<fs::IStorage> storage) = 0;
};
class IStorageOnNcaCreator {
public:
virtual ~IStorageOnNcaCreator() { /* ... */ }
virtual Result Create(std::shared_ptr<fs::IStorage> *out, fssystem::NcaFsHeaderReader *out_header_reader, std::shared_ptr<fssystem::NcaReader> nca_reader, s32 index, bool verify_header_sign_2) = 0;
virtual Result CreateWithPatch(std::shared_ptr<fs::IStorage> *out, fssystem::NcaFsHeaderReader *out_header_reader, std::shared_ptr<fssystem::NcaReader> original_nca_reader, std::shared_ptr<fssystem::NcaReader> current_nca_reader, s32 index, bool verify_header_sign_2) = 0;
virtual Result CreateNcaReader(std::shared_ptr<fssystem::NcaReader> *out, std::shared_ptr<fs::IStorage> storage) = 0;
virtual Result VerifyAcid(fs::fsa::IFileSystem *fs, fssystem::NcaReader *nca_reader) = 0;
virtual void SetEnabledProgramVerification(bool en) = 0;
};
struct FileSystemCreatorInterfaces {
IRomFileSystemCreator *rom_fs_creator;
IPartitionFileSystemCreator *partition_fs_creator;
IStorageOnNcaCreator *storage_on_nca_creator;
/* TODO: More creators. */
};
static_assert(std::is_pod<FileSystemCreatorInterfaces>::value);
}

View file

@ -0,0 +1,74 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/os.hpp>
#include <stratosphere/lmem/lmem_exp_heap.hpp>
namespace ams::fssrv {
class MemoryResourceFromExpHeap : public ams::MemoryResource {
private:
lmem::HeapHandle heap_handle;
public:
constexpr explicit MemoryResourceFromExpHeap(lmem::HeapHandle handle) : heap_handle(handle) { /* ... */ }
protected:
virtual void *AllocateImpl(size_t size, size_t align) override {
return lmem::AllocateFromExpHeap(this->heap_handle, size, static_cast<s32>(align));
}
virtual void DeallocateImpl(void *p, size_t size, size_t align) override {
return lmem::FreeToExpHeap(this->heap_handle, p);
}
virtual bool IsEqualImpl(const MemoryResource &rhs) const override {
return false;
}
};
class PeakCheckableMemoryResourceFromExpHeap : public ams::MemoryResource {
private:
lmem::HeapHandle heap_handle;
os::Mutex mutex;
size_t peak_free_size;
size_t current_free_size;
public:
constexpr explicit PeakCheckableMemoryResourceFromExpHeap(size_t heap_size) : heap_handle(nullptr), mutex(false), peak_free_size(heap_size), current_free_size(heap_size) { /* ... */ }
void SetHeapHandle(lmem::HeapHandle handle) {
this->heap_handle = handle;
}
size_t GetPeakFreeSize() const { return this->peak_free_size; }
size_t GetCurrentFreeSize() const { return this->current_free_size; }
void ClearPeak() { this->peak_free_size = this->current_free_size; }
std::scoped_lock<os::Mutex> GetScopedLock() {
return std::scoped_lock(this->mutex);
}
void OnAllocate(void *p, size_t size);
void OnDeallocate(void *p, size_t size);
protected:
virtual void *AllocateImpl(size_t size, size_t align) override;
virtual void DeallocateImpl(void *p, size_t size, size_t align) override;
virtual bool IsEqualImpl(const MemoryResource &rhs) const override {
return false;
}
};
}

View file

@ -0,0 +1,51 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/os.hpp>
namespace ams::mem {
class StandardAllocator;
}
namespace ams::fssrv {
class MemoryResourceFromStandardAllocator : public ams::MemoryResource {
private:
mem::StandardAllocator *allocator;
os::SdkMutex mutex;
size_t peak_free_size;
size_t current_free_size;
size_t peak_allocated_size;
public:
explicit MemoryResourceFromStandardAllocator(mem::StandardAllocator *allocator);
public:
size_t GetPeakFreeSize() const { return this->peak_free_size; }
size_t GetCurrentFreeSize() const { return this->current_free_size; }
size_t GetPeakAllocatedSize() const { return this->peak_allocated_size; }
void ClearPeak();
protected:
virtual void *AllocateImpl(size_t size, size_t align) override;
virtual void DeallocateImpl(void *p, size_t size, size_t align) override;
virtual bool IsEqualImpl(const MemoryResource &rhs) const override {
return false;
}
};
}

View file

@ -0,0 +1,23 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere/fssystem/fssystem_nca_file_system_driver.hpp>
namespace ams::fssrv {
const ::ams::fssystem::NcaCryptoConfiguration *GetDefaultNcaCryptoConfiguration(bool prod);
}

View file

@ -15,9 +15,10 @@
*/ */
#pragma once #pragma once
#include <stratosphere/fssystem/fssystem_allocator_utility.hpp>
#include <stratosphere/fssystem/fssystem_utility.hpp> #include <stratosphere/fssystem/fssystem_utility.hpp>
#include <stratosphere/fssystem/fssystem_speed_emulation_configuration.hpp>
#include <stratosphere/fssystem/fssystem_external_code.hpp> #include <stratosphere/fssystem/fssystem_external_code.hpp>
#include <stratosphere/fssystem/fssystem_acid_sign_key.hpp>
#include <stratosphere/fssystem/fssystem_partition_file_system.hpp> #include <stratosphere/fssystem/fssystem_partition_file_system.hpp>
#include <stratosphere/fssystem/fssystem_partition_file_system_meta.hpp> #include <stratosphere/fssystem/fssystem_partition_file_system_meta.hpp>
#include <stratosphere/fssystem/fssystem_path_tool.hpp> #include <stratosphere/fssystem/fssystem_path_tool.hpp>
@ -28,6 +29,22 @@
#include <stratosphere/fssystem/fssystem_directory_redirection_filesystem.hpp> #include <stratosphere/fssystem/fssystem_directory_redirection_filesystem.hpp>
#include <stratosphere/fssystem/fssystem_directory_savedata_filesystem.hpp> #include <stratosphere/fssystem/fssystem_directory_savedata_filesystem.hpp>
#include <stratosphere/fssystem/fssystem_romfs_file_system.hpp> #include <stratosphere/fssystem/fssystem_romfs_file_system.hpp>
#include <stratosphere/fssystem/fssystem_bucket_tree.hpp>
#include <stratosphere/fssystem/fssystem_bucket_tree_template_impl.hpp>
#include <stratosphere/fssystem/fssystem_indirect_storage.hpp>
#include <stratosphere/fssystem/fssystem_indirect_storage_template_impl.hpp>
#include <stratosphere/fssystem/fssystem_sparse_storage.hpp>
#include <stratosphere/fssystem/fssystem_nca_header.hpp>
#include <stratosphere/fssystem/fssystem_nca_file_system_driver.hpp>
#include <stratosphere/fssystem/fssystem_nca_file_system_driver_impl.hpp>
#include <stratosphere/fssystem/fssystem_crypto_configuration.hpp>
#include <stratosphere/fssystem/fssystem_aes_ctr_counter_extended_storage.hpp>
#include <stratosphere/fssystem/buffers/fssystem_buffer_manager_utils.hpp> #include <stratosphere/fssystem/buffers/fssystem_buffer_manager_utils.hpp>
#include <stratosphere/fssystem/buffers/fssystem_file_system_buddy_heap.hpp> #include <stratosphere/fssystem/buffers/fssystem_file_system_buffer_manager.hpp>
#include <stratosphere/fssystem/fssystem_pooled_buffer.hpp> #include <stratosphere/fssystem/fssystem_pooled_buffer.hpp>
#include <stratosphere/fssystem/fssystem_alignment_matching_storage_impl.hpp>
#include <stratosphere/fssystem/fssystem_alignment_matching_storage.hpp>
#include <stratosphere/fssystem/save/fssystem_buffered_storage.hpp>
#include <stratosphere/fssystem/save/fssystem_hierarchical_integrity_verification_storage.hpp>
#include <stratosphere/fssystem/fssystem_integrity_romfs_storage.hpp>
#include <stratosphere/fssystem/fssystem_file_system_proxy_api.hpp>

View file

@ -87,4 +87,40 @@ namespace ams::fssystem::buffers {
} }
}; };
template<typename IsValidBufferFunction>
Result AllocateBufferUsingBufferManagerContext(std::pair<uintptr_t, size_t> *out, fssystem::IBufferManager *buffer_manager, size_t size, const IBufferManager::BufferAttribute attribute, IsValidBufferFunction is_valid_buffer, const char *func_name) {
AMS_ASSERT(out != nullptr);
AMS_ASSERT(buffer_manager != nullptr);
AMS_ASSERT(func_name != nullptr);
/* Clear the output. */
*out = std::pair<uintptr_t, size_t>(0, 0);
/* Get the context. */
auto context = GetBufferManagerContext();
auto AllocateBufferImpl = [=]() -> Result {
auto buffer = buffer_manager->AllocateBuffer(size, attribute);
if (!is_valid_buffer(buffer)) {
if (buffer.first != 0) {
buffer_manager->DeallocateBuffer(buffer.first, buffer.second);
}
return fs::ResultBufferAllocationFailed();
}
*out = buffer;
return ResultSuccess();
};
if (context == nullptr || !context->IsNeedBlocking()) {
/* If there's no context (or we don't need to block), just allocate the buffer. */
R_TRY(AllocateBufferImpl());
} else {
/* Otherwise, try to allocate repeatedly. */
R_TRY(DoContinuouslyUntilBufferIsAllocated(AllocateBufferImpl, func_name));
}
AMS_ASSERT(out->first != 0);
return ResultSuccess();
}
} }

View file

@ -0,0 +1,295 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/lmem.hpp>
#include <stratosphere/fs/fs_memory_management.hpp>
#include <stratosphere/fssystem/buffers/fssystem_i_buffer_manager.hpp>
#include <stratosphere/fssystem/buffers/fssystem_file_system_buddy_heap.hpp>
namespace ams::fssystem {
class FileSystemBufferManager : public IBufferManager {
NON_COPYABLE(FileSystemBufferManager);
NON_MOVEABLE(FileSystemBufferManager);
public:
using BuddyHeap = FileSystemBuddyHeap;
private:
class CacheHandleTable {
NON_COPYABLE(CacheHandleTable);
NON_MOVEABLE(CacheHandleTable);
private:
class Entry {
private:
CacheHandle handle;
uintptr_t address;
size_t size;
BufferAttribute attr;
public:
constexpr void Initialize(CacheHandle h, uintptr_t a, size_t sz, BufferAttribute t) {
this->handle = h;
this->address = a;
this->size = sz;
this->attr = t;
}
constexpr CacheHandle GetHandle() const {
return this->handle;
}
constexpr uintptr_t GetAddress() const {
return this->address;
}
constexpr size_t GetSize() const {
return this->size;
}
constexpr BufferAttribute GetBufferAttribute() const {
return this->attr;
}
};
class AttrInfo : public util::IntrusiveListBaseNode<AttrInfo>, public ::ams::fs::impl::Newable {
NON_COPYABLE(AttrInfo);
NON_MOVEABLE(AttrInfo);
private:
s32 level;
s32 cache_count;
size_t cache_size;
public:
constexpr AttrInfo(s32 l, s32 cc, size_t cs) : level(l), cache_count(cc), cache_size(cs) {
/* ... */
}
constexpr s32 GetLevel() const {
return this->level;
}
constexpr s32 GetCacheCount() const {
return this->cache_count;
}
constexpr void IncrementCacheCount() {
++this->cache_count;
}
constexpr void DecrementCacheCount() {
--this->cache_count;
}
constexpr size_t GetCacheSize() const {
return this->cache_size;
}
constexpr void AddCacheSize(size_t diff) {
this->cache_size += diff;
}
constexpr void SubtractCacheSize(size_t diff) {
AMS_ASSERT(this->cache_size >= diff);
this->cache_size -= diff;
}
using Newable::operator new;
using Newable::operator delete;
static void *operator new(size_t, void *p) {
return p;
}
static void operator delete(void *, size_t, void*) { /* ... */ }
};
using AttrListTraits = util::IntrusiveListBaseTraits<AttrInfo>;
using AttrList = typename AttrListTraits::ListType;
private:
std::unique_ptr<char[], ::ams::fs::impl::Deleter> internal_entry_buffer;
char *external_entry_buffer;
size_t entry_buffer_size;
Entry *entries;
s32 entry_count;
s32 entry_count_max;
AttrList attr_list;
char *external_attr_info_buffer;
s32 external_attr_info_count;
s32 cache_count_min;
size_t cache_size_min;
size_t total_cache_size;
CacheHandle current_handle;
public:
static constexpr size_t QueryWorkBufferSize(s32 max_cache_count) {
AMS_ASSERT(max_cache_count > 0);
const auto entry_size = sizeof(Entry) * max_cache_count;
const auto attr_list_size = sizeof(AttrInfo) * 0x100;
return util::AlignUp(entry_size + attr_list_size + alignof(Entry) + alignof(AttrInfo), 8);
}
public:
CacheHandleTable() : internal_entry_buffer(), external_entry_buffer(), entry_buffer_size(), entries(), entry_count(), entry_count_max(), attr_list(), external_attr_info_buffer(), external_attr_info_count(), cache_count_min(), cache_size_min(), total_cache_size(), current_handle() {
/* ... */
}
~CacheHandleTable() {
this->Finalize();
}
Result Initialize(s32 max_cache_count);
Result Initialize(s32 max_cache_count, void *work, size_t work_size) {
const auto aligned_entry_buf = util::AlignUp(reinterpret_cast<uintptr_t>(work), alignof(Entry));
this->external_entry_buffer = reinterpret_cast<char *>(aligned_entry_buf);
this->entry_buffer_size = sizeof(Entry) * max_cache_count;
const auto aligned_attr_info_buf = util::AlignUp(reinterpret_cast<uintptr_t>(this->external_entry_buffer + this->entry_buffer_size), alignof(AttrInfo));
const auto work_end = reinterpret_cast<uintptr_t>(work) + work_size;
this->external_attr_info_buffer = reinterpret_cast<char *>(aligned_attr_info_buf);
this->external_attr_info_count = static_cast<s32>((work_end - aligned_attr_info_buf) / sizeof(AttrInfo));
return ResultSuccess();
}
void Finalize();
bool Register(CacheHandle *out, uintptr_t address, size_t size, const BufferAttribute &attr);
bool Unregister(uintptr_t *out_address, size_t *out_size, CacheHandle handle);
bool UnregisterOldest(uintptr_t *out_address, size_t *out_size, const BufferAttribute &attr, size_t required_size = 0);
CacheHandle PublishCacheHandle();
size_t GetTotalCacheSize() const;
private:
void UnregisterCore(uintptr_t *out_address, size_t *out_size, Entry *entry);
Entry *AcquireEntry(uintptr_t address, size_t size, const BufferAttribute &attr);
void ReleaseEntry(Entry *entry);
AttrInfo *FindAttrInfo(const BufferAttribute &attr);
s32 GetCacheCountMin(const BufferAttribute &attr) {
return this->cache_count_min;
}
size_t GetCacheSizeMin(const BufferAttribute &attr) {
return this->cache_size_min;
}
};
private:
BuddyHeap buddy_heap;
CacheHandleTable cache_handle_table;
size_t total_size;
size_t peak_free_size;
size_t peak_total_allocatable_size;
size_t retried_count;
mutable os::Mutex mutex;
public:
static constexpr size_t QueryWorkBufferSize(s32 max_cache_count, s32 max_order) {
const auto buddy_size = FileSystemBuddyHeap::QueryWorkBufferSize(max_order);
const auto table_size = CacheHandleTable::QueryWorkBufferSize(max_cache_count);
return buddy_size + table_size;
}
public:
FileSystemBufferManager() : total_size(), peak_free_size(), peak_total_allocatable_size(), retried_count(), mutex(true) { /* ... */ }
virtual ~FileSystemBufferManager() { /* ... */ }
Result Initialize(s32 max_cache_count, uintptr_t address, size_t buffer_size, size_t block_size) {
AMS_ASSERT(buffer_size > 0);
R_TRY(this->cache_handle_table.Initialize(max_cache_count));
R_TRY(this->buddy_heap.Initialize(address, buffer_size, block_size));
this->total_size = this->buddy_heap.GetTotalFreeSize();
this->peak_free_size = this->total_size;
this->peak_total_allocatable_size = this->total_size;
return ResultSuccess();
}
Result Initialize(s32 max_cache_count, uintptr_t address, size_t buffer_size, size_t block_size, s32 max_order) {
AMS_ASSERT(buffer_size > 0);
R_TRY(this->cache_handle_table.Initialize(max_cache_count));
R_TRY(this->buddy_heap.Initialize(address, buffer_size, block_size, max_order));
this->total_size = this->buddy_heap.GetTotalFreeSize();
this->peak_free_size = this->total_size;
this->peak_total_allocatable_size = this->total_size;
return ResultSuccess();
}
Result Initialize(s32 max_cache_count, uintptr_t address, size_t buffer_size, size_t block_size, void *work, size_t work_size) {
const auto table_size = CacheHandleTable::QueryWorkBufferSize(max_cache_count);
const auto buddy_size = work_size - table_size;
AMS_ASSERT(work_size > table_size);
const auto table_buffer = static_cast<char *>(work);
const auto buddy_buffer = table_buffer + table_size;
R_TRY(this->cache_handle_table.Initialize(max_cache_count, table_buffer, table_size));
R_TRY(this->buddy_heap.Initialize(address, buffer_size, block_size, buddy_buffer, buddy_size));
this->total_size = this->buddy_heap.GetTotalFreeSize();
this->peak_free_size = this->total_size;
this->peak_total_allocatable_size = this->total_size;
return ResultSuccess();
}
Result Initialize(s32 max_cache_count, uintptr_t address, size_t buffer_size, size_t block_size, s32 max_order, void *work, size_t work_size) {
const auto table_size = CacheHandleTable::QueryWorkBufferSize(max_cache_count);
const auto buddy_size = work_size - table_size;
AMS_ASSERT(work_size > table_size);
const auto table_buffer = static_cast<char *>(work);
const auto buddy_buffer = table_buffer + table_size;
R_TRY(this->cache_handle_table.Initialize(max_cache_count, table_buffer, table_size));
R_TRY(this->buddy_heap.Initialize(address, buffer_size, block_size, max_order, buddy_buffer, buddy_size));
this->total_size = this->buddy_heap.GetTotalFreeSize();
this->peak_free_size = this->total_size;
this->peak_total_allocatable_size = this->total_size;
return ResultSuccess();
}
void Finalize() {
this->buddy_heap.Finalize();
this->cache_handle_table.Finalize();
}
private:
virtual const std::pair<uintptr_t, size_t> AllocateBufferImpl(size_t size, const BufferAttribute &attr) override;
virtual void DeallocateBufferImpl(uintptr_t address, size_t size) override;
virtual CacheHandle RegisterCacheImpl(uintptr_t address, size_t size, const BufferAttribute &attr) override;
virtual const std::pair<uintptr_t, size_t> AcquireCacheImpl(CacheHandle handle) override;
virtual size_t GetTotalSizeImpl() const override;
virtual size_t GetFreeSizeImpl() const override;
virtual size_t GetTotalAllocatableSizeImpl() const override;
virtual size_t GetPeakFreeSizeImpl() const override;
virtual size_t GetPeakTotalAllocatableSizeImpl() const override;
virtual size_t GetRetriedCountImpl() const override;
virtual void ClearPeakImpl() override;
};
}

View file

@ -0,0 +1,110 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fssystem {
class IBufferManager {
public:
class BufferAttribute {
private:
s32 level;
public:
constexpr BufferAttribute() : level(0) { /* ... */ }
constexpr explicit BufferAttribute(s32 l) : level(l) { /* ... */ }
constexpr s32 GetLevel() const { return this->level; }
};
using CacheHandle = s64;
static constexpr s32 BufferLevelMin = 0;
public:
virtual ~IBufferManager() { /* ... */ }
const std::pair<uintptr_t, size_t> AllocateBuffer(size_t size, const BufferAttribute &attr) {
return this->AllocateBufferImpl(size, attr);
}
const std::pair<uintptr_t, size_t> AllocateBuffer(size_t size) {
return this->AllocateBufferImpl(size, BufferAttribute());
}
void DeallocateBuffer(uintptr_t address, size_t size) {
return this->DeallocateBufferImpl(address, size);
}
CacheHandle RegisterCache(uintptr_t address, size_t size, const BufferAttribute &attr) {
return this->RegisterCacheImpl(address, size, attr);
}
const std::pair<uintptr_t, size_t> AcquireCache(CacheHandle handle) {
return this->AcquireCacheImpl(handle);
}
size_t GetTotalSize() const {
return this->GetTotalSizeImpl();
}
size_t GetFreeSize() const {
return this->GetFreeSizeImpl();
}
size_t GetTotalAllocatableSize() const {
return this->GetTotalAllocatableSizeImpl();
}
size_t GetPeakFreeSize() const {
return this->GetPeakFreeSizeImpl();
}
size_t GetPeakTotalAllocatableSize() const {
return this->GetPeakTotalAllocatableSizeImpl();
}
size_t GetRetriedCount() const {
return this->GetRetriedCountImpl();
}
void ClearPeak() const {
return this->ClearPeak();
}
protected:
virtual const std::pair<uintptr_t, size_t> AllocateBufferImpl(size_t size, const BufferAttribute &attr) = 0;
virtual void DeallocateBufferImpl(uintptr_t address, size_t size) = 0;
virtual CacheHandle RegisterCacheImpl(uintptr_t address, size_t size, const BufferAttribute &attr) = 0;
virtual const std::pair<uintptr_t, size_t> AcquireCacheImpl(CacheHandle handle) = 0;
virtual size_t GetTotalSizeImpl() const = 0;
virtual size_t GetFreeSizeImpl() const = 0;
virtual size_t GetTotalAllocatableSizeImpl() const = 0;
virtual size_t GetPeakFreeSizeImpl() const = 0;
virtual size_t GetPeakTotalAllocatableSizeImpl() const = 0;
virtual size_t GetRetriedCountImpl() const = 0;
virtual void ClearPeakImpl() = 0;
};
}

View file

@ -0,0 +1,43 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fssystem::dbm {
namespace {
constexpr inline s32 CountLeadingZeros(u32 val) {
return util::CountLeadingZeros(val);
}
constexpr inline s32 CountLeadingOnes(u32 val) {
return CountLeadingZeros(~val);
}
inline u32 ReadU32(const u8 *buf, size_t index) {
u32 val;
std::memcpy(std::addressof(val), buf + index, sizeof(u32));
return val;
}
inline void WriteU32(u8 *buf, size_t index, u32 val) {
std::memcpy(buf + index, std::addressof(val), sizeof(u32));
}
}
}

View file

@ -1,111 +0,0 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fssystem {
constexpr inline size_t AcidSignatureKeyGenerationMax = 1;
constexpr inline size_t AcidSignatureKeyModulusSize = 0x100;
constexpr inline const u8 AcidSignatureKeyModulusDev[AcidSignatureKeyGenerationMax + 1][AcidSignatureKeyModulusSize] = {
{
0xD6, 0x34, 0xA5, 0x78, 0x6C, 0x68, 0xCE, 0x5A, 0xC2, 0x37, 0x17, 0xF3, 0x82, 0x45, 0xC6, 0x89,
0xE1, 0x2D, 0x06, 0x67, 0xBF, 0xB4, 0x06, 0x19, 0x55, 0x6B, 0x27, 0x66, 0x0C, 0xA4, 0xB5, 0x87,
0x81, 0x25, 0xF4, 0x30, 0xBC, 0x53, 0x08, 0x68, 0xA2, 0x48, 0x49, 0x8C, 0x3F, 0x38, 0x40, 0x9C,
0xC4, 0x26, 0xF4, 0x79, 0xE2, 0xA1, 0x85, 0xF5, 0x5C, 0x7F, 0x58, 0xBA, 0xA6, 0x1C, 0xA0, 0x8B,
0x84, 0x16, 0x14, 0x6F, 0x85, 0xD9, 0x7C, 0xE1, 0x3C, 0x67, 0x22, 0x1E, 0xFB, 0xD8, 0xA7, 0xA5,
0x9A, 0xBF, 0xEC, 0x0E, 0xCF, 0x96, 0x7E, 0x85, 0xC2, 0x1D, 0x49, 0x5D, 0x54, 0x26, 0xCB, 0x32,
0x7C, 0xF6, 0xBB, 0x58, 0x03, 0x80, 0x2B, 0x5D, 0xF7, 0xFB, 0xD1, 0x9D, 0xC7, 0xC6, 0x2E, 0x53,
0xC0, 0x6F, 0x39, 0x2C, 0x1F, 0xA9, 0x92, 0xF2, 0x4D, 0x7D, 0x4E, 0x74, 0xFF, 0xE4, 0xEF, 0xE4,
0x7C, 0x3D, 0x34, 0x2A, 0x71, 0xA4, 0x97, 0x59, 0xFF, 0x4F, 0xA2, 0xF4, 0x66, 0x78, 0xD8, 0xBA,
0x99, 0xE3, 0xE6, 0xDB, 0x54, 0xB9, 0xE9, 0x54, 0xA1, 0x70, 0xFC, 0x05, 0x1F, 0x11, 0x67, 0x4B,
0x26, 0x8C, 0x0C, 0x3E, 0x03, 0xD2, 0xA3, 0x55, 0x5C, 0x7D, 0xC0, 0x5D, 0x9D, 0xFF, 0x13, 0x2F,
0xFD, 0x19, 0xBF, 0xED, 0x44, 0xC3, 0x8C, 0xA7, 0x28, 0xCB, 0xE5, 0xE0, 0xB1, 0xA7, 0x9C, 0x33,
0x8D, 0xB8, 0x6E, 0xDE, 0x87, 0x18, 0x22, 0x60, 0xC4, 0xAE, 0xF2, 0x87, 0x9F, 0xCE, 0x09, 0x5C,
0xB5, 0x99, 0xA5, 0x9F, 0x49, 0xF2, 0xD7, 0x58, 0xFA, 0xF9, 0xC0, 0x25, 0x7D, 0xD6, 0xCB, 0xF3,
0xD8, 0x6C, 0xA2, 0x69, 0x91, 0x68, 0x73, 0xB1, 0x94, 0x6F, 0xA3, 0xF3, 0xB9, 0x7D, 0xF8, 0xE0,
0x72, 0x9E, 0x93, 0x7B, 0x7A, 0xA2, 0x57, 0x60, 0xB7, 0x5B, 0xA9, 0x84, 0xAE, 0x64, 0x88, 0x69
},
{
0xBC, 0xA5, 0x6A, 0x7E, 0xEA, 0x38, 0x34, 0x62, 0xA6, 0x10, 0x18, 0x3C, 0xE1, 0x63, 0x7B, 0xF0,
0xD3, 0x08, 0x8C, 0xF5, 0xC5, 0xC4, 0xC7, 0x93, 0xE9, 0xD9, 0xE6, 0x32, 0xF3, 0xA0, 0xF6, 0x6E,
0x8A, 0x98, 0x76, 0x47, 0x33, 0x47, 0x65, 0x02, 0x70, 0xDC, 0x86, 0x5F, 0x3D, 0x61, 0x5A, 0x70,
0xBC, 0x5A, 0xCA, 0xCA, 0x50, 0xAD, 0x61, 0x7E, 0xC9, 0xEC, 0x27, 0xFF, 0xE8, 0x64, 0x42, 0x9A,
0xEE, 0xBE, 0xC3, 0xD1, 0x0B, 0xC0, 0xE9, 0xBF, 0x83, 0x8D, 0xC0, 0x0C, 0xD8, 0x00, 0x5B, 0x76,
0x90, 0xD2, 0x4B, 0x30, 0x84, 0x35, 0x8B, 0x1E, 0x20, 0xB7, 0xE4, 0xDC, 0x63, 0xE5, 0xDF, 0xCD,
0x00, 0x5F, 0x81, 0x5F, 0x67, 0xC5, 0x8B, 0xDF, 0xFC, 0xE1, 0x37, 0x5F, 0x07, 0xD9, 0xDE, 0x4F,
0xE6, 0x7B, 0xF1, 0xFB, 0xA1, 0x5A, 0x71, 0x40, 0xFE, 0xBA, 0x1E, 0xAE, 0x13, 0x22, 0xD2, 0xFE,
0x37, 0xA2, 0xB6, 0x8B, 0xAB, 0xEB, 0x84, 0x81, 0x4E, 0x7C, 0x1E, 0x02, 0xD1, 0xFB, 0xD7, 0x5D,
0x11, 0x84, 0x64, 0xD2, 0x4D, 0xBB, 0x50, 0x00, 0x67, 0x54, 0xE2, 0x77, 0x89, 0xBA, 0x0B, 0xE7,
0x05, 0x57, 0x9A, 0x22, 0x5A, 0xEC, 0x76, 0x1C, 0xFD, 0xE8, 0xA8, 0x18, 0x16, 0x41, 0x65, 0x03,
0xFA, 0xC4, 0xA6, 0x31, 0x5C, 0x1A, 0x7F, 0xAB, 0x11, 0xC8, 0x4A, 0x99, 0xB9, 0xE6, 0xCF, 0x62,
0x21, 0xA6, 0x72, 0x47, 0xDB, 0xBA, 0x96, 0x26, 0x4E, 0x2E, 0xD4, 0x8C, 0x46, 0xD6, 0xA7, 0x1A,
0x6C, 0x32, 0xA7, 0xDF, 0x85, 0x1C, 0x03, 0xC3, 0x6D, 0xA9, 0xE9, 0x68, 0xF4, 0x17, 0x1E, 0xB2,
0x70, 0x2A, 0xA1, 0xE5, 0xE1, 0xF3, 0x8F, 0x6F, 0x63, 0xAC, 0xEB, 0x72, 0x0B, 0x4C, 0x4A, 0x36,
0x3C, 0x60, 0x91, 0x9F, 0x6E, 0x1C, 0x71, 0xEA, 0xD0, 0x78, 0x78, 0xA0, 0x2E, 0xC6, 0x32, 0x6B
}
};
constexpr inline const u8 AcidSignatureKeyModulusProd[AcidSignatureKeyGenerationMax + 1][AcidSignatureKeyModulusSize] = {
{
0xDD, 0xC8, 0xDD, 0xF2, 0x4E, 0x6D, 0xF0, 0xCA, 0x9E, 0xC7, 0x5D, 0xC7, 0x7B, 0xAD, 0xFE, 0x7D,
0x23, 0x89, 0x69, 0xB6, 0xF2, 0x06, 0xA2, 0x02, 0x88, 0xE1, 0x55, 0x91, 0xAB, 0xCB, 0x4D, 0x50,
0x2E, 0xFC, 0x9D, 0x94, 0x76, 0xD6, 0x4C, 0xD8, 0xFF, 0x10, 0xFA, 0x5E, 0x93, 0x0A, 0xB4, 0x57,
0xAC, 0x51, 0xC7, 0x16, 0x66, 0xF4, 0x1A, 0x54, 0xC2, 0xC5, 0x04, 0x3D, 0x1B, 0xFE, 0x30, 0x20,
0x8A, 0xAC, 0x6F, 0x6F, 0xF5, 0xC7, 0xB6, 0x68, 0xB8, 0xC9, 0x40, 0x6B, 0x42, 0xAD, 0x11, 0x21,
0xE7, 0x8B, 0xE9, 0x75, 0x01, 0x86, 0xE4, 0x48, 0x9B, 0x0A, 0x0A, 0xF8, 0x7F, 0xE8, 0x87, 0xF2,
0x82, 0x01, 0xE6, 0xA3, 0x0F, 0xE4, 0x66, 0xAE, 0x83, 0x3F, 0x4E, 0x9F, 0x5E, 0x01, 0x30, 0xA4,
0x00, 0xB9, 0x9A, 0xAE, 0x5F, 0x03, 0xCC, 0x18, 0x60, 0xE5, 0xEF, 0x3B, 0x5E, 0x15, 0x16, 0xFE,
0x1C, 0x82, 0x78, 0xB5, 0x2F, 0x47, 0x7C, 0x06, 0x66, 0x88, 0x5D, 0x35, 0xA2, 0x67, 0x20, 0x10,
0xE7, 0x6C, 0x43, 0x68, 0xD3, 0xE4, 0x5A, 0x68, 0x2A, 0x5A, 0xE2, 0x6D, 0x73, 0xB0, 0x31, 0x53,
0x1C, 0x20, 0x09, 0x44, 0xF5, 0x1A, 0x9D, 0x22, 0xBE, 0x12, 0xA1, 0x77, 0x11, 0xE2, 0xA1, 0xCD,
0x40, 0x9A, 0xA2, 0x8B, 0x60, 0x9B, 0xEF, 0xA0, 0xD3, 0x48, 0x63, 0xA2, 0xF8, 0xA3, 0x2C, 0x08,
0x56, 0x52, 0x2E, 0x60, 0x19, 0x67, 0x5A, 0xA7, 0x9F, 0xDC, 0x3F, 0x3F, 0x69, 0x2B, 0x31, 0x6A,
0xB7, 0x88, 0x4A, 0x14, 0x84, 0x80, 0x33, 0x3C, 0x9D, 0x44, 0xB7, 0x3F, 0x4C, 0xE1, 0x75, 0xEA,
0x37, 0xEA, 0xE8, 0x1E, 0x7C, 0x77, 0xB7, 0xC6, 0x1A, 0xA2, 0xF0, 0x9F, 0x10, 0x61, 0xCD, 0x7B,
0x5B, 0x32, 0x4C, 0x37, 0xEF, 0xB1, 0x71, 0x68, 0x53, 0x0A, 0xED, 0x51, 0x7D, 0x35, 0x22, 0xFD
},
{
0xE7, 0xAA, 0x25, 0xC8, 0x01, 0xA5, 0x14, 0x6B, 0x01, 0x60, 0x3E, 0xD9, 0x96, 0x5A, 0xBF, 0x90,
0xAC, 0xA7, 0xFD, 0x9B, 0x5B, 0xBD, 0x8A, 0x26, 0xB0, 0xCB, 0x20, 0x28, 0x9A, 0x72, 0x12, 0xF5,
0x20, 0x65, 0xB3, 0xB9, 0x84, 0x58, 0x1F, 0x27, 0xBC, 0x7C, 0xA2, 0xC9, 0x9E, 0x18, 0x95, 0xCF,
0xC2, 0x73, 0x2E, 0x74, 0x8C, 0x66, 0xE5, 0x9E, 0x79, 0x2B, 0xB8, 0x07, 0x0C, 0xB0, 0x4E, 0x8E,
0xAB, 0x85, 0x21, 0x42, 0xC4, 0xC5, 0x6D, 0x88, 0x9C, 0xDB, 0x15, 0x95, 0x3F, 0x80, 0xDB, 0x7A,
0x9A, 0x7D, 0x41, 0x56, 0x25, 0x17, 0x18, 0x42, 0x4D, 0x8C, 0xAC, 0xA5, 0x7B, 0xDB, 0x42, 0x5D,
0x59, 0x35, 0x45, 0x5D, 0x8A, 0x02, 0xB5, 0x70, 0xC0, 0x72, 0x35, 0x46, 0xD0, 0x1D, 0x60, 0x01,
0x4A, 0xCC, 0x1C, 0x46, 0xD3, 0xD6, 0x35, 0x52, 0xD6, 0xE1, 0xF8, 0x3B, 0x5D, 0xEA, 0xDD, 0xB8,
0xFE, 0x7D, 0x50, 0xCB, 0x35, 0x23, 0x67, 0x8B, 0xB6, 0xE4, 0x74, 0xD2, 0x60, 0xFC, 0xFD, 0x43,
0xBF, 0x91, 0x08, 0x81, 0xC5, 0x4F, 0x5D, 0x16, 0x9A, 0xC4, 0x9A, 0xC6, 0xF6, 0xF3, 0xE1, 0xF6,
0x5C, 0x07, 0xAA, 0x71, 0x6C, 0x13, 0xA4, 0xB1, 0xB3, 0x66, 0xBF, 0x90, 0x4C, 0x3D, 0xA2, 0xC4,
0x0B, 0xB8, 0x3D, 0x7A, 0x8C, 0x19, 0xFA, 0xFF, 0x6B, 0xB9, 0x1F, 0x02, 0xCC, 0xB6, 0xD3, 0x0C,
0x7D, 0x19, 0x1F, 0x47, 0xF9, 0xC7, 0x40, 0x01, 0xFA, 0x46, 0xEA, 0x0B, 0xD4, 0x02, 0xE0, 0x3D,
0x30, 0x9A, 0x1A, 0x0F, 0xEA, 0xA7, 0x66, 0x55, 0xF7, 0xCB, 0x28, 0xE2, 0xBB, 0x99, 0xE4, 0x83,
0xC3, 0x43, 0x03, 0xEE, 0xDC, 0x1F, 0x02, 0x23, 0xDD, 0xD1, 0x2D, 0x39, 0xA4, 0x65, 0x75, 0x03,
0xEF, 0x37, 0x9C, 0x06, 0xD6, 0xFA, 0xA1, 0x15, 0xF0, 0xDB, 0x17, 0x47, 0x26, 0x4F, 0x49, 0x03
}
};
static_assert(sizeof(AcidSignatureKeyModulusProd) == sizeof(AcidSignatureKeyModulusDev));
constexpr inline const u8 AcidSignatureKeyExponent[] = {
0x01, 0x00, 0x01
};
constexpr inline size_t AcidSignatureKeyExponentSize = util::size(AcidSignatureKeyExponent);
}

View file

@ -0,0 +1,116 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fssystem/fssystem_aes_ctr_storage.hpp>
#include <stratosphere/fssystem/fssystem_bucket_tree.hpp>
namespace ams::fssystem {
class AesCtrCounterExtendedStorage : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(AesCtrCounterExtendedStorage);
NON_MOVEABLE(AesCtrCounterExtendedStorage);
public:
static constexpr size_t BlockSize = crypto::Aes128CtrEncryptor::BlockSize;
static constexpr size_t KeySize = crypto::Aes128CtrEncryptor::KeySize;
static constexpr size_t IvSize = crypto::Aes128CtrEncryptor::IvSize;
static constexpr size_t NodeSize = 16_KB;
using IAllocator = BucketTree::IAllocator;
using DecryptFunction = void(*)(void *dst, size_t dst_size, s32 index, const void *enc_key, size_t enc_key_size, const void *iv, size_t iv_size, const void *src, size_t src_size);
class IDecryptor {
public:
virtual ~IDecryptor() { /* ... */ }
virtual void Decrypt(void *buf, size_t buf_size, const void *enc_key, size_t enc_key_size, void *iv, size_t iv_size) = 0;
virtual bool HasExternalDecryptionKey() const = 0;
};
struct Entry {
u8 offset[sizeof(s64)];
s32 reserved;
s32 generation;
void SetOffset(s64 value) {
std::memcpy(this->offset, std::addressof(value), sizeof(s64));
}
s64 GetOffset() const {
s64 value;
std::memcpy(std::addressof(value), this->offset, sizeof(s64));
return value;
}
};
static_assert(sizeof(Entry) == 0x10);
static_assert(alignof(Entry) == 4);
static_assert(std::is_pod<Entry>::value);
public:
static constexpr s64 QueryHeaderStorageSize() {
return BucketTree::QueryHeaderStorageSize();
}
static constexpr s64 QueryNodeStorageSize(s32 entry_count) {
return BucketTree::QueryNodeStorageSize(NodeSize, sizeof(Entry), entry_count);
}
static constexpr s64 QueryEntryStorageSize(s32 entry_count) {
return BucketTree::QueryEntryStorageSize(NodeSize, sizeof(Entry), entry_count);
}
static Result CreateExternalDecryptor(std::unique_ptr<IDecryptor> *out, DecryptFunction func, s32 key_index);
static Result CreateSoftwareDecryptor(std::unique_ptr<IDecryptor> *out);
private:
BucketTree table;
fs::SubStorage data_storage;
u8 key[KeySize];
u32 secure_value;
s64 counter_offset;
std::unique_ptr<IDecryptor> decryptor;
public:
AesCtrCounterExtendedStorage() : table(), data_storage(), secure_value(), counter_offset(), decryptor() { /* ... */ }
virtual ~AesCtrCounterExtendedStorage() { this->Finalize(); }
Result Initialize(IAllocator *allocator, const void *key, size_t key_size, u32 secure_value, s64 counter_offset, fs::SubStorage data_storage, fs::SubStorage node_storage, fs::SubStorage entry_storage, s32 entry_count, std::unique_ptr<IDecryptor> &&decryptor);
void Finalize();
bool IsInitialized() const { return this->table.IsInitialized(); }
virtual Result Read(s64 offset, void *buffer, size_t size) override;
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override;
virtual Result GetSize(s64 *out) override {
AMS_ASSERT(out != nullptr);
*out = this->table.GetSize();
return ResultSuccess();
}
virtual Result Flush() override {
return ResultSuccess();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return fs::ResultUnsupportedOperationInAesCtrCounterExtendedStorageA();
}
virtual Result SetSize(s64 size) override {
return fs::ResultUnsupportedOperationInAesCtrCounterExtendedStorageB();
}
private:
Result Initialize(IAllocator *allocator, const void *key, size_t key_size, u32 secure_value, fs::SubStorage data_storage, fs::SubStorage table_storage);
};
}

View file

@ -0,0 +1,309 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fs/fs_istorage.hpp>
#include <stratosphere/fs/impl/fs_newable.hpp>
#include <stratosphere/fssystem/fssystem_alignment_matching_storage_impl.hpp>
#include <stratosphere/fssystem/fssystem_pooled_buffer.hpp>
namespace ams::fssystem {
template<size_t _DataAlign, size_t _BufferAlign>
class AlignmentMatchingStorage : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(AlignmentMatchingStorage);
NON_MOVEABLE(AlignmentMatchingStorage);
public:
static constexpr size_t DataAlign = _DataAlign;
static constexpr size_t BufferAlign = _BufferAlign;
static constexpr size_t DataAlignMax = 0x200;
static_assert(DataAlign <= DataAlignMax);
static_assert(util::IsPowerOfTwo(DataAlign));
static_assert(util::IsPowerOfTwo(BufferAlign));
private:
std::shared_ptr<fs::IStorage> shared_base_storage;
fs::IStorage * const base_storage;
s64 base_storage_size;
bool is_base_storage_size_dirty;
public:
explicit AlignmentMatchingStorage(fs::IStorage *bs) : base_storage(bs), is_base_storage_size_dirty(true) {
/* ... */
}
explicit AlignmentMatchingStorage(std::shared_ptr<fs::IStorage> bs) : shared_base_storage(bs), base_storage(shared_base_storage.get()), is_base_storage_size_dirty(true) {
/* ... */
}
virtual Result Read(s64 offset, void *buffer, size_t size) override {
/* Allocate a work buffer on stack. */
__attribute__((aligned(DataAlignMax))) char work_buf[DataAlign];
static_assert(util::IsAligned(alignof(work_buf), BufferAlign));
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
s64 bs_size = 0;
R_TRY(this->GetSize(std::addressof(bs_size)));
R_UNLESS(fs::IStorage::IsRangeValid(offset, size, bs_size), fs::ResultOutOfRange());
return AlignmentMatchingStorageImpl::Read(this->base_storage, work_buf, sizeof(work_buf), DataAlign, BufferAlign, offset, static_cast<char *>(buffer), size);
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
/* Allocate a work buffer on stack. */
__attribute__((aligned(DataAlignMax))) char work_buf[DataAlign];
static_assert(util::IsAligned(alignof(work_buf), BufferAlign));
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
s64 bs_size = 0;
R_TRY(this->GetSize(std::addressof(bs_size)));
R_UNLESS(fs::IStorage::IsRangeValid(offset, size, bs_size), fs::ResultOutOfRange());
return AlignmentMatchingStorageImpl::Write(this->base_storage, work_buf, sizeof(work_buf), DataAlign, BufferAlign, offset, static_cast<const char *>(buffer), size);
}
virtual Result Flush() override {
return this->base_storage->Flush();
}
virtual Result SetSize(s64 size) override {
ON_SCOPE_EXIT { this->is_base_storage_size_dirty = true; };
return this->base_storage->SetSize(util::AlignUp(size, DataAlign));
}
virtual Result GetSize(s64 *out) override {
AMS_ASSERT(out != nullptr);
if (this->is_base_storage_size_dirty) {
s64 size;
R_TRY(this->base_storage->GetSize(std::addressof(size)));
this->base_storage_size = size;
this->is_base_storage_size_dirty = false;
}
*out = this->base_storage_size;
return ResultSuccess();
}
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override {
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Get the base storage size. */
s64 bs_size = 0;
R_TRY(this->GetSize(std::addressof(bs_size)));
R_UNLESS(fs::IStorage::IsOffsetAndSizeValid(offset, size), fs::ResultOutOfRange());
/* Operate on the base storage. */
const auto valid_size = std::min(size, bs_size - offset);
const auto aligned_offset = util::AlignDown(offset, DataAlign);
const auto aligned_offset_end = util::AlignUp(offset + valid_size, DataAlign);
const auto aligned_size = aligned_offset_end - aligned_offset;
return this->base_storage->OperateRange(dst, dst_size, op_id, aligned_offset, aligned_size, src, src_size);
}
};
template<size_t _BufferAlign>
class AlignmentMatchingStoragePooledBuffer : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(AlignmentMatchingStoragePooledBuffer);
NON_MOVEABLE(AlignmentMatchingStoragePooledBuffer);
public:
static constexpr size_t BufferAlign = _BufferAlign;
static_assert(util::IsPowerOfTwo(BufferAlign));
private:
fs::IStorage * const base_storage;
s64 base_storage_size;
size_t data_align;
bool is_base_storage_size_dirty;
public:
explicit AlignmentMatchingStoragePooledBuffer(fs::IStorage *bs, size_t da) : base_storage(bs), data_align(da), is_base_storage_size_dirty(true) {
AMS_ASSERT(util::IsPowerOfTwo(da));
}
virtual Result Read(s64 offset, void *buffer, size_t size) override {
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
s64 bs_size = 0;
R_TRY(this->GetSize(std::addressof(bs_size)));
R_UNLESS(fs::IStorage::IsRangeValid(offset, size, bs_size), fs::ResultOutOfRange());
/* Allocate a pooled buffer. */
PooledBuffer pooled_buffer;
pooled_buffer.AllocateParticularlyLarge(this->data_align, this->data_align);
return AlignmentMatchingStorageImpl::Read(this->base_storage, pooled_buffer.GetBuffer(), pooled_buffer.GetSize(), this->data_align, BufferAlign, offset, static_cast<char *>(buffer), size);
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
s64 bs_size = 0;
R_TRY(this->GetSize(std::addressof(bs_size)));
R_UNLESS(fs::IStorage::IsRangeValid(offset, size, bs_size), fs::ResultOutOfRange());
/* Allocate a pooled buffer. */
PooledBuffer pooled_buffer;
pooled_buffer.AllocateParticularlyLarge(this->data_align, this->data_align);
return AlignmentMatchingStorageImpl::Write(this->base_storage, pooled_buffer.GetBuffer(), pooled_buffer.GetSize(), this->data_align, BufferAlign, offset, static_cast<const char *>(buffer), size);
}
virtual Result Flush() override {
return this->base_storage->Flush();
}
virtual Result SetSize(s64 size) override {
ON_SCOPE_EXIT { this->is_base_storage_size_dirty = true; };
return this->base_storage->SetSize(util::AlignUp(size, this->data_align));
}
virtual Result GetSize(s64 *out) override {
AMS_ASSERT(out != nullptr);
if (this->is_base_storage_size_dirty) {
s64 size;
R_TRY(this->base_storage->GetSize(std::addressof(size)));
this->base_storage_size = size;
this->is_base_storage_size_dirty = false;
}
*out = this->base_storage_size;
return ResultSuccess();
}
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override {
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Get the base storage size. */
s64 bs_size = 0;
R_TRY(this->GetSize(std::addressof(bs_size)));
R_UNLESS(fs::IStorage::IsOffsetAndSizeValid(offset, size), fs::ResultOutOfRange());
/* Operate on the base storage. */
const auto valid_size = std::min(size, bs_size - offset);
const auto aligned_offset = util::AlignDown(offset, this->data_align);
const auto aligned_offset_end = util::AlignUp(offset + valid_size, this->data_align);
const auto aligned_size = aligned_offset_end - aligned_offset;
return this->base_storage->OperateRange(dst, dst_size, op_id, aligned_offset, aligned_size, src, src_size);
}
};
template<size_t _BufferAlign>
class AlignmentMatchingStorageInBulkRead : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(AlignmentMatchingStorageInBulkRead);
NON_MOVEABLE(AlignmentMatchingStorageInBulkRead);
public:
static constexpr size_t BufferAlign = _BufferAlign;
static_assert(util::IsPowerOfTwo(BufferAlign));
private:
std::shared_ptr<fs::IStorage> shared_base_storage;
fs::IStorage * const base_storage;
s64 base_storage_size;
size_t data_align;
public:
explicit AlignmentMatchingStorageInBulkRead(fs::IStorage *bs, size_t da) : shared_base_storage(), base_storage(bs), base_storage_size(-1), data_align(da) {
AMS_ASSERT(util::IsPowerOfTwo(this->data_align));
}
explicit AlignmentMatchingStorageInBulkRead(std::shared_ptr<fs::IStorage> bs, size_t da) : shared_base_storage(bs), base_storage(shared_base_storage.get()), base_storage_size(-1), data_align(da) {
AMS_ASSERT(util::IsPowerOfTwo(da));
}
virtual Result Read(s64 offset, void *buffer, size_t size) override;
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
s64 bs_size = 0;
R_TRY(this->GetSize(std::addressof(bs_size)));
R_UNLESS(fs::IStorage::IsRangeValid(offset, size, bs_size), fs::ResultOutOfRange());
/* Allocate a pooled buffer. */
PooledBuffer pooled_buffer(this->data_align, this->data_align);
return AlignmentMatchingStorageImpl::Write(this->base_storage, pooled_buffer.GetBuffer(), pooled_buffer.GetSize(), this->data_align, BufferAlign, offset, static_cast<const char *>(buffer), size);
}
virtual Result Flush() override {
return this->base_storage->Flush();
}
virtual Result SetSize(s64 size) override {
ON_SCOPE_EXIT { this->base_storage_size = -1; };
return this->base_storage->SetSize(util::AlignUp(size, this->data_align));
}
virtual Result GetSize(s64 *out) override {
AMS_ASSERT(out != nullptr);
if (this->base_storage_size < 0) {
s64 size;
R_TRY(this->base_storage->GetSize(std::addressof(size)));
this->base_storage_size = size;
}
*out = this->base_storage_size;
return ResultSuccess();
}
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override {
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Get the base storage size. */
s64 bs_size = 0;
R_TRY(this->GetSize(std::addressof(bs_size)));
R_UNLESS(fs::IStorage::IsOffsetAndSizeValid(offset, size), fs::ResultOutOfRange());
/* Operate on the base storage. */
const auto valid_size = std::min(size, bs_size - offset);
const auto aligned_offset = util::AlignDown(offset, this->data_align);
const auto aligned_offset_end = util::AlignUp(offset + valid_size, this->data_align);
const auto aligned_size = aligned_offset_end - aligned_offset;
return this->base_storage->OperateRange(dst, dst_size, op_id, aligned_offset, aligned_size, src, src_size);
}
};
}

View file

@ -0,0 +1,28 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fs/fs_istorage.hpp>
namespace ams::fssystem {
class AlignmentMatchingStorageImpl {
public:
static Result Read(fs::IStorage *base_storage, char *work_buf, size_t work_buf_size, size_t data_alignment, size_t buffer_alignment, s64 offset, char *buffer, size_t size);
static Result Write(fs::IStorage *base_storage, char *work_buf, size_t work_buf_size, size_t data_alignment, size_t buffer_alignment, s64 offset, const char *buffer, size_t size);
};
}

View file

@ -0,0 +1,64 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fssystem {
using AllocateFunction = void *(*)(size_t size);
using DeallocateFunction = void (*)(void *ptr, size_t size);
void InitializeAllocator(AllocateFunction allocate_func, DeallocateFunction deallocate_func);
void *Allocate(size_t size);
void Deallocate(void *ptr, size_t size);
template<typename T>
class StdAllocator : public std::allocator<T> {
public:
StdAllocator() { /* ... */ }
StdAllocator(const StdAllocator &) { /* ... */ }
template<class U>
StdAllocator(const StdAllocator<U> &) { /* ... */ }
template<typename U>
struct rebind {
using other = StdAllocator<U>;
};
T *Allocate(size_t size, const T *hint = nullptr) {
return static_cast<T *>(::ams::fssystem::Allocate(sizeof(T) * size));
}
void Deallocate(T *ptr, size_t size) {
return ::ams::fssystem::Deallocate(ptr, sizeof(T) * size);
}
ALWAYS_INLINE T *allocate(size_t size, const T *hint = nullptr) { return this->Allocate(size, hint); }
ALWAYS_INLINE void deallocate(T *ptr, size_t size) { return this->Deallocate(ptr, size); }
};
template<typename T>
std::shared_ptr<T> AllocateShared() {
return std::allocate_shared<T>(StdAllocator<T>{});
}
template<typename T, typename... Args>
std::shared_ptr<T> AllocateShared(Args &&... args) {
return std::allocate_shared<T>(StdAllocator<T>{}, std::forward<Args>(args)...);
}
}

View file

@ -0,0 +1,330 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fs/fs_substorage.hpp>
namespace ams::fssystem {
class BucketTree {
NON_COPYABLE(BucketTree);
NON_MOVEABLE(BucketTree);
public:
static constexpr u32 Magic = util::FourCC<'B','K','T','R'>::Code;
static constexpr u32 Version = 1;
static constexpr size_t NodeSizeMin = 1_KB;
static constexpr size_t NodeSizeMax = 512_KB;
public:
class Visitor;
struct Header {
u32 magic;
u32 version;
s32 entry_count;
s32 reserved;
void Format(s32 entry_count);
Result Verify() const;
};
static_assert(std::is_pod<Header>::value);
static_assert(sizeof(Header) == 0x10);
struct NodeHeader {
s32 index;
s32 count;
s64 offset;
Result Verify(s32 node_index, size_t node_size, size_t entry_size) const;
};
static_assert(std::is_pod<NodeHeader>::value);
static_assert(sizeof(NodeHeader) == 0x10);
class ContinuousReadingInfo {
private:
size_t read_size;
s32 skip_count;
bool done;
public:
constexpr ContinuousReadingInfo() : read_size(), skip_count(), done() { /* ... */ }
constexpr void Reset() { this->read_size = 0; this->skip_count = 0; this->done = false; }
constexpr void SetSkipCount(s32 count) { AMS_ASSERT(count >= 0); this->skip_count = count; }
constexpr s32 GetSkipCount() const { return this->skip_count; }
constexpr bool CheckNeedScan() { return (--this->skip_count) <= 0; }
constexpr void Done() { this->read_size = 0; this->done = true; }
constexpr bool IsDone() const { return this->done; }
constexpr void SetReadSize(size_t size) { this->read_size = size; }
constexpr size_t GetReadSize() const { return this->read_size; }
constexpr bool CanDo() const { return this->read_size > 0; }
};
using IAllocator = MemoryResource;
private:
class NodeBuffer {
NON_COPYABLE(NodeBuffer);
private:
IAllocator *allocator;
void *header;
public:
NodeBuffer() : allocator(), header() { /* ... */ }
~NodeBuffer() {
AMS_ASSERT(this->header == nullptr);
}
NodeBuffer(NodeBuffer &&rhs) : allocator(rhs.allocator), header(rhs.allocator) {
rhs.allocator = nullptr;
rhs.header = nullptr;
}
NodeBuffer &operator=(NodeBuffer &&rhs) {
if (this != std::addressof(rhs)) {
AMS_ASSERT(this->header == nullptr);
this->allocator = rhs.allocator;
this->header = rhs.header;
rhs.allocator = nullptr;
rhs.header = nullptr;
}
return *this;
}
bool Allocate(IAllocator *allocator, size_t node_size) {
AMS_ASSERT(this->header == nullptr);
this->allocator = allocator;
this->header = allocator->Allocate(node_size, sizeof(s64));
AMS_ASSERT(util::IsAligned(this->header, sizeof(s64)));
return this->header != nullptr;
}
void Free(size_t node_size) {
if (this->header) {
this->allocator->Deallocate(this->header, node_size);
this->header = nullptr;
}
this->allocator = nullptr;
}
void FillSzero(size_t node_size) const {
if (this->header) {
std::memset(this->header, 0, node_size);
}
}
NodeHeader *Get() const {
return reinterpret_cast<NodeHeader *>(this->header);
}
NodeHeader *operator->() const { return this->Get(); }
template<typename T>
T *Get() const {
static_assert(std::is_pod<T>::value);
static_assert(sizeof(T) == sizeof(NodeHeader));
return reinterpret_cast<T *>(this->header);
}
IAllocator *GetAllocator() const {
return this->allocator;
}
};
private:
static constexpr s32 GetEntryCount(size_t node_size, size_t entry_size) {
return static_cast<s32>((node_size - sizeof(NodeHeader)) / entry_size);
}
static constexpr s32 GetOffsetCount(size_t node_size) {
return static_cast<s32>((node_size - sizeof(NodeHeader)) / sizeof(s64));
}
static constexpr s32 GetEntrySetCount(size_t node_size, size_t entry_size, s32 entry_count) {
const s32 entry_count_per_node = GetEntryCount(node_size, entry_size);
return util::DivideUp(entry_count, entry_count_per_node);
}
static constexpr s32 GetNodeL2Count(size_t node_size, size_t entry_size, s32 entry_count) {
const s32 offset_count_per_node = GetOffsetCount(node_size);
const s32 entry_set_count = GetEntrySetCount(node_size, entry_size, entry_count);
if (entry_set_count <= offset_count_per_node) {
return 0;
}
const s32 node_l2_count = util::DivideUp(entry_set_count, offset_count_per_node);
AMS_ABORT_UNLESS(node_l2_count <= offset_count_per_node);
return util::DivideUp(entry_set_count - (offset_count_per_node - (node_l2_count - 1)), offset_count_per_node);
}
public:
static constexpr s64 QueryHeaderStorageSize() { return sizeof(Header); }
static constexpr s64 QueryNodeStorageSize(size_t node_size, size_t entry_size, s32 entry_count) {
AMS_ASSERT(entry_size >= sizeof(s64));
AMS_ASSERT(node_size >= entry_size + sizeof(NodeHeader));
AMS_ASSERT(NodeSizeMin <= node_size && node_size <= NodeSizeMax);
AMS_ASSERT(util::IsPowerOfTwo(node_size));
AMS_ASSERT(entry_count >= 0);
if (entry_count <= 0) {
return 0;
}
return (1 + GetNodeL2Count(node_size, entry_size, entry_count)) * static_cast<s64>(node_size);
}
static constexpr s64 QueryEntryStorageSize(size_t node_size, size_t entry_size, s32 entry_count) {
AMS_ASSERT(entry_size >= sizeof(s64));
AMS_ASSERT(node_size >= entry_size + sizeof(NodeHeader));
AMS_ASSERT(NodeSizeMin <= node_size && node_size <= NodeSizeMax);
AMS_ASSERT(util::IsPowerOfTwo(node_size));
AMS_ASSERT(entry_count >= 0);
if (entry_count <= 0) {
return 0;
}
return GetEntrySetCount(node_size, entry_size, entry_count) * static_cast<s64>(node_size);
}
private:
mutable fs::SubStorage node_storage;
mutable fs::SubStorage entry_storage;
NodeBuffer node_l1;
size_t node_size;
size_t entry_size;
s32 entry_count;
s32 offset_count;
s32 entry_set_count;
s64 start_offset;
s64 end_offset;
public:
BucketTree() : node_storage(), entry_storage(), node_l1(), node_size(), entry_size(), entry_count(), offset_count(), entry_set_count(), start_offset(), end_offset() { /* ... */ }
~BucketTree() { this->Finalize(); }
Result Initialize(IAllocator *allocator, fs::SubStorage node_storage, fs::SubStorage entry_storage, size_t node_size, size_t entry_size, s32 entry_count);
void Initialize(size_t node_size, s64 end_offset);
void Finalize();
bool IsInitialized() const { return this->node_size > 0; }
bool IsEmpty() const { return this->entry_size == 0; }
Result Find(Visitor *visitor, s64 virtual_address) const;
Result InvalidateCache();
s32 GetEntryCount() const { return this->entry_count; }
IAllocator *GetAllocator() const { return this->node_l1.GetAllocator(); }
s64 GetStart() const { return this->start_offset; }
s64 GetEnd() const { return this->end_offset; }
s64 GetSize() const { return this->end_offset - this->start_offset; }
bool Includes(s64 offset) const {
return this->start_offset <= offset && offset < this->end_offset;
}
bool Includes(s64 offset, s64 size) const {
return size > 0 && this->start_offset <= offset && size <= this->end_offset - offset;
}
private:
template<typename EntryType>
struct ContinuousReadingParam {
s64 offset;
size_t size;
NodeHeader entry_set;
s32 entry_index;
EntryType entry;
};
private:
template<typename EntryType>
Result ScanContinuousReading(ContinuousReadingInfo *out_info, const ContinuousReadingParam<EntryType> &param) const;
bool IsExistL2() const { return this->offset_count < this->entry_set_count; }
bool IsExistOffsetL2OnL1() const { return this->IsExistL2() && this->node_l1->count < this->offset_count; }
s64 GetEntrySetIndex(s32 node_index, s32 offset_index) const {
return (this->offset_count - this->node_l1->count) + (this->offset_count * node_index) + offset_index;
}
};
class BucketTree::Visitor {
NON_COPYABLE(Visitor);
NON_MOVEABLE(Visitor);
private:
friend class BucketTree;
union EntrySetHeader {
NodeHeader header;
struct Info {
s32 index;
s32 count;
s64 end;
s64 start;
} info;
static_assert(std::is_pod<Info>::value);
};
static_assert(std::is_pod<EntrySetHeader>::value);
private:
const BucketTree *tree;
void *entry;
s32 entry_index;
s32 entry_set_count;
EntrySetHeader entry_set;
public:
constexpr Visitor() : tree(), entry(), entry_index(-1), entry_set_count(), entry_set{} { /* ... */ }
~Visitor() {
if (this->entry != nullptr) {
this->tree->GetAllocator()->Deallocate(this->entry, this->tree->entry_size);
this->tree = nullptr;
this->entry = nullptr;
}
}
bool IsValid() const { return this->entry_index >= 0; }
bool CanMoveNext() const { return this->IsValid() && (this->entry_index + 1 < this->entry_set.info.count || this->entry_set.info.index + 1 < this->entry_set.info.count); }
bool CanMovePrevious() const { return this->IsValid() && (this->entry_index > 0 || this->entry_set.info.index > 0); }
Result MoveNext();
Result MovePrevious();
template<typename EntryType>
Result ScanContinuousReading(ContinuousReadingInfo *out_info, s64 offset, size_t size) const;
const void *Get() const { AMS_ASSERT(this->IsValid()); return this->entry; }
template<typename T>
const T *Get() const { AMS_ASSERT(this->IsValid()); return reinterpret_cast<const T *>(this->entry); }
const BucketTree *GetTree() const { return this->tree; }
private:
Result Initialize(const BucketTree *tree);
Result Find(s64 virtual_address);
Result FindEntrySet(s32 *out_index, s64 virtual_address, s32 node_index);
Result FindEntrySetWithBuffer(s32 *out_index, s64 virtual_address, s32 node_index, char *buffer);
Result FindEntrySetWithoutBuffer(s32 *out_index, s64 virtual_address, s32 node_index);
Result FindEntry(s64 virtual_address, s32 entry_set_index);
Result FindEntryWithBuffer(s64 virtual_address, s32 entry_set_index, char *buffer);
Result FindEntryWithoutBuffer(s64 virtual_address, s32 entry_set_index);
};
}

View file

@ -0,0 +1,165 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere/fssystem/fssystem_pooled_buffer.hpp>
#include <stratosphere/fssystem/fssystem_bucket_tree.hpp>
#include <stratosphere/fssystem/fssystem_bucket_tree_utils.hpp>
namespace ams::fssystem {
template<typename EntryType>
Result BucketTree::ScanContinuousReading(ContinuousReadingInfo *out_info, const ContinuousReadingParam<EntryType> &param) const {
static_assert(std::is_pod<ContinuousReadingParam<EntryType>>::value);
/* Validate our preconditions. */
AMS_ASSERT(this->IsInitialized());
AMS_ASSERT(out_info != nullptr);
AMS_ASSERT(this->entry_size == sizeof(EntryType));
/* Reset the output. */
out_info->Reset();
/* If there's nothing to read, we're done. */
R_SUCCEED_IF(param.size == 0);
/* If we're reading a fragment, we're done. */
R_SUCCEED_IF(param.entry.IsFragment());
/* Validate the first entry. */
auto entry = param.entry;
auto cur_offset = param.offset;
R_UNLESS(entry.GetVirtualOffset() <= cur_offset, fs::ResultOutOfRange());
/* Create a pooled buffer for our scan. */
PooledBuffer pool(this->node_size, 1);
char *buffer = nullptr;
/* Read the node. */
if (this->node_size <= pool.GetSize()) {
buffer = pool.GetBuffer();
const auto ofs = param.entry_set.index * static_cast<s64>(this->node_size);
R_TRY(this->entry_storage.Read(ofs, buffer, this->node_size));
}
/* Calculate extents. */
const auto end_offset = cur_offset + static_cast<s64>(param.size);
s64 phys_offset = entry.GetPhysicalOffset();
/* Start merge tracking. */
s64 merge_size = 0;
s64 readable_size = 0;
bool merged = false;
/* Iterate. */
auto entry_index = param.entry_index;
for (const auto entry_count = param.entry_set.count; entry_index < entry_count; ++entry_index) {
/* If we're past the end, we're done. */
if (end_offset <= cur_offset) {
break;
}
/* Validate the entry offset. */
const auto entry_offset = entry.GetVirtualOffset();
R_UNLESS(entry_offset <= cur_offset, fs::ResultInvalidIndirectEntryOffset());
/* Get the next entry. */
EntryType next_entry = {};
s64 next_entry_offset;
if (entry_index + 1 < entry_count) {
if (buffer != nullptr) {
const auto ofs = impl::GetBucketTreeEntryOffset(0, this->entry_size, entry_index + 1);
std::memcpy(std::addressof(next_entry), buffer + ofs, this->entry_size);
} else {
const auto ofs = impl::GetBucketTreeEntryOffset(param.entry_set.index, this->node_size, this->entry_size, entry_index + 1);
R_TRY(this->entry_storage.Read(ofs, std::addressof(next_entry), this->entry_size));
}
next_entry_offset = next_entry.GetVirtualOffset();
R_UNLESS(this->Includes(next_entry_offset), fs::ResultInvalidIndirectEntryOffset());
} else {
next_entry_offset = param.entry_set.offset;
}
/* Validate the next entry offset. */
R_UNLESS(cur_offset < next_entry_offset, fs::ResultInvalidIndirectEntryOffset());
/* Determine the much data there is. */
const auto data_size = next_entry_offset - cur_offset;
AMS_ASSERT(data_size > 0);
/* Determine how much data we should read. */
const auto remaining_size = end_offset - cur_offset;
const size_t read_size = static_cast<size_t>(std::min(data_size, remaining_size));
AMS_ASSERT(read_size <= param.size);
/* Update our merge tracking. */
if (entry.IsFragment()) {
/* If we can't merge, stop looping. */
if (EntryType::FragmentSizeMax <= read_size || remaining_size <= data_size) {
break;
}
/* Otherwise, add the current size to the merge size. */
merge_size += read_size;
} else {
/* If we can't merge, stop looping. */
if (phys_offset != entry.GetPhysicalOffset()) {
break;
}
/* Add the size to the readable amount. */
readable_size += merge_size + read_size;
AMS_ASSERT(readable_size <= static_cast<s64>(param.size));
/* Update whether we've merged. */
merged |= merge_size > 0;
merge_size = 0;
}
/* Advance. */
cur_offset += read_size;
AMS_ASSERT(cur_offset <= end_offset);
phys_offset += next_entry_offset - entry_offset;
entry = next_entry;
}
/* If we merged, set our readable size. */
if (merged) {
out_info->SetReadSize(static_cast<size_t>(readable_size));
}
out_info->SetSkipCount(entry_index - param.entry_index);
return ResultSuccess();
}
template<typename EntryType>
Result BucketTree::Visitor::ScanContinuousReading(ContinuousReadingInfo *out_info, s64 offset, size_t size) const {
static_assert(std::is_pod<EntryType>::value);
AMS_ASSERT(this->IsValid());
/* Create our parameters. */
ContinuousReadingParam<EntryType> param = {
offset, size, this->entry_set.header, this->entry_index
};
std::memcpy(std::addressof(param.entry), this->entry, sizeof(EntryType));
/* Scan. */
return this->tree->ScanContinuousReading<EntryType>(out_info, param);
}
}

View file

@ -0,0 +1,85 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere/fssystem/fssystem_bucket_tree.hpp>
namespace ams::fssystem::impl {
class SafeValue {
public:
static ALWAYS_INLINE s64 GetInt64(const void *ptr) {
s64 value;
std::memcpy(std::addressof(value), ptr, sizeof(s64));
return value;
}
static ALWAYS_INLINE s64 GetInt64(const s64 *ptr) {
return GetInt64(static_cast<const void *>(ptr));
}
static ALWAYS_INLINE s64 GetInt64(const s64 &v) {
return GetInt64(std::addressof(v));
}
static ALWAYS_INLINE void SetInt64(void *dst, const void *src) {
std::memcpy(dst, src, sizeof(s64));
}
static ALWAYS_INLINE void SetInt64(void *dst, const s64 *src) {
return SetInt64(dst, static_cast<const void *>(src));
}
static ALWAYS_INLINE void SetInt64(void *dst, const s64 &v) {
return SetInt64(dst, std::addressof(v));
}
};
template<typename IteratorType>
struct BucketTreeNode {
using Header = BucketTree::NodeHeader;
Header header;
s32 GetCount() const { return this->header.count; }
void *GetArray() { return std::addressof(this->header) + 1; }
template<typename T> T *GetArray() { return reinterpret_cast<T *>(this->GetArray()); }
const void *GetArray() const { return std::addressof(this->header) + 1; }
template<typename T> const T *GetArray() const { return reinterpret_cast<const T *>(this->GetArray()); }
s64 GetBeginOffset() const { return *this->GetArray<s64>(); }
s64 GetEndOffset() const { return this->header.offset; }
IteratorType GetBegin() { return IteratorType(this->GetArray<s64>()); }
IteratorType GetEnd() { return IteratorType(this->GetArray<s64>()) + this->header.count; }
IteratorType GetBegin() const { return IteratorType(this->GetArray<s64>()); }
IteratorType GetEnd() const { return IteratorType(this->GetArray<s64>()) + this->header.count; }
IteratorType GetBegin(size_t entry_size) { return IteratorType(this->GetArray(), entry_size); }
IteratorType GetEnd(size_t entry_size) { return IteratorType(this->GetArray(), entry_size) + this->header.count; }
IteratorType GetBegin(size_t entry_size) const { return IteratorType(this->GetArray(), entry_size); }
IteratorType GetEnd(size_t entry_size) const { return IteratorType(this->GetArray(), entry_size) + this->header.count; }
};
constexpr inline s64 GetBucketTreeEntryOffset(s64 entry_set_offset, size_t entry_size, s32 entry_index) {
return entry_set_offset + sizeof(BucketTree::NodeHeader) + entry_index * static_cast<s64>(entry_size);
}
constexpr inline s64 GetBucketTreeEntryOffset(s32 entry_set_index, size_t node_size, size_t entry_size, s32 entry_index) {
return GetBucketTreeEntryOffset(entry_set_index * static_cast<s64>(node_size), entry_size, entry_index);
}
}

View file

@ -0,0 +1,34 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fssystem/fssystem_nca_file_system_driver.hpp>
namespace ams::fssystem {
const ::ams::fssystem::NcaCryptoConfiguration *GetNcaCryptoConfiguration(bool prod);
void SetUpKekAccessKeys(bool prod);
void InvalidateHardwareAesKey();
const u8 *GetAcidSignatureKeyModulus(bool prod, size_t key_generation);
const u8 *GetAcidSignatureKeyPublicExponent();
constexpr inline size_t AcidSignatureKeyModulusSize = NcaCryptoConfiguration::Rsa2048KeyModulusSize;
constexpr inline size_t AcidSignatureKeyPublicExponentSize = NcaCryptoConfiguration::Rsa2048KeyPublicExponentSize;
}

View file

@ -0,0 +1,33 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fssrv::fscreator {
struct FileSystemCreatorInterfaces;
}
namespace ams::fssystem {
/* TODO: This is kind of really a fs process function/tied into fs main. */
/* This should be re-examined when FS is reimplemented. */
void InitializeForFileSystemProxy();
const ::ams::fssrv::fscreator::FileSystemCreatorInterfaces *GetFileSystemCreatorInterfaces();
}

View file

@ -0,0 +1,163 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fssystem/fssystem_bucket_tree.hpp>
namespace ams::fssystem {
class IndirectStorage : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(IndirectStorage);
NON_MOVEABLE(IndirectStorage);
public:
static constexpr s32 StorageCount = 2;
static constexpr size_t NodeSize = 16_KB;
using IAllocator = MemoryResource;
struct Entry {
u8 virt_offset[sizeof(s64)];
u8 phys_offset[sizeof(s64)];
s32 storage_index;
void SetVirtualOffset(const s64 &ofs) {
std::memcpy(this->virt_offset, std::addressof(ofs), sizeof(s64));
}
s64 GetVirtualOffset() const {
s64 offset;
std::memcpy(std::addressof(offset), this->virt_offset, sizeof(s64));
return offset;
}
void SetPhysicalOffset(const s64 &ofs) {
std::memcpy(this->phys_offset, std::addressof(ofs), sizeof(s64));
}
s64 GetPhysicalOffset() const {
s64 offset;
std::memcpy(std::addressof(offset), this->phys_offset, sizeof(s64));
return offset;
}
};
static_assert(std::is_pod<Entry>::value);
static_assert(sizeof(Entry) == 0x14);
struct EntryData {
s64 virt_offset;
s64 phys_offset;
s32 storage_index;
void Set(const Entry &entry) {
this->virt_offset = entry.GetVirtualOffset();
this->phys_offset = entry.GetPhysicalOffset();
this->storage_index = entry.storage_index;
}
};
static_assert(std::is_pod<EntryData>::value);
private:
struct ContinuousReadingEntry {
static constexpr size_t FragmentSizeMax = 4_KB;
IndirectStorage::Entry entry;
s64 GetVirtualOffset() const {
return this->entry.GetVirtualOffset();
}
s64 GetPhysicalOffset() const {
return this->entry.GetPhysicalOffset();
}
bool IsFragment() const {
return this->entry.storage_index != 0;
}
};
static_assert(std::is_pod<ContinuousReadingEntry>::value);
public:
static constexpr s64 QueryHeaderStorageSize() {
return BucketTree::QueryHeaderStorageSize();
}
static constexpr s64 QueryNodeStorageSize(s32 entry_count) {
return BucketTree::QueryNodeStorageSize(NodeSize, sizeof(Entry), entry_count);
}
static constexpr s64 QueryEntryStorageSize(s32 entry_count) {
return BucketTree::QueryEntryStorageSize(NodeSize, sizeof(Entry), entry_count);
}
private:
BucketTree table;
fs::SubStorage data_storage[StorageCount];
public:
IndirectStorage() : table(), data_storage() { /* ... */ }
virtual ~IndirectStorage() { this->Finalize(); }
Result Initialize(IAllocator *allocator, fs::SubStorage table_storage);
void Finalize();
bool IsInitialized() const { return this->table.IsInitialized(); }
Result Initialize(IAllocator *allocator, fs::SubStorage node_storage, fs::SubStorage entry_storage, s32 entry_count) {
return this->table.Initialize(allocator, node_storage, entry_storage, NodeSize, sizeof(Entry), entry_count);
}
void SetStorage(s32 idx, fs::SubStorage storage) {
AMS_ASSERT(0 <= idx && idx < StorageCount);
this->data_storage[idx] = storage;
}
template<typename T>
void SetStorage(s32 idx, T storage, s64 offset, s64 size) {
AMS_ASSERT(0 <= idx && idx < StorageCount);
this->data_storage[idx] = fs::SubStorage(storage, offset, size);
}
Result GetEntryList(Entry *out_entries, s32 *out_entry_count, s32 entry_count, s64 offset, s64 size);
virtual Result Read(s64 offset, void *buffer, size_t size) override;
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override;
virtual Result GetSize(s64 *out) override {
AMS_ASSERT(out != nullptr);
*out = this->table.GetSize();
return ResultSuccess();
}
virtual Result Flush() override {
return ResultSuccess();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return fs::ResultUnsupportedOperationInIndirectStorageA();
}
virtual Result SetSize(s64 size) override {
return fs::ResultUnsupportedOperationInIndirectStorageB();
}
protected:
BucketTree &GetEntryTable() { return this->table; }
fs::SubStorage &GetDataStorage(s32 index) {
AMS_ASSERT(0 <= index && index < StorageCount);
return this->data_storage[index];
}
template<bool ContinuousCheck, typename F>
Result OperatePerEntry(s64 offset, s64 size, F func);
};
}

View file

@ -0,0 +1,113 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere/fssystem/fssystem_indirect_storage.hpp>
namespace ams::fssystem {
template<bool ContinuousCheck, typename F>
Result IndirectStorage::OperatePerEntry(s64 offset, s64 size, F func) {
/* Validate preconditions. */
AMS_ASSERT(offset >= 0);
AMS_ASSERT(size >= 0);
AMS_ASSERT(this->IsInitialized());
/* Succeed if there's nothing to operate on. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(this->table.Includes(offset, size), fs::ResultOutOfRange());
/* Find the offset in our tree. */
BucketTree::Visitor visitor;
R_TRY(this->table.Find(std::addressof(visitor), offset));
{
const auto entry_offset = visitor.Get<Entry>()->GetVirtualOffset();
R_UNLESS(0 <= entry_offset && this->table.Includes(entry_offset), fs::ResultInvalidIndirectEntryOffset());
}
/* Prepare to operate in chunks. */
auto cur_offset = offset;
const auto end_offset = offset + static_cast<s64>(size);
BucketTree::ContinuousReadingInfo cr_info;
while (cur_offset < end_offset) {
/* Get the current entry. */
const auto cur_entry = *visitor.Get<Entry>();
/* Get and validate the entry's offset. */
const auto cur_entry_offset = cur_entry.GetVirtualOffset();
R_UNLESS(cur_entry_offset <= cur_offset, fs::ResultInvalidIndirectEntryOffset());
/* Validate the storage index. */
R_UNLESS(0 <= cur_entry.storage_index && cur_entry.storage_index < StorageCount, fs::ResultInvalidIndirectEntryStorageIndex());
/* If we need to check the continuous info, do so. */
if constexpr (ContinuousCheck) {
/* Scan, if we need to. */
if (cr_info.CheckNeedScan()) {
R_TRY(visitor.ScanContinuousReading<ContinuousReadingEntry>(std::addressof(cr_info), cur_offset, static_cast<size_t>(end_offset - cur_offset)));
}
/* Process a base storage entry. */
if (cr_info.CanDo()) {
R_UNLESS(cur_entry.storage_index == 0, fs::ResultInvalidIndirectEntryStorageIndex());
const auto data_offset = cur_offset - cur_entry_offset;
R_TRY(func(std::addressof(this->data_storage[0]), cur_entry.GetPhysicalOffset() + data_offset, cur_offset, static_cast<s64>(cr_info.GetReadSize())));
}
}
/* Get and validate the next entry offset. */
s64 next_entry_offset;
if (visitor.CanMoveNext()) {
R_TRY(visitor.MoveNext());
next_entry_offset = visitor.Get<Entry>()->GetVirtualOffset();
R_UNLESS(this->table.Includes(next_entry_offset), fs::ResultInvalidIndirectEntryOffset());
} else {
next_entry_offset = this->table.GetEnd();
}
R_UNLESS(cur_offset < next_entry_offset, fs::ResultInvalidIndirectEntryOffset());
/* Get the offset of the entry in the data we read. */
const auto data_offset = cur_offset - cur_entry_offset;
const auto data_size = (next_entry_offset - cur_entry_offset) - data_offset;
AMS_ASSERT(data_size > 0);
/* Determine how much is left. */
const auto remaining_size = end_offset - cur_offset;
const auto cur_size = std::min(remaining_size, data_size);
AMS_ASSERT(cur_size <= size);
/* Operate, if we need to. */
bool needs_operate;
if constexpr (!ContinuousCheck) {
needs_operate = true;
} else {
needs_operate = !cr_info.IsDone() || cur_entry.storage_index != 0;
}
if (needs_operate) {
R_TRY(func(std::addressof(this->data_storage[cur_entry.storage_index]), cur_entry.GetPhysicalOffset() + data_offset, cur_offset, cur_size));
}
cur_offset += cur_size;
}
return ResultSuccess();
}
}

View file

@ -0,0 +1,74 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fs/fs_istorage.hpp>
#include <stratosphere/fs/fs_memory_storage.hpp>
#include <stratosphere/fs/impl/fs_newable.hpp>
#include <stratosphere/fssystem/fssystem_nca_header.hpp>
#include <stratosphere/fssystem/save/fssystem_hierarchical_integrity_verification_storage.hpp>
namespace ams::fssystem {
constexpr inline size_t IntegrityLayerCountRomFs = 7;
constexpr inline size_t IntegrityHashLayerBlockSize = 16_KB;
class IntegrityRomFsStorage : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
private:
save::HierarchicalIntegrityVerificationStorage integrity_storage;
save::FileSystemBufferManagerSet buffers;
os::Mutex mutex;
Hash master_hash;
std::unique_ptr<fs::MemoryStorage> master_hash_storage;
public:
IntegrityRomFsStorage() : mutex(true) { /* ... */ }
virtual ~IntegrityRomFsStorage() override { this->Finalize(); }
Result Initialize(save::HierarchicalIntegrityVerificationInformation level_hash_info, Hash master_hash, save::HierarchicalIntegrityVerificationStorage::HierarchicalStorageInformation storage_info, IBufferManager *bm);
void Finalize();
virtual Result Read(s64 offset, void *buffer, size_t size) override {
return this->integrity_storage.Read(offset, buffer, size);
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return this->integrity_storage.Write(offset, buffer, size);
}
virtual Result SetSize(s64 size) override { return fs::ResultUnsupportedOperationInIntegrityRomFsStorageA(); }
virtual Result GetSize(s64 *out) override {
return this->integrity_storage.GetSize(out);
}
virtual Result Flush() override {
return this->integrity_storage.Flush();
}
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override {
return this->integrity_storage.OperateRange(dst, dst_size, op_id, offset, size, src, src_size);
}
Result Commit() {
return this->integrity_storage.Commit();
}
save::FileSystemBufferManagerSet *GetBuffers() {
return this->integrity_storage.GetBuffers();
}
};
}

View file

@ -0,0 +1,226 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fs/impl/fs_newable.hpp>
#include <stratosphere/fs/fs_istorage.hpp>
#include <stratosphere/fssystem/fssystem_nca_header.hpp>
#include <stratosphere/fssystem/buffers/fssystem_i_buffer_manager.hpp>
namespace ams::fssystem {
class AesCtrCounterExtendedStorage;
class IndirectStorage;
class SparseStorage;
struct NcaCryptoConfiguration;
using KeyGenerationFunction = void (*)(void *dst_key, size_t dst_key_size, const void *src_key, size_t src_key_size, s32 key_type, const NcaCryptoConfiguration &cfg);
using DecryptAesCtrFunction = void (*)(void *dst, size_t dst_size, s32 key_type, const void *src_key, size_t src_key_size, const void *iv, size_t iv_size, const void *src, size_t src_size);
struct NcaCryptoConfiguration {
static constexpr size_t Rsa2048KeyModulusSize = crypto::Rsa2048PssSha256Verifier::ModulusSize;
static constexpr size_t Rsa2048KeyPublicExponentSize = crypto::Rsa2048PssSha256Verifier::MaximumExponentSize;
static constexpr size_t Rsa2048KeyPrivateExponentSize = Rsa2048KeyModulusSize;
static constexpr size_t Aes128KeySize = crypto::AesEncryptor128::KeySize;
static constexpr size_t Header1SignatureKeyGenerationMax = 1;
static constexpr s32 KeyAreaEncryptionKeyIndexCount = 3;
static constexpr s32 HeaderEncryptionKeyCount = 2;
static constexpr size_t KeyGenerationMax = 32;
const u8 *header_1_sign_key_moduli[Header1SignatureKeyGenerationMax + 1];
u8 header_1_sign_key_public_exponent[Rsa2048KeyPublicExponentSize];
u8 key_area_encryption_key_source[KeyAreaEncryptionKeyIndexCount][Aes128KeySize];
u8 header_encryption_key_source[Aes128KeySize];
u8 header_encrypted_encryption_keys[HeaderEncryptionKeyCount][Aes128KeySize];
KeyGenerationFunction generate_key;
DecryptAesCtrFunction decrypt_aes_ctr;
DecryptAesCtrFunction decrypt_aes_ctr_external;
bool is_plaintext_header_available;
};
static_assert(std::is_pod<NcaCryptoConfiguration>::value);
constexpr inline bool IsInvalidKeyTypeValue(s32 key_type) {
return key_type < 0;
}
constexpr inline s32 GetKeyTypeValue(u8 key_index, u8 key_generation) {
constexpr s32 InvalidKeyTypeValue = -1;
static_assert(IsInvalidKeyTypeValue(InvalidKeyTypeValue));
if (key_index >= NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount) {
return InvalidKeyTypeValue;
}
return NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount * key_generation + key_index;
}
constexpr inline s32 KeyAreaEncryptionKeyCount = NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount * NcaCryptoConfiguration::KeyGenerationMax;
enum class KeyType : s32 {
NcaHeaderKey = KeyAreaEncryptionKeyCount + 0,
NcaExternalKey = KeyAreaEncryptionKeyCount + 1,
SaveDataDeviceUniqueMac = KeyAreaEncryptionKeyCount + 2,
SaveDataSeedUniqueMac = KeyAreaEncryptionKeyCount + 3,
};
class NcaReader : public ::ams::fs::impl::Newable {
NON_COPYABLE(NcaReader);
NON_MOVEABLE(NcaReader);
private:
NcaHeader header;
u8 decryption_keys[NcaHeader::DecryptionKey_Count][NcaCryptoConfiguration::Aes128KeySize];
std::shared_ptr<fs::IStorage> shared_base_storage;
std::unique_ptr<fs::IStorage> header_storage;
fs::IStorage *body_storage;
u8 external_decryption_key[NcaCryptoConfiguration::Aes128KeySize];
DecryptAesCtrFunction decrypt_aes_ctr;
DecryptAesCtrFunction decrypt_aes_ctr_external;
bool is_software_aes_prioritized;
NcaHeader::EncryptionType header_encryption_type;
public:
NcaReader();
~NcaReader();
Result Initialize(fs::IStorage *base_storage, const NcaCryptoConfiguration &crypto_cfg);
Result Initialize(std::shared_ptr<fs::IStorage> base_storage, const NcaCryptoConfiguration &crypto_cfg);
fs::IStorage *GetBodyStorage();
u32 GetMagic() const;
NcaHeader::DistributionType GetDistributionType() const;
NcaHeader::ContentType GetContentType() const;
u8 GetKeyGeneration() const;
u8 GetKeyIndex() const;
u64 GetContentSize() const;
u64 GetProgramId() const;
u32 GetContentIndex() const;
u32 GetSdkAddonVersion() const;
void GetRightsId(u8 *dst, size_t dst_size) const;
bool HasFsInfo(s32 index) const;
s32 GetFsCount() const;
const Hash &GetFsHeaderHash(s32 index) const;
void GetFsHeaderHash(Hash *dst, s32 index) const;
void GetFsInfo(NcaHeader::FsInfo *dst, s32 index) const;
u64 GetFsOffset(s32 index) const;
u64 GetFsEndOffset(s32 index) const;
u64 GetFsSize(s32 index) const;
void GetEncryptedKey(void *dst, size_t size) const;
const void *GetDecryptionKey(s32 index) const;
bool HasValidInternalKey() const;
bool HasInternalDecryptionKeyForAesHardwareSpeedEmulation() const;
bool IsSoftwareAesPrioritized() const;
void PrioritizeSoftwareAes();
bool HasExternalDecryptionKey() const;
const void *GetExternalDecryptionKey() const;
void SetExternalDecryptionKey(const void *src, size_t size);
void GetRawData(void *dst, size_t dst_size) const;
DecryptAesCtrFunction GetExternalDecryptAesCtrFunction() const;
DecryptAesCtrFunction GetExternalDecryptAesCtrFunctionForExternalKey() const;
NcaHeader::EncryptionType GetEncryptionType() const;
Result ReadHeader(NcaFsHeader *dst, s32 index) const;
Result VerifyHeaderSign2(const void *key, size_t key_size);
};
class NcaFsHeaderReader : public ::ams::fs::impl::Newable {
NON_COPYABLE(NcaFsHeaderReader);
NON_MOVEABLE(NcaFsHeaderReader);
private:
NcaFsHeader data;
s32 fs_index;
public:
NcaFsHeaderReader() : fs_index(-1) {
std::memset(std::addressof(this->data), 0, sizeof(this->data));
}
Result Initialize(const NcaReader &reader, s32 index);
bool IsInitialized() const { return this->fs_index >= 0; }
NcaFsHeader &GetData() { return this->data; }
const NcaFsHeader &GetData() const { return this->data; }
void GetRawData(void *dst, size_t dst_size) const;
NcaFsHeader::HashData &GetHashData();
const NcaFsHeader::HashData &GetHashData() const;
u16 GetVersion() const;
s32 GetFsIndex() const;
NcaFsHeader::FsType GetFsType() const;
NcaFsHeader::HashType GetHashType() const;
NcaFsHeader::EncryptionType GetEncryptionType() const;
NcaPatchInfo &GetPatchInfo();
const NcaPatchInfo &GetPatchInfo() const;
const NcaAesCtrUpperIv GetAesCtrUpperIv() const;
bool ExistsSparseLayer() const;
NcaSparseInfo &GetSparseInfo();
const NcaSparseInfo &GetSparseInfo() const;
};
class NcaFileSystemDriver : public ::ams::fs::impl::Newable {
NON_COPYABLE(NcaFileSystemDriver);
NON_MOVEABLE(NcaFileSystemDriver);
public:
class StorageOption;
class StorageOptionWithHeaderReader;
private:
std::shared_ptr<NcaReader> original_reader;
std::shared_ptr<NcaReader> reader;
MemoryResource * const allocator;
fssystem::IBufferManager * const buffer_manager;
public:
static Result SetupFsHeaderReader(NcaFsHeaderReader *out, const NcaReader &reader, s32 fs_index);
public:
NcaFileSystemDriver(std::shared_ptr<NcaReader> reader, MemoryResource *allocator, IBufferManager *buffer_manager) : original_reader(), reader(reader), allocator(allocator), buffer_manager(buffer_manager) {
AMS_ASSERT(this->reader != nullptr);
}
NcaFileSystemDriver(std::shared_ptr<NcaReader> original_reader, std::shared_ptr<NcaReader> reader, MemoryResource *allocator, IBufferManager *buffer_manager) : original_reader(original_reader), reader(reader), allocator(allocator), buffer_manager(buffer_manager) {
AMS_ASSERT(this->reader != nullptr);
}
Result OpenRawStorage(std::shared_ptr<fs::IStorage> *out, s32 fs_index);
Result OpenStorage(std::shared_ptr<fs::IStorage> *out, NcaFsHeaderReader *out_header_reader, s32 fs_index);
Result OpenStorage(std::shared_ptr<fs::IStorage> *out, StorageOption *option);
Result OpenStorage(std::shared_ptr<fs::IStorage> *out, s32 fs_index) {
NcaFsHeaderReader dummy;
return this->OpenStorage(out, std::addressof(dummy), fs_index);
}
Result OpenDecryptableStorage(std::shared_ptr<fs::IStorage> *out, StorageOption *option, bool indirect_needed);
private:
class BaseStorage;
Result CreateBaseStorage(BaseStorage *out, StorageOption *option);
Result CreateDecryptableStorage(std::unique_ptr<fs::IStorage> *out, StorageOption *option, BaseStorage *base_storage);
Result CreateAesXtsStorage(std::unique_ptr<fs::IStorage> *out, BaseStorage *base_storage);
Result CreateAesCtrStorage(std::unique_ptr<fs::IStorage> *out, BaseStorage *base_storage);
Result CreateAesCtrExStorage(std::unique_ptr<fs::IStorage> *out, StorageOption *option, BaseStorage *base_storage);
Result CreateIndirectStorage(std::unique_ptr<fs::IStorage> *out, StorageOption *option, std::unique_ptr<fs::IStorage> base_storage);
Result CreateVerificationStorage(std::unique_ptr<fs::IStorage> *out, std::unique_ptr<fs::IStorage> base_storage, NcaFsHeaderReader *header_reader);
Result CreateSha256Storage(std::unique_ptr<fs::IStorage> *out, std::unique_ptr<fs::IStorage> base_storage, NcaFsHeaderReader *header_reader);
Result CreateIntegrityVerificationStorage(std::unique_ptr<fs::IStorage> *out, std::unique_ptr<fs::IStorage> base_storage, NcaFsHeaderReader *header_reader);
};
}

View file

@ -0,0 +1,150 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fs/fs_substorage.hpp>
#include <stratosphere/fssystem/fssystem_nca_file_system_driver.hpp>
namespace ams::fssystem {
class NcaFileSystemDriver::StorageOption {
private:
friend class NcaFileSystemDriver;
private:
const s32 fs_index;
NcaFsHeaderReader * const header_reader;
fs::IStorage *data_storage;
s64 data_storage_size;
fs::IStorage *aes_ctr_ex_table_storage;
AesCtrCounterExtendedStorage *aes_ctr_ex_storage_raw;
fs::IStorage *aes_ctr_ex_storage;
IndirectStorage *indirect_storage;
SparseStorage *sparse_storage;
public:
explicit StorageOption(NcaFsHeaderReader *reader) : fs_index(reader->GetFsIndex()), header_reader(reader), data_storage(), data_storage_size(), aes_ctr_ex_table_storage(), aes_ctr_ex_storage_raw(), aes_ctr_ex_storage(), indirect_storage(), sparse_storage() {
AMS_ASSERT(this->header_reader != nullptr);
}
StorageOption(NcaFsHeaderReader *reader, s32 index) : fs_index(index), header_reader(reader), data_storage(), data_storage_size(), aes_ctr_ex_table_storage(), aes_ctr_ex_storage_raw(), aes_ctr_ex_storage(), indirect_storage(), sparse_storage() {
AMS_ASSERT(this->header_reader != nullptr);
AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax);
}
s32 GetFsIndex() const { return this->fs_index; }
NcaFsHeaderReader &GetHeaderReader() { return *this->header_reader; }
const NcaFsHeaderReader &GetHeaderReader() const { return *this->header_reader; }
fs::SubStorage GetDataStorage() const { return fs::SubStorage(this->data_storage, 0, this->data_storage_size); }
fs::IStorage *GetAesCtrExTableStorage() const { return this->aes_ctr_ex_table_storage; }
fs::IStorage *GetAesCtrExStorage() const { return this->aes_ctr_ex_storage; }
AesCtrCounterExtendedStorage *GetAesCtrExStorageRaw() const { return this->aes_ctr_ex_storage_raw; }
IndirectStorage *GetIndirectStorage() const { return this->indirect_storage; }
SparseStorage *GetSparseStorage() const { return this->sparse_storage; }
private:
void SetDataStorage(fs::IStorage *storage, s64 size) {
AMS_ASSERT(storage != nullptr);
AMS_ASSERT(size >= 0);
this->data_storage = storage;
this->data_storage_size = size;
}
void SetAesCtrExTableStorage(fs::IStorage *storage) { AMS_ASSERT(storage != nullptr); this->aes_ctr_ex_table_storage = storage; }
void SetAesCtrExStorage(fs::IStorage *storage) { AMS_ASSERT(storage != nullptr); this->aes_ctr_ex_storage = storage; }
void SetAesCtrExStorageRaw(AesCtrCounterExtendedStorage *storage) { AMS_ASSERT(storage != nullptr); this->aes_ctr_ex_storage_raw = storage; }
void SetIndirectStorage(IndirectStorage *storage) { AMS_ASSERT(storage != nullptr); this->indirect_storage = storage; }
void SetSparseStorage(SparseStorage *storage) { AMS_ASSERT(storage != nullptr); this->sparse_storage = storage; }
};
class NcaFileSystemDriver::StorageOptionWithHeaderReader : public NcaFileSystemDriver::StorageOption {
private:
NcaFsHeaderReader header_reader_data;
public:
explicit StorageOptionWithHeaderReader(s32 index) : StorageOption(std::addressof(header_reader_data), index) { /* ... */ }
};
class NcaFileSystemDriver::BaseStorage {
private:
std::unique_ptr<fs::IStorage> storage;
fs::SubStorage sub_storage;
s64 storage_offset;
NcaAesCtrUpperIv aes_ctr_upper_iv;
public:
BaseStorage() : storage(), sub_storage(), storage_offset(0) {
this->aes_ctr_upper_iv.value = 0;
}
explicit BaseStorage(const fs::SubStorage &ss) : storage(), sub_storage(ss), storage_offset(0) {
this->aes_ctr_upper_iv.value = 0;
}
template<typename T>
BaseStorage(T s, s64 offset, s64 size) : storage(), sub_storage(s, offset, size), storage_offset(0) {
this->aes_ctr_upper_iv.value = 0;
}
void SetStorage(std::unique_ptr<fs::IStorage> &&storage) {
this->storage = std::move(storage);
}
template<typename T>
void SetStorage(T storage, s64 offset, s64 size) {
this->sub_storage = fs::SubStorage(storage, offset, size);
}
std::unique_ptr<fs::IStorage> MakeStorage() {
if (this->storage != nullptr) {
return std::move(this->storage);
}
return std::make_unique<fs::SubStorage>(this->sub_storage);
}
std::unique_ptr<fs::IStorage> GetStorage() {
return std::move(this->storage);
}
Result GetSubStorage(fs::SubStorage *out, s64 offset, s64 size) {
s64 storage_size = 0;
if (this->storage != nullptr) {
R_TRY(this->storage->GetSize(std::addressof(storage_size)));
R_UNLESS(offset + size <= storage_size, fs::ResultNcaBaseStorageOutOfRangeA());
*out = fs::SubStorage(this->storage.get(), offset, size);
} else {
R_TRY(this->sub_storage.GetSize(std::addressof(storage_size)));
R_UNLESS(offset + size <= storage_size, fs::ResultNcaBaseStorageOutOfRangeA());
*out = fs::SubStorage(std::addressof(this->sub_storage), offset, size);
}
return ResultSuccess();
}
void SetStorageOffset(s64 offset) {
this->storage_offset = offset;
}
s64 GetStorageOffset() const {
return this->storage_offset;
}
void SetAesCtrUpperIv(NcaAesCtrUpperIv v) {
this->aes_ctr_upper_iv = v;
}
const NcaAesCtrUpperIv GetAesCtrUpperIv() const {
return this->aes_ctr_upper_iv;
}
};
}

View file

@ -0,0 +1,275 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fssystem {
struct Hash {
static constexpr size_t Size = crypto::Sha256Generator::HashSize;
u8 value[Size];
};
static_assert(sizeof(Hash) == Hash::Size);
static_assert(std::is_pod<Hash>::value);
using NcaDigest = Hash;
struct NcaHeader {
enum class ContentType : u8 {
Program = 0,
Meta = 1,
Control = 2,
Manual = 3,
Data = 4,
PublicData = 5,
Start = Program,
End = PublicData,
};
enum class DistributionType : u8 {
Download = 0,
GameCard = 1,
Start = Download,
End = GameCard,
};
enum class EncryptionType : u8 {
Auto = 0,
None = 1,
};
enum DecryptionKey {
DecryptionKey_AesXts = 0,
DecryptionKey_AesXts1 = DecryptionKey_AesXts,
DecryptionKey_AesXts2 = 1,
DecryptionKey_AesCtr = 2,
DecryptionKey_AesCtrEx = 3,
DecryptionKey_AesCtrHw = 4,
DecryptionKey_Count,
};
struct FsInfo {
u32 start_sector;
u32 end_sector;
u32 hash_sectors;
u32 reserved;
};
static_assert(sizeof(FsInfo) == 0x10);
static_assert(std::is_pod<FsInfo>::value);
static constexpr u32 Magic0 = util::FourCC<'N','C','A','0'>::Code;
static constexpr u32 Magic1 = util::FourCC<'N','C','A','1'>::Code;
static constexpr u32 Magic2 = util::FourCC<'N','C','A','2'>::Code;
static constexpr u32 Magic3 = util::FourCC<'N','C','A','3'>::Code;
static constexpr u32 Magic = Magic3;
static constexpr size_t Size = 1_KB;
static constexpr s32 FsCountMax = 4;
static constexpr size_t HeaderSignCount = 2;
static constexpr size_t HeaderSignSize = 0x100;
static constexpr size_t EncryptedKeyAreaSize = 0x100;
static constexpr size_t SectorSize = 0x200;
static constexpr size_t SectorShift = 9;
static constexpr size_t RightsIdSize = 0x10;
static constexpr size_t XtsBlockSize = 0x200;
static constexpr size_t CtrBlockSize = 0x10;
static_assert(SectorSize == (1 << SectorShift));
/* Data members. */
u8 header_sign_1[HeaderSignSize];
u8 header_sign_2[HeaderSignSize];
u32 magic;
DistributionType distribution_type;
ContentType content_type;
u8 key_generation;
u8 key_index;
u64 content_size;
u64 program_id;
u32 content_index;
u32 sdk_addon_version;
u8 key_generation_2;
u8 header1_signature_key_generation;
u8 reserved_222[2];
u32 reserved_224[3];
u8 rights_id[RightsIdSize];
FsInfo fs_info[FsCountMax];
Hash fs_header_hash[FsCountMax];
u8 encrypted_key_area[EncryptedKeyAreaSize];
static constexpr u64 SectorToByte(u32 sector) {
return static_cast<u64>(sector) << SectorShift;
}
static constexpr u32 ByteToSector(u64 byte) {
return static_cast<u32>(byte >> SectorShift);
}
u8 GetProperKeyGeneration() const;
};
static_assert(sizeof(NcaHeader) == NcaHeader::Size);
static_assert(std::is_pod<NcaHeader>::value);
struct NcaBucketInfo {
static constexpr size_t HeaderSize = 0x10;
s64 offset;
s64 size;
u8 header[HeaderSize];
};
static_assert(std::is_pod<NcaBucketInfo>::value);
struct NcaPatchInfo {
static constexpr size_t Size = 0x40;
static constexpr size_t Offset = 0x100;
s64 indirect_offset;
s64 indirect_size;
u8 indirect_header[NcaBucketInfo::HeaderSize];
s64 aes_ctr_ex_offset;
s64 aes_ctr_ex_size;
u8 aes_ctr_ex_header[NcaBucketInfo::HeaderSize];
bool HasIndirectTable() const;
bool HasAesCtrExTable() const;
};
static_assert(std::is_pod<NcaPatchInfo>::value);
union NcaAesCtrUpperIv {
u64 value;
struct {
u32 generation;
u32 secure_value;
} part;
};
static_assert(std::is_pod<NcaAesCtrUpperIv>::value);
struct NcaSparseInfo {
NcaBucketInfo bucket;
s64 physical_offset;
u16 generation;
u8 reserved[6];
s64 GetPhysicalSize() const {
return this->bucket.offset + this->bucket.size;
}
u32 GetGeneration() const {
return static_cast<u32>(this->generation) << 16;
}
const NcaAesCtrUpperIv MakeAesCtrUpperIv(NcaAesCtrUpperIv upper_iv) const {
NcaAesCtrUpperIv sparse_upper_iv = upper_iv;
sparse_upper_iv.part.generation = this->GetGeneration();
return sparse_upper_iv;
}
};
static_assert(std::is_pod<NcaSparseInfo>::value);
struct NcaFsHeader {
static constexpr size_t Size = 0x200;
static constexpr size_t HashDataOffset = 0x8;
struct Region {
s64 offset;
s64 size;
};
static_assert(std::is_pod<Region>::value);
enum class FsType : u8 {
RomFs = 0,
PartitionFs = 1,
};
enum class EncryptionType : u8 {
Auto = 0,
None = 1,
AesXts = 2,
AesCtr = 3,
AesCtrEx = 4,
};
enum class HashType : u8 {
Auto = 0,
None = 1,
HierarchicalSha256Hash = 2,
HierarchicalIntegrityHash = 3,
};
union HashData {
struct HierarchicalSha256Data {
static constexpr size_t HashLayerCountMax = 5;
static const size_t MasterHashOffset;
Hash fs_data_master_hash;
s32 hash_block_size;
s32 hash_layer_count;
Region hash_layer_region[HashLayerCountMax];
} hierarchical_sha256_data;
static_assert(std::is_pod<HierarchicalSha256Data>::value);
struct IntegrityMetaInfo {
static const size_t MasterHashOffset;
u32 magic;
u32 version;
u32 master_hash_size;
struct LevelHashInfo {
u32 max_layers;
struct HierarchicalIntegrityVerificationLevelInformation {
static constexpr size_t IntegrityMaxLayerCount = 7;
s64 offset;
s64 size;
s32 block_order;
u8 reserved[4];
} info[HierarchicalIntegrityVerificationLevelInformation::IntegrityMaxLayerCount - 1];
struct SignatureSalt {
static constexpr size_t Size = 0x20;
u8 value[Size];
} seed;
} level_hash_info;
Hash master_hash;
} integrity_meta_info;
static_assert(std::is_pod<IntegrityMetaInfo>::value);
u8 padding[NcaPatchInfo::Offset - HashDataOffset];
};
u16 version;
FsType fs_type;
HashType hash_type;
EncryptionType encryption_type;
u8 reserved[3];
HashData hash_data;
NcaPatchInfo patch_info;
NcaAesCtrUpperIv aes_ctr_upper_iv;
NcaSparseInfo sparse_info;
u8 pad[0x88];
};
static_assert(sizeof(NcaFsHeader) == NcaFsHeader::Size);
static_assert(std::is_pod<NcaFsHeader>::value);
static_assert(offsetof(NcaFsHeader, patch_info) == NcaPatchInfo::Offset);
inline constexpr const size_t NcaFsHeader::HashData::HierarchicalSha256Data::MasterHashOffset = offsetof(NcaFsHeader, hash_data.hierarchical_sha256_data.fs_data_master_hash);
inline constexpr const size_t NcaFsHeader::HashData::IntegrityMetaInfo::MasterHashOffset = offsetof(NcaFsHeader, hash_data.integrity_meta_info.master_hash);
}

View file

@ -0,0 +1,97 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fssystem/fssystem_indirect_storage.hpp>
namespace ams::fssystem {
class SparseStorage : public IndirectStorage {
NON_COPYABLE(SparseStorage);
NON_MOVEABLE(SparseStorage);
private:
class ZeroStorage : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
public:
ZeroStorage() { /* ... */ }
virtual ~ZeroStorage() { /* ... */ }
virtual Result Read(s64 offset, void *buffer, size_t size) override {
AMS_ASSERT(offset >= 0);
AMS_ASSERT(buffer != nullptr || size == 0);
if (size > 0) {
std::memset(buffer, 0, size);
}
return ResultSuccess();
}
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override {
return ResultSuccess();
}
virtual Result GetSize(s64 *out) override {
AMS_ASSERT(out != nullptr);
*out = std::numeric_limits<s64>::max();
return ResultSuccess();
}
virtual Result Flush() override {
return ResultSuccess();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return fs::ResultUnsupportedOperationInZeroStorageA();
}
virtual Result SetSize(s64 size) override {
return fs::ResultUnsupportedOperationInZeroStorageB();
}
};
private:
ZeroStorage zero_storage;
public:
SparseStorage() : IndirectStorage(), zero_storage() { /* ... */ }
virtual ~SparseStorage() { /* ... */ }
using IndirectStorage::Initialize;
void Initialize(s64 end_offset) {
this->GetEntryTable().Initialize(NodeSize, end_offset);
this->SetZeroStorage();
}
void SetDataStorage(fs::SubStorage storage) {
AMS_ASSERT(this->IsInitialized());
this->SetStorage(0, storage);
this->SetZeroStorage();
}
template<typename T>
void SetDataStorage(T storage, s64 offset, s64 size) {
AMS_ASSERT(this->IsInitialized());
this->SetStorage(0, storage, offset, size);
this->SetZeroStorage();
}
virtual Result Read(s64 offset, void *buffer, size_t size) override;
private:
void SetZeroStorage() {
return this->SetStorage(1, std::addressof(this->zero_storage), 0, std::numeric_limits<s64>::max());
}
};
}

View file

@ -0,0 +1,28 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fs/fs_speed_emulation.hpp>
namespace ams::fssystem {
class SpeedEmulationConfiguration {
public:
static void SetSpeedEmulationMode(::ams::fs::SpeedEmulationMode mode);
static ::ams::fs::SpeedEmulationMode GetSpeedEmulationMode();
};
}

View file

@ -0,0 +1,170 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/os.hpp>
#include <stratosphere/fs/fs_storage_type.hpp>
#include <stratosphere/fs/fs_istorage.hpp>
#include <stratosphere/fs/fs_memory_management.hpp>
#include <stratosphere/fssystem/save/fssystem_i_save_file_system_driver.hpp>
#include <stratosphere/fssystem/buffers/fssystem_file_system_buffer_manager.hpp>
namespace ams::fssystem::save {
constexpr inline size_t IntegrityMinLayerCount = 2;
constexpr inline size_t IntegrityMaxLayerCount = 7;
constexpr inline size_t IntegrityLayerCountSave = 5;
constexpr inline size_t IntegrityLayerCountSaveDataMeta = 4;
struct FileSystemBufferManagerSet {
IBufferManager *buffers[IntegrityMaxLayerCount];
};
static_assert(std::is_pod<FileSystemBufferManagerSet>::value);
class BlockCacheBufferedStorage : public ::ams::fs::IStorage {
NON_COPYABLE(BlockCacheBufferedStorage);
NON_MOVEABLE(BlockCacheBufferedStorage);
public:
static constexpr size_t DefaultMaxCacheEntryCount = 24;
private:
using MemoryRange = std::pair<uintptr_t, size_t>;
using CacheIndex = s32;
struct CacheEntry {
size_t size;
bool is_valid;
bool is_write_back;
bool is_cached;
bool is_flushing;
s64 offset;
IBufferManager::CacheHandle handle;
uintptr_t memory_address;
size_t memory_size;
};
static_assert(std::is_pod<CacheEntry>::value);
enum Flag : s32 {
Flag_KeepBurstMode = (1 << 8),
Flag_RealData = (1 << 10),
};
private:
IBufferManager *buffer_manager;
os::Mutex *mutex;
std::unique_ptr<CacheEntry[], ::ams::fs::impl::Deleter> entries;
IStorage *data_storage;
Result last_result;
s64 data_size;
size_t verification_block_size;
size_t verification_block_shift;
CacheIndex invalidate_index;
s32 max_cache_entry_count;
s32 flags;
s32 buffer_level;
fs::StorageType storage_type;
public:
BlockCacheBufferedStorage();
virtual ~BlockCacheBufferedStorage() override;
Result Initialize(IBufferManager *bm, os::Mutex *mtx, IStorage *data, s64 data_size, size_t verif_block_size, s32 max_cache_entries, bool is_real_data, s8 buffer_level, bool is_keep_burst_mode, fs::StorageType storage_type);
void Finalize();
virtual Result Read(s64 offset, void *buffer, size_t size) override;
virtual Result Write(s64 offset, const void *buffer, size_t size) override;
virtual Result SetSize(s64 size) override { return fs::ResultUnsupportedOperationInBlockCacheBufferedStorageA(); }
virtual Result GetSize(s64 *out) override;
virtual Result Flush() override;
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override;
using IStorage::OperateRange;
Result Commit();
Result OnRollback();
bool IsEnabledKeepBurstMode() const {
return (this->flags & Flag_KeepBurstMode) != 0;
}
bool IsRealDataCache() const {
return (this->flags & Flag_RealData) != 0;
}
void SetKeepBurstMode(bool en) {
if (en) {
this->flags |= Flag_KeepBurstMode;
} else {
this->flags &= ~Flag_KeepBurstMode;
}
}
void SetRealDataCache(bool en) {
if (en) {
this->flags |= Flag_RealData;
} else {
this->flags &= ~Flag_RealData;
}
}
private:
s32 GetMaxCacheEntryCount() const {
return this->max_cache_entry_count;
}
Result ClearImpl(s64 offset, s64 size);
Result ClearSignatureImpl(s64 offset, s64 size);
Result InvalidateCacheImpl(s64 offset, s64 size);
Result QueryRangeImpl(void *dst, size_t dst_size, s64 offset, s64 size);
bool ExistsRedundantCacheEntry(const CacheEntry &entry) const;
Result GetAssociateBuffer(MemoryRange *out_range, CacheEntry *out_entry, s64 offset, size_t ideal_size, bool is_allocate_for_write);
void DestroyBuffer(CacheEntry *entry, const MemoryRange &range);
Result StoreAssociateBuffer(CacheIndex *out, const MemoryRange &range, const CacheEntry &entry);
Result StoreAssociateBuffer(const MemoryRange &range, const CacheEntry &entry) {
CacheIndex dummy;
return this->StoreAssociateBuffer(std::addressof(dummy), range, entry);
}
Result StoreOrDestroyBuffer(const MemoryRange &range, CacheEntry *entry) {
AMS_ASSERT(entry != nullptr);
auto buf_guard = SCOPE_GUARD { this->DestroyBuffer(entry, range); };
R_TRY(this->StoreAssociateBuffer(range, *entry));
buf_guard.Cancel();
return ResultSuccess();
}
Result FlushCacheEntry(CacheIndex index, bool invalidate);
Result FlushRangeCacheEntries(s64 offset, s64 size, bool invalidate);
void InvalidateRangeCacheEntries(s64 offset, s64 size);
Result FlushAllCacheEntries();
Result InvalidateAllCacheEntries();
Result ControlDirtiness();
Result UpdateLastResult(Result result);
Result ReadHeadCache(MemoryRange *out_range, CacheEntry *out_entry, bool *out_cache_needed, s64 *offset, s64 *aligned_offset, s64 aligned_offset_end, char **buffer, size_t *size);
Result ReadTailCache(MemoryRange *out_range, CacheEntry *out_entry, bool *out_cache_needed, s64 offset, s64 aligned_offset, s64 *aligned_offset_end, char *buffer, size_t *size);
Result BulkRead(s64 offset, void *buffer, size_t size, MemoryRange *range_head, MemoryRange *range_tail, CacheEntry *entry_head, CacheEntry *entry_tail, bool head_cache_needed, bool tail_cache_needed);
};
}

View file

@ -0,0 +1,80 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/os.hpp>
#include <stratosphere/fs/fs_istorage.hpp>
#include <stratosphere/fs/fs_substorage.hpp>
#include <stratosphere/fssystem/buffers/fssystem_i_buffer_manager.hpp>
namespace ams::fssystem::save {
class BufferedStorage : public ::ams::fs::IStorage {
NON_COPYABLE(BufferedStorage);
NON_MOVEABLE(BufferedStorage);
private:
class Cache;
class UniqueCache;
class SharedCache;
private:
fs::SubStorage base_storage;
IBufferManager *buffer_manager;
size_t block_size;
s64 base_storage_size;
std::unique_ptr<Cache[]> caches;
s32 cache_count;
Cache *next_acquire_cache;
Cache *next_fetch_cache;
os::Mutex mutex;
bool bulk_read_enabled;
public:
BufferedStorage();
virtual ~BufferedStorage();
Result Initialize(fs::SubStorage base_storage, IBufferManager *buffer_manager, size_t block_size, s32 buffer_count);
void Finalize();
bool IsInitialized() const { return this->caches != nullptr; }
virtual Result Read(s64 offset, void *buffer, size_t size) override;
virtual Result Write(s64 offset, const void *buffer, size_t size) override;
virtual Result GetSize(s64 *out) override;
virtual Result SetSize(s64 size) override;
virtual Result Flush() override;
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override;
using IStorage::OperateRange;
void InvalidateCaches();
IBufferManager *GetBufferManager() const { return this->buffer_manager; }
void EnableBulkRead() { this->bulk_read_enabled = true; }
private:
Result PrepareAllocation();
Result ControlDirtiness();
Result ReadCore(s64 offset, void *buffer, size_t size);
bool ReadHeadCache(s64 *offset, void *buffer, size_t *size, s64 *buffer_offset);
bool ReadTailCache(s64 offset, void *buffer, size_t *size, s64 buffer_offset);
Result BulkRead(s64 offset, void *buffer, size_t size, bool head_cache_needed, bool tail_cache_needed);
Result WriteCore(s64 offset, const void *buffer, size_t size);
};
}

View file

@ -0,0 +1,205 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/os.hpp>
#include <stratosphere/fs/fs_istorage.hpp>
#include <stratosphere/fs/fs_substorage.hpp>
#include <stratosphere/fs/fs_storage_type.hpp>
#include <stratosphere/fssystem/save/fssystem_i_save_file.hpp>
#include <stratosphere/fssystem/save/fssystem_integrity_verification_storage.hpp>
#include <stratosphere/fssystem/save/fssystem_block_cache_buffered_storage.hpp>
namespace ams::fssystem::save {
struct HierarchicalIntegrityVerificationLevelInformation {
fs::Int64 offset;
fs::Int64 size;
s32 block_order;
u8 reserved[4];
};
static_assert(std::is_pod<HierarchicalIntegrityVerificationLevelInformation>::value);
static_assert(sizeof(HierarchicalIntegrityVerificationLevelInformation) == 0x18);
static_assert(alignof(HierarchicalIntegrityVerificationLevelInformation) == 0x4);
struct HierarchicalIntegrityVerificationInformation {
u32 max_layers;
HierarchicalIntegrityVerificationLevelInformation info[IntegrityMaxLayerCount - 1];
fs::HashSalt seed;
s64 GetLayeredHashSize() const {
return this->info[this->max_layers - 2].offset;
}
s64 GetDataOffset() const {
return this->info[this->max_layers - 2].offset;
}
s64 GetDataSize() const {
return this->info[this->max_layers - 2].size;
}
};
static_assert(std::is_pod<HierarchicalIntegrityVerificationInformation>::value);
struct HierarchicalIntegrityVerificationMetaInformation {
u32 magic;
u32 version;
u32 master_hash_size;
HierarchicalIntegrityVerificationInformation level_hash_info;
/* TODO: Format */
};
static_assert(std::is_pod<HierarchicalIntegrityVerificationMetaInformation>::value);
struct HierarchicalIntegrityVerificationSizeSet {
s64 control_size;
s64 master_hash_size;
s64 layered_hash_sizes[IntegrityMaxLayerCount - 1];
};
static_assert(std::is_pod<HierarchicalIntegrityVerificationSizeSet>::value);
class HierarchicalIntegrityVerificationStorageControlArea {
NON_COPYABLE(HierarchicalIntegrityVerificationStorageControlArea);
NON_MOVEABLE(HierarchicalIntegrityVerificationStorageControlArea);
public:
static constexpr size_t HashSize = crypto::Sha256Generator::HashSize;
struct InputParam {
size_t level_block_size[IntegrityMaxLayerCount - 1];
};
static_assert(std::is_pod<InputParam>::value);
private:
fs::SubStorage storage;
HierarchicalIntegrityVerificationMetaInformation meta;
public:
static Result QuerySize(HierarchicalIntegrityVerificationSizeSet *out, const InputParam &input_param, s32 layer_count, s64 data_size);
/* TODO Format */
static Result Expand(fs::SubStorage meta_storage, const HierarchicalIntegrityVerificationMetaInformation &meta);
public:
HierarchicalIntegrityVerificationStorageControlArea() { /* ... */ }
Result Initialize(fs::SubStorage meta_storage);
void Finalize();
u32 GetMasterHashSize() const { return this->meta.master_hash_size; }
void GetLevelHashInfo(HierarchicalIntegrityVerificationInformation *out) {
AMS_ASSERT(out != nullptr);
*out = this->meta.level_hash_info;
}
};
class HierarchicalIntegrityVerificationStorage : public ::ams::fs::IStorage {
NON_COPYABLE(HierarchicalIntegrityVerificationStorage);
NON_MOVEABLE(HierarchicalIntegrityVerificationStorage);
private:
friend class HierarchicalIntegrityVerificationMetaInformation;
protected:
static constexpr s64 HashSize = crypto::Sha256Generator::HashSize;
static constexpr size_t MaxLayers = IntegrityMaxLayerCount;
public:
using GenerateRandomFunction = void (*)(void *dst, size_t size);
class HierarchicalStorageInformation {
public:
enum {
MasterStorage = 0,
Layer1Storage = 1,
Layer2Storage = 2,
Layer3Storage = 3,
Layer4Storage = 4,
Layer5Storage = 5,
DataStorage = 6,
};
private:
fs::SubStorage storages[DataStorage + 1];
public:
void SetMasterHashStorage(fs::SubStorage s) { this->storages[MasterStorage] = s; }
void SetLayer1HashStorage(fs::SubStorage s) { this->storages[Layer1Storage] = s; }
void SetLayer2HashStorage(fs::SubStorage s) { this->storages[Layer2Storage] = s; }
void SetLayer3HashStorage(fs::SubStorage s) { this->storages[Layer3Storage] = s; }
void SetLayer4HashStorage(fs::SubStorage s) { this->storages[Layer4Storage] = s; }
void SetLayer5HashStorage(fs::SubStorage s) { this->storages[Layer5Storage] = s; }
void SetDataStorage(fs::SubStorage s) { this->storages[DataStorage] = s; }
fs::SubStorage &operator[](s32 index) {
AMS_ASSERT(MasterStorage <= index && index <= DataStorage);
return this->storages[index];
}
};
private:
static GenerateRandomFunction s_generate_random;
static void SetGenerateRandomFunction(GenerateRandomFunction func) {
s_generate_random = func;
}
private:
FileSystemBufferManagerSet *buffers;
os::Mutex *mutex;
IntegrityVerificationStorage verify_storages[MaxLayers - 1];
BlockCacheBufferedStorage buffer_storages[MaxLayers - 1];
s64 data_size;
s32 max_layers;
bool is_written_for_rollback;
public:
HierarchicalIntegrityVerificationStorage() : buffers(nullptr), mutex(nullptr), data_size(-1), is_written_for_rollback(false) { /* ... */ }
virtual ~HierarchicalIntegrityVerificationStorage() override { this->Finalize(); }
Result Initialize(const HierarchicalIntegrityVerificationInformation &info, HierarchicalStorageInformation storage, FileSystemBufferManagerSet *bufs, os::Mutex *mtx, fs::StorageType storage_type);
void Finalize();
virtual Result Read(s64 offset, void *buffer, size_t size) override;
virtual Result Write(s64 offset, const void *buffer, size_t size) override;
virtual Result SetSize(s64 size) override { return fs::ResultUnsupportedOperationInHierarchicalIntegrityVerificationStorageA(); }
virtual Result GetSize(s64 *out) override;
virtual Result Flush() override;
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override;
using IStorage::OperateRange;
Result Commit();
Result OnRollback();
bool IsInitialized() const {
return this->data_size >= 0;
}
bool IsWrittenForRollback() const {
return this->is_written_for_rollback;
}
FileSystemBufferManagerSet *GetBuffers() {
return this->buffers;
}
void GetParameters(HierarchicalIntegrityVerificationStorageControlArea::InputParam *out) const {
AMS_ASSERT(out != nullptr);
for (auto level = 0; level <= this->max_layers - 2; ++level) {
out->level_block_size[level] = static_cast<size_t>(this->verify_storages[level].GetBlockSize());
}
}
s64 GetL1HashVerificationBlockSize() const {
return this->verify_storages[this->max_layers - 2].GetBlockSize();
}
fs::SubStorage GetL1HashStorage() {
return fs::SubStorage(std::addressof(this->buffer_storages[this->max_layers - 3]), 0, util::DivideUp(this->data_size, this->GetL1HashVerificationBlockSize()));
}
};
}

View file

@ -0,0 +1,23 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fssystem::save {
/* TODO */
}

View file

@ -0,0 +1,23 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::fssystem::save {
/* TODO */
}

View file

@ -0,0 +1,95 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/os.hpp>
#include <stratosphere/fs/fs_istorage.hpp>
#include <stratosphere/fs/fs_substorage.hpp>
#include <stratosphere/fs/fs_storage_type.hpp>
#include <stratosphere/fs/fs_save_data_types.hpp>
#include <stratosphere/fssystem/save/fssystem_save_types.hpp>
#include <stratosphere/fssystem/save/fssystem_i_save_file_system_driver.hpp>
#include <stratosphere/fssystem/save/fssystem_block_cache_buffered_storage.hpp>
namespace ams::fssystem::save {
class IntegrityVerificationStorage : public ::ams::fs::IStorage {
NON_COPYABLE(IntegrityVerificationStorage);
NON_MOVEABLE(IntegrityVerificationStorage);
public:
static constexpr s64 HashSize = crypto::Sha256Generator::HashSize;
struct BlockHash {
u8 hash[HashSize];
};
static_assert(std::is_pod<BlockHash>::value);
private:
fs::SubStorage hash_storage;
fs::SubStorage data_storage;
s64 verification_block_size;
s64 verification_block_order;
s64 upper_layer_verification_block_size;
s64 upper_layer_verification_block_order;
IBufferManager *buffer_manager;
fs::HashSalt salt;
bool is_real_data;
fs::StorageType storage_type;
public:
IntegrityVerificationStorage() : verification_block_size(0), verification_block_order(0), upper_layer_verification_block_size(0), upper_layer_verification_block_order(0), buffer_manager(nullptr) { /* ... */ }
virtual ~IntegrityVerificationStorage() override { this->Finalize(); }
Result Initialize(fs::SubStorage hs, fs::SubStorage ds, s64 verif_block_size, s64 upper_layer_verif_block_size, IBufferManager *bm, const fs::HashSalt &salt, bool is_real_data, fs::StorageType storage_type);
void Finalize();
virtual Result Read(s64 offset, void *buffer, size_t size) override;
virtual Result Write(s64 offset, const void *buffer, size_t size) override;
virtual Result SetSize(s64 size) override { return fs::ResultUnsupportedOperationInIntegrityVerificationStorageA(); }
virtual Result GetSize(s64 *out) override;
virtual Result Flush() override;
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override;
using IStorage::OperateRange;
void CalcBlockHash(BlockHash *out, const void *buffer, size_t block_size) const;
s64 GetBlockSize() const {
return this->verification_block_size;
}
private:
Result ReadBlockSignature(void *dst, size_t dst_size, s64 offset, size_t size);
Result WriteBlockSignature(const void *src, size_t src_size, s64 offset, size_t size);
Result VerifyHash(const void *buf, BlockHash *hash);
void CalcBlockHash(BlockHash *out, const void *buffer) const {
return this->CalcBlockHash(out, buffer, static_cast<size_t>(this->verification_block_size));
}
Result IsCleared(bool *is_cleared, const BlockHash &hash);
private:
static void SetValidationBit(BlockHash *hash) {
AMS_ASSERT(hash != nullptr);
hash->hash[HashSize - 1] |= 0x80;
}
static bool IsValidationBit(const BlockHash *hash) {
AMS_ASSERT(hash != nullptr);
return (hash->hash[HashSize - 1] & 0x80) != 0;
}
};
}

View file

@ -0,0 +1,41 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/lmem.hpp>
#include <stratosphere/fs/fs_directory.hpp>
#include <stratosphere/fs/fs_filesystem.hpp>
#include <stratosphere/fssystem/dbm/fssystem_dbm_utils.hpp>
namespace ams::fssystem::save {
constexpr inline bool IsPowerOfTwo(s32 val) {
return util::IsPowerOfTwo(val);
}
constexpr inline u32 ILog2(u32 val) {
AMS_ASSERT(val > 0);
return (BITSIZEOF(u32) - 1 - dbm::CountLeadingZeros(val));
}
constexpr inline u32 CeilPowerOfTwo(u32 val) {
if (val == 0) {
return 1;
}
return ((1u << (BITSIZEOF(u32) - 1)) >> (dbm::CountLeadingZeros(val - 1) - 1));
}
}

View file

@ -20,5 +20,6 @@
namespace ams::hos { namespace ams::hos {
void InitializeForStratosphere(); void InitializeForStratosphere();
void InitializeForStratosphereDebug(hos::Version debug_version);
} }

View file

@ -15,19 +15,83 @@
*/ */
#pragma once #pragma once
#include "spl_types.hpp" #include <stratosphere/spl/spl_types.hpp>
namespace ams::spl { namespace ams::spl {
HardwareType GetHardwareType(); void Initialize();
MemoryArrangement GetMemoryArrangement(); void InitializeForCrypto();
bool IsDisabledProgramVerification(); void InitializeForSsl();
bool IsDevelopmentHardware(); void InitializeForEs();
bool IsDevelopmentFunctionEnabled(); void InitializeForFs();
bool IsMariko(); void InitializeForManu();
bool IsRecoveryBoot();
Result GenerateAesKek(AccessKey *access_key, const void *key_source, size_t key_source_size, u32 generation, u32 option); void Finalize();
Result AllocateAesKeySlot(s32 *out_slot);
Result DeallocateAesKeySlot(s32 slot);
Result GenerateAesKek(AccessKey *access_key, const void *key_source, size_t key_source_size, s32 generation, u32 option);
Result LoadAesKey(s32 slot, const AccessKey &access_key, const void *key_source, size_t key_source_size);
Result GenerateAesKey(void *dst, size_t dst_size, const AccessKey &access_key, const void *key_source, size_t key_source_size); Result GenerateAesKey(void *dst, size_t dst_size, const AccessKey &access_key, const void *key_source, size_t key_source_size);
Result GenerateSpecificAesKey(void *dst, size_t dst_size, const void *key_source, size_t key_source_size, s32 generation, u32 option);
Result ComputeCtr(void *dst, size_t dst_size, s32 slot, const void *src, size_t src_size, const void *iv, size_t iv_size);
Result DecryptAesKey(void *dst, size_t dst_size, const void *src, size_t src_size, s32 generation, u32 option);
Result GetConfig(u64 *out, ConfigItem item);
bool IsDevelopment();
MemoryArrangement GetMemoryArrangement();
inline bool GetConfigBool(ConfigItem item) {
u64 v;
R_ABORT_UNLESS(::ams::spl::GetConfig(std::addressof(v), item));
return v != 0;
}
inline HardwareType GetHardwareType() {
u64 v;
R_ABORT_UNLESS(::ams::spl::GetConfig(std::addressof(v), ::ams::spl::ConfigItem::HardwareType));
return static_cast<HardwareType>(v);
}
inline HardwareState GetHardwareState() {
u64 v;
R_ABORT_UNLESS(::ams::spl::GetConfig(std::addressof(v), ::ams::spl::ConfigItem::HardwareState));
return static_cast<HardwareState>(v);
}
inline u64 GetDeviceIdLow() {
u64 v;
R_ABORT_UNLESS(::ams::spl::GetConfig(std::addressof(v), ::ams::spl::ConfigItem::DeviceId));
return v;
}
inline bool IsRecoveryBoot() {
return ::ams::spl::GetConfigBool(::ams::spl::ConfigItem::IsRecoveryBoot);
}
inline bool IsDevelopmentFunctionEnabled() {
return ::ams::spl::GetConfigBool(::ams::spl::ConfigItem::IsDevelopmentFunctionEnabled);
}
inline bool IsDisabledProgramVerification() {
return ::ams::spl::GetConfigBool(::ams::spl::ConfigItem::DisableProgramVerification);
}
Result SetBootReason(BootReasonValue boot_reason);
Result GetBootReason(BootReasonValue *out);
inline BootReasonValue GetBootReason() {
BootReasonValue br;
R_ABORT_UNLESS(::ams::spl::GetBootReason(std::addressof(br)));
return br;
}
SocType GetSocType();
Result GetPackage2Hash(void *dst, size_t dst_size);
Result GenerateRandomBytes(void *out, size_t buffer_size);
Result LoadPreparedAesKey(s32 slot, const AccessKey &access_key);
} }

View file

@ -112,6 +112,17 @@ namespace ams::spl {
Hoag = 2, Hoag = 2,
Iowa = 3, Iowa = 3,
Calcio = 4, Calcio = 4,
_Five_ = 5,
};
enum SocType {
SocType_Erista = 0,
SocType_Mariko = 1,
};
enum HardwareState {
HardwareState_Development = 0,
HardwareState_Production = 1,
}; };
enum MemoryArrangement { enum MemoryArrangement {
@ -185,23 +196,23 @@ namespace ams::spl {
enum class ConfigItem : u32 { enum class ConfigItem : u32 {
/* Standard config items. */ /* Standard config items. */
DisableProgramVerification = 1, DisableProgramVerification = 1,
DramId = 2, DramId = 2,
SecurityEngineIrqNumber = 3, SecurityEngineIrqNumber = 3,
Version = 4, FuseVersion = 4,
HardwareType = 5, HardwareType = 5,
IsRetail = 6, HardwareState = 6,
IsRecoveryBoot = 7, IsRecoveryBoot = 7,
DeviceId = 8, DeviceId = 8,
BootReason = 9, BootReason = 9,
MemoryMode = 10, MemoryMode = 10,
IsDebugMode = 11, IsDevelopmentFunctionEnabled = 11,
KernelConfiguration = 12, KernelConfiguration = 12,
IsChargerHiZModeEnabled = 13, IsChargerHiZModeEnabled = 13,
IsQuest = 14, IsQuest = 14,
RegulatorType = 15, RegulatorType = 15,
DeviceUniqueKeyGeneration = 16, DeviceUniqueKeyGeneration = 16,
Package2Hash = 17, Package2Hash = 17,
/* Extension config items for exosphere. */ /* Extension config items for exosphere. */
ExosphereApiVersion = 65000, ExosphereApiVersion = 65000,

View file

@ -90,6 +90,18 @@ namespace ams::fs {
} }
} }
Result FileStorageBasedFileSystem::Initialize(std::shared_ptr<fs::fsa::IFileSystem> base_file_system, const char *path, fs::OpenMode mode) {
/* Open the file. */
std::unique_ptr<fs::fsa::IFile> base_file;
R_TRY(base_file_system->OpenFile(std::addressof(base_file), path, mode));
/* Set the file. */
this->SetFile(std::move(base_file));
this->base_file_system = std::move(base_file_system);
return ResultSuccess();
}
Result FileHandleStorage::UpdateSize() { Result FileHandleStorage::UpdateSize() {
R_SUCCEED_IF(this->size != InvalidSize); R_SUCCEED_IF(this->size != InvalidSize);
return GetFileSize(std::addressof(this->size), this->handle); return GetFileSize(std::addressof(this->size), this->handle);

View file

@ -0,0 +1,33 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssrv::fscreator {
Result PartitionFileSystemCreator::Create(std::shared_ptr<fs::fsa::IFileSystem> *out, std::shared_ptr<fs::IStorage> storage) {
/* Allocate a filesystem. */
std::shared_ptr fs = fssystem::AllocateShared<fssystem::PartitionFileSystem>();
R_UNLESS(fs != nullptr, fs::ResultAllocationFailureInPartitionFileSystemCreatorA());
/* Initialize the filesystem. */
R_TRY(fs->Initialize(std::move(storage)));
/* Set the output. */
*out = std::move(fs);
return ResultSuccess();
}
}

View file

@ -0,0 +1,70 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssrv::fscreator {
namespace {
class RomFileSystemWithBuffer : public ::ams::fssystem::RomFsFileSystem {
private:
void *meta_cache_buffer;
size_t meta_cache_buffer_size;
MemoryResource *allocator;
public:
explicit RomFileSystemWithBuffer(MemoryResource *mr) : meta_cache_buffer(nullptr), allocator(mr) { /* ... */ }
~RomFileSystemWithBuffer() {
if (this->meta_cache_buffer != nullptr) {
this->allocator->Deallocate(this->meta_cache_buffer, this->meta_cache_buffer_size);
}
}
Result Initialize(std::shared_ptr<fs::IStorage> storage) {
/* Check if the buffer is eligible for cache. */
size_t buffer_size = 0;
if (R_FAILED(RomFsFileSystem::GetRequiredWorkingMemorySize(std::addressof(buffer_size), storage.get())) || buffer_size == 0 || buffer_size >= 128_KB) {
return RomFsFileSystem::Initialize(std::move(storage), nullptr, 0, false);
}
/* Allocate a buffer. */
this->meta_cache_buffer = this->allocator->Allocate(buffer_size);
if (this->meta_cache_buffer == nullptr) {
return RomFsFileSystem::Initialize(std::move(storage), nullptr, 0, false);
}
/* Initialize with cache buffer. */
this->meta_cache_buffer_size = buffer_size;
return RomFsFileSystem::Initialize(std::move(storage), this->meta_cache_buffer, this->meta_cache_buffer_size, true);
}
};
}
Result RomFileSystemCreator::Create(std::shared_ptr<fs::fsa::IFileSystem> *out, std::shared_ptr<fs::IStorage> storage) {
/* Allocate a filesystem. */
std::shared_ptr fs = fssystem::AllocateShared<RomFileSystemWithBuffer>(this->allocator);
R_UNLESS(fs != nullptr, fs::ResultAllocationFailureInRomFileSystemCreatorA());
/* Initialize the filesystem. */
R_TRY(fs->Initialize(std::move(storage)));
/* Set the output. */
*out = std::move(fs);
return ResultSuccess();
}
}

View file

@ -0,0 +1,166 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssrv::fscreator {
Result StorageOnNcaCreator::VerifyAcid(fs::fsa::IFileSystem *fs, fssystem::NcaReader *nca_reader) {
/* Open the npdm. */
constexpr const char MetaFilePath[] = "/main.npdm";
std::unique_ptr<fs::fsa::IFile> file;
R_TRY(fs->OpenFile(std::addressof(file), MetaFilePath, fs::OpenMode_Read));
size_t size;
/* Read the Acid signature key generation. */
constexpr s64 AcidSignatureKeyGenerationOffset = offsetof(ldr::Npdm, signature_key_generation);
u32 acid_signature_key_generation;
R_TRY(file->Read(std::addressof(size), AcidSignatureKeyGenerationOffset, std::addressof(acid_signature_key_generation), sizeof(acid_signature_key_generation), fs::ReadOption()));
R_UNLESS(size == sizeof(acid_signature_key_generation), fs::ResultInvalidAcidFileSize());
/* Read the Acid offset. */
constexpr s64 AcidOffsetOffset = offsetof(ldr::Npdm, acid_offset);
s32 acid_offset;
R_TRY(file->Read(std::addressof(size), AcidOffsetOffset, std::addressof(acid_offset), sizeof(acid_offset), fs::ReadOption()));
R_UNLESS(size == sizeof(acid_offset), fs::ResultInvalidAcidFileSize());
/* Read the Acid size. */
constexpr s64 AcidSizeOffset = offsetof(ldr::Npdm, acid_size);
s32 acid_size;
R_TRY(file->Read(std::addressof(size), AcidSizeOffset, std::addressof(acid_size), sizeof(acid_size), fs::ReadOption()));
R_UNLESS(size == sizeof(acid_size), fs::ResultInvalidAcidFileSize());
/* Allocate memory for the acid. */
u8 *acid = static_cast<u8 *>(this->allocator->Allocate(acid_size));
R_UNLESS(acid != nullptr, fs::ResultAllocationFailureInStorageOnNcaCreatorA());
ON_SCOPE_EXIT { this->allocator->Deallocate(acid, acid_size); };
/* Read the acid. */
R_TRY(file->Read(std::addressof(size), acid_offset, acid, acid_size, fs::ReadOption()));
R_UNLESS(size == static_cast<size_t>(acid_size), fs::ResultInvalidAcidSize());
/* Define interesting extents. */
constexpr s32 AcidSignOffset = 0x000;
constexpr s32 AcidSignSize = 0x100;
constexpr s32 HeaderSign2KeyOffset = 0x100;
constexpr s32 HeaderSign2KeySize = 0x100;
constexpr s32 AcidSignTargetOffset = 0x100;
constexpr s32 AcidSignTargetSizeOffset = 0x204;
/* Read the sign target size. */
R_UNLESS(acid_size >= static_cast<s32>(AcidSignTargetSizeOffset + sizeof(s32)), fs::ResultInvalidAcidSize());
const s32 acid_sign_target_size = *reinterpret_cast<const s32 *>(acid + AcidSignTargetSizeOffset);
/* Validate the sign target size. */
R_UNLESS(acid_size >= static_cast<s32>(acid_sign_target_size + sizeof(s32)), fs::ResultInvalidAcidSize());
R_UNLESS(acid_size >= AcidSignTargetOffset + acid_sign_target_size, fs::ResultInvalidAcidSize());
/* Verify the signature. */
{
const u8 *sig = acid + AcidSignOffset;
const size_t sig_size = static_cast<size_t>(AcidSignSize);
const u8 *mod = fssystem::GetAcidSignatureKeyModulus(this->is_prod, acid_signature_key_generation);
const size_t mod_size = fssystem::AcidSignatureKeyModulusSize;
const u8 *exp = fssystem::GetAcidSignatureKeyPublicExponent();
const size_t exp_size = fssystem::AcidSignatureKeyPublicExponentSize;
const u8 *msg = acid + AcidSignTargetOffset;
const size_t msg_size = acid_sign_target_size;
const bool is_signature_valid = crypto::VerifyRsa2048PssSha256(sig, sig_size, mod, mod_size, exp, exp_size, msg, msg_size);
if (!is_signature_valid) {
/* If the signature is invalid, then unless program verification is disabled error out. */
R_UNLESS(!this->is_enabled_program_verification, fs::ResultAcidVerificationFailed());
/* If program verification is disabled, then we're fine. */
return ResultSuccess();
}
}
/* If we have an nca reader, verify the header signature using the key from the acid. */
if (nca_reader) {
/* Verify that the acid contains a key to validate the second signature with. */
R_UNLESS(acid_size >= HeaderSign2KeyOffset + HeaderSign2KeySize, fs::ResultInvalidAcidSize());
/* Validate that this key has its top byte set (and is thus approximately 2048 bits). */
R_UNLESS(*(acid + HeaderSign2KeyOffset + HeaderSign2KeySize - 1) != 0x00, fs::ResultInvalidAcid());
R_TRY(nca_reader->VerifyHeaderSign2(reinterpret_cast<char *>(acid) + HeaderSign2KeyOffset, HeaderSign2KeySize));
}
return ResultSuccess();
}
Result StorageOnNcaCreator::Create(std::shared_ptr<fs::IStorage> *out, fssystem::NcaFsHeaderReader *out_header_reader, std::shared_ptr<fssystem::NcaReader> nca_reader, s32 index, bool verify_header_sign_2) {
/* Create a fs driver. */
fssystem::NcaFileSystemDriver nca_fs_driver(nca_reader, this->allocator, this->buffer_manager);
/* Open the storage. */
std::shared_ptr<fs::IStorage> storage;
R_TRY(nca_fs_driver.OpenStorage(std::addressof(storage), out_header_reader, index));
/* If we should, verify the header signature. */
if (verify_header_sign_2) {
R_TRY(this->VerifyNcaHeaderSign2(nca_reader.get(), storage.get()));
}
/* Set the out storage. */
*out = std::move(storage);
return ResultSuccess();
}
Result StorageOnNcaCreator::CreateWithPatch(std::shared_ptr<fs::IStorage> *out, fssystem::NcaFsHeaderReader *out_header_reader, std::shared_ptr<fssystem::NcaReader> original_nca_reader, std::shared_ptr<fssystem::NcaReader> current_nca_reader, s32 index, bool verify_header_sign_2) {
/* Create a fs driver. */
fssystem::NcaFileSystemDriver nca_fs_driver(original_nca_reader, current_nca_reader, this->allocator, this->buffer_manager);
/* Open the storage. */
std::shared_ptr<fs::IStorage> storage;
R_TRY(nca_fs_driver.OpenStorage(std::addressof(storage), out_header_reader, index));
/* If we should, verify the header signature. */
if (verify_header_sign_2) {
R_TRY(this->VerifyNcaHeaderSign2(current_nca_reader.get(), storage.get()));
}
/* Set the out storage. */
*out = std::move(storage);
return ResultSuccess();
}
Result StorageOnNcaCreator::CreateNcaReader(std::shared_ptr<fssystem::NcaReader> *out, std::shared_ptr<fs::IStorage> storage) {
/* Create a reader. */
std::shared_ptr reader = fssystem::AllocateShared<fssystem::NcaReader>();
R_UNLESS(reader != nullptr, fs::ResultAllocationFailureInStorageOnNcaCreatorB());
/* Initialize the reader. */
R_TRY(reader->Initialize(std::move(storage), this->nca_crypto_cfg));
/* Set the output. */
*out = std::move(reader);
return ResultSuccess();
}
void StorageOnNcaCreator::SetEnabledProgramVerification(bool en) {
if (!this->is_prod) {
this->is_enabled_program_verification = en;
}
}
Result StorageOnNcaCreator::VerifyNcaHeaderSign2(fssystem::NcaReader *nca_reader, fs::IStorage *storage) {
fssystem::PartitionFileSystem part_fs;
R_TRY(part_fs.Initialize(storage));
return this->VerifyAcid(std::addressof(part_fs), nca_reader);
}
}

View file

@ -0,0 +1,24 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssrv {
void InitializeForFileSystemProxy(fscreator::FileSystemCreatorInterfaces *fs_creator_interfaces, fssystem::IBufferManager *buffer_manager, bool is_development_function_enabled) {
/* TODO FS-REIMPL */
}
}

View file

@ -0,0 +1,57 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssrv {
namespace {
size_t GetUsedSize(void *p) {
const auto block_head = reinterpret_cast<const lmem::impl::ExpHeapMemoryBlockHead *>(reinterpret_cast<uintptr_t>(p) - sizeof(lmem::impl::ExpHeapMemoryBlockHead));
return block_head->block_size + ((block_head->attributes >> 8) & 0x7F) + sizeof(lmem::impl::ExpHeapMemoryBlockHead);
}
}
void PeakCheckableMemoryResourceFromExpHeap::OnAllocate(void *p, size_t size) {
if (p != nullptr) {
this->current_free_size = GetUsedSize(p);
this->peak_free_size = std::min(this->peak_free_size, this->current_free_size);
}
}
void PeakCheckableMemoryResourceFromExpHeap::OnDeallocate(void *p, size_t size) {
if (p != nullptr) {
this->current_free_size += GetUsedSize(p);
}
}
void *PeakCheckableMemoryResourceFromExpHeap::AllocateImpl(size_t size, size_t align) {
std::scoped_lock lk(this->mutex);
void *p = lmem::AllocateFromExpHeap(this->heap_handle, size, static_cast<s32>(align));
this->OnAllocate(p, size);
return p;
}
void PeakCheckableMemoryResourceFromExpHeap::DeallocateImpl(void *p, size_t size, size_t align) {
std::scoped_lock lk(this->mutex);
this->OnDeallocate(p, size);
lmem::FreeToExpHeap(this->heap_handle, p);
}
}

View file

@ -0,0 +1,53 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssrv {
MemoryResourceFromStandardAllocator::MemoryResourceFromStandardAllocator(mem::StandardAllocator *allocator) : allocator(allocator), mutex() {
this->current_free_size = this->allocator->GetTotalFreeSize();
this->ClearPeak();
}
void MemoryResourceFromStandardAllocator::ClearPeak() {
std::scoped_lock lk(this->mutex);
this->peak_free_size = this->current_free_size;
this->peak_allocated_size = 0;
}
void *MemoryResourceFromStandardAllocator::AllocateImpl(size_t size, size_t align) {
std::scoped_lock lk(this->mutex);
void *p = this->allocator->Allocate(size, align);
if (p != nullptr) {
this->current_free_size -= this->allocator->GetSizeOf(p);
this->peak_free_size = std::min(this->peak_free_size, this->current_free_size);
}
this->peak_allocated_size = std::max(this->peak_allocated_size, size);
return p;
}
void MemoryResourceFromStandardAllocator::DeallocateImpl(void *p, size_t size, size_t align) {
std::scoped_lock lk(this->mutex);
this->current_free_size += this->allocator->GetSizeOf(p);
this->allocator->Free(p);
}
}

View file

@ -0,0 +1,188 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssrv {
namespace {
constexpr inline const u8 HeaderSign1KeyModulusDev[fssystem::NcaCryptoConfiguration::Header1SignatureKeyGenerationMax + 1][fssystem::NcaCryptoConfiguration::Rsa2048KeyModulusSize] = {
{
0xD8, 0xF1, 0x18, 0xEF, 0x32, 0x72, 0x4C, 0xA7, 0x47, 0x4C, 0xB9, 0xEA, 0xB3, 0x04, 0xA8, 0xA4,
0xAC, 0x99, 0x08, 0x08, 0x04, 0xBF, 0x68, 0x57, 0xB8, 0x43, 0x94, 0x2B, 0xC7, 0xB9, 0x66, 0x49,
0x85, 0xE5, 0x8A, 0x9B, 0xC1, 0x00, 0x9A, 0x6A, 0x8D, 0xD0, 0xEF, 0xCE, 0xFF, 0x86, 0xC8, 0x5C,
0x5D, 0xE9, 0x53, 0x7B, 0x19, 0x2A, 0xA8, 0xC0, 0x22, 0xD1, 0xF3, 0x22, 0x0A, 0x50, 0xF2, 0x2B,
0x65, 0x05, 0x1B, 0x9E, 0xEC, 0x61, 0xB5, 0x63, 0xA3, 0x6F, 0x3B, 0xBA, 0x63, 0x3A, 0x53, 0xF4,
0x49, 0x2F, 0xCF, 0x03, 0xCC, 0xD7, 0x50, 0x82, 0x1B, 0x29, 0x4F, 0x08, 0xDE, 0x1B, 0x6D, 0x47,
0x4F, 0xA8, 0xB6, 0x6A, 0x26, 0xA0, 0x83, 0x3F, 0x1A, 0xAF, 0x83, 0x8F, 0x0E, 0x17, 0x3F, 0xFE,
0x44, 0x1C, 0x56, 0x94, 0x2E, 0x49, 0x83, 0x83, 0x03, 0xE9, 0xB6, 0xAD, 0xD5, 0xDE, 0xE3, 0x2D,
0xA1, 0xD9, 0x66, 0x20, 0x5D, 0x1F, 0x5E, 0x96, 0x5D, 0x5B, 0x55, 0x0D, 0xD4, 0xB4, 0x77, 0x6E,
0xAE, 0x1B, 0x69, 0xF3, 0xA6, 0x61, 0x0E, 0x51, 0x62, 0x39, 0x28, 0x63, 0x75, 0x76, 0xBF, 0xB0,
0xD2, 0x22, 0xEF, 0x98, 0x25, 0x02, 0x05, 0xC0, 0xD7, 0x6A, 0x06, 0x2C, 0xA5, 0xD8, 0x5A, 0x9D,
0x7A, 0xA4, 0x21, 0x55, 0x9F, 0xF9, 0x3E, 0xBF, 0x16, 0xF6, 0x07, 0xC2, 0xB9, 0x6E, 0x87, 0x9E,
0xB5, 0x1C, 0xBE, 0x97, 0xFA, 0x82, 0x7E, 0xED, 0x30, 0xD4, 0x66, 0x3F, 0xDE, 0xD8, 0x1B, 0x4B,
0x15, 0xD9, 0xFB, 0x2F, 0x50, 0xF0, 0x9D, 0x1D, 0x52, 0x4C, 0x1C, 0x4D, 0x8D, 0xAE, 0x85, 0x1E,
0xEA, 0x7F, 0x86, 0xF3, 0x0B, 0x7B, 0x87, 0x81, 0x98, 0x23, 0x80, 0x63, 0x4F, 0x2F, 0xB0, 0x62,
0xCC, 0x6E, 0xD2, 0x46, 0x13, 0x65, 0x2B, 0xD6, 0x44, 0x33, 0x59, 0xB5, 0x8F, 0xB9, 0x4A, 0xA9
},
{
0x9A, 0xBC, 0x88, 0xBD, 0x0A, 0xBE, 0xD7, 0x0C, 0x9B, 0x42, 0x75, 0x65, 0x38, 0x5E, 0xD1, 0x01,
0xCD, 0x12, 0xAE, 0xEA, 0xE9, 0x4B, 0xDB, 0xB4, 0x5E, 0x36, 0x10, 0x96, 0xDA, 0x3D, 0x2E, 0x66,
0xD3, 0x99, 0x13, 0x8A, 0xBE, 0x67, 0x41, 0xC8, 0x93, 0xD9, 0x3E, 0x42, 0xCE, 0x34, 0xCE, 0x96,
0xFA, 0x0B, 0x23, 0xCC, 0x2C, 0xDF, 0x07, 0x3F, 0x3B, 0x24, 0x4B, 0x12, 0x67, 0x3A, 0x29, 0x36,
0xA3, 0xAA, 0x06, 0xF0, 0x65, 0xA5, 0x85, 0xBA, 0xFD, 0x12, 0xEC, 0xF1, 0x60, 0x67, 0xF0, 0x8F,
0xD3, 0x5B, 0x01, 0x1B, 0x1E, 0x84, 0xA3, 0x5C, 0x65, 0x36, 0xF9, 0x23, 0x7E, 0xF3, 0x26, 0x38,
0x64, 0x98, 0xBA, 0xE4, 0x19, 0x91, 0x4C, 0x02, 0xCF, 0xC9, 0x6D, 0x86, 0xEC, 0x1D, 0x41, 0x69,
0xDD, 0x56, 0xEA, 0x5C, 0xA3, 0x2A, 0x58, 0xB4, 0x39, 0xCC, 0x40, 0x31, 0xFD, 0xFB, 0x42, 0x74,
0xF8, 0xEC, 0xEA, 0x00, 0xF0, 0xD9, 0x28, 0xEA, 0xFA, 0x2D, 0x00, 0xE1, 0x43, 0x53, 0xC6, 0x32,
0xF4, 0xA2, 0x07, 0xD4, 0x5F, 0xD4, 0xCB, 0xAC, 0xCA, 0xFF, 0xDF, 0x84, 0xD2, 0x86, 0x14, 0x3C,
0xDE, 0x22, 0x75, 0xA5, 0x73, 0xFF, 0x68, 0x07, 0x4A, 0xF9, 0x7C, 0x2C, 0xCC, 0xDE, 0x45, 0xB6,
0x54, 0x82, 0x90, 0x36, 0x1F, 0x2C, 0x51, 0x96, 0xC5, 0x0A, 0x53, 0x5B, 0xF0, 0x8B, 0x4A, 0xAA,
0x3B, 0x68, 0x97, 0x19, 0x17, 0x1F, 0x01, 0xB8, 0xED, 0xB9, 0x9A, 0x5E, 0x08, 0xC5, 0x20, 0x1E,
0x6A, 0x09, 0xF0, 0xE9, 0x73, 0xA3, 0xBE, 0x10, 0x06, 0x02, 0xE9, 0xFB, 0x85, 0xFA, 0x5F, 0x01,
0xAC, 0x60, 0xE0, 0xED, 0x7D, 0xB9, 0x49, 0xA8, 0x9E, 0x98, 0x7D, 0x91, 0x40, 0x05, 0xCF, 0xF9,
0x1A, 0xFC, 0x40, 0x22, 0xA8, 0x96, 0x5B, 0xB0, 0xDC, 0x7A, 0xF5, 0xB7, 0xE9, 0x91, 0x4C, 0x49
}
};
constexpr inline const u8 HeaderSign1KeyModulusProd[fssystem::NcaCryptoConfiguration::Header1SignatureKeyGenerationMax + 1][fssystem::NcaCryptoConfiguration::Rsa2048KeyModulusSize] = {
{
0xBF, 0xBE, 0x40, 0x6C, 0xF4, 0xA7, 0x80, 0xE9, 0xF0, 0x7D, 0x0C, 0x99, 0x61, 0x1D, 0x77, 0x2F,
0x96, 0xBC, 0x4B, 0x9E, 0x58, 0x38, 0x1B, 0x03, 0xAB, 0xB1, 0x75, 0x49, 0x9F, 0x2B, 0x4D, 0x58,
0x34, 0xB0, 0x05, 0xA3, 0x75, 0x22, 0xBE, 0x1A, 0x3F, 0x03, 0x73, 0xAC, 0x70, 0x68, 0xD1, 0x16,
0xB9, 0x04, 0x46, 0x5E, 0xB7, 0x07, 0x91, 0x2F, 0x07, 0x8B, 0x26, 0xDE, 0xF6, 0x00, 0x07, 0xB2,
0xB4, 0x51, 0xF8, 0x0D, 0x0A, 0x5E, 0x58, 0xAD, 0xEB, 0xBC, 0x9A, 0xD6, 0x49, 0xB9, 0x64, 0xEF,
0xA7, 0x82, 0xB5, 0xCF, 0x6D, 0x70, 0x13, 0xB0, 0x0F, 0x85, 0xF6, 0xA9, 0x08, 0xAA, 0x4D, 0x67,
0x66, 0x87, 0xFA, 0x89, 0xFF, 0x75, 0x90, 0x18, 0x1E, 0x6B, 0x3D, 0xE9, 0x8A, 0x68, 0xC9, 0x26,
0x04, 0xD9, 0x80, 0xCE, 0x3F, 0x5E, 0x92, 0xCE, 0x01, 0xFF, 0x06, 0x3B, 0xF2, 0xC1, 0xA9, 0x0C,
0xCE, 0x02, 0x6F, 0x16, 0xBC, 0x92, 0x42, 0x0A, 0x41, 0x64, 0xCD, 0x52, 0xB6, 0x34, 0x4D, 0xAE,
0xC0, 0x2E, 0xDE, 0xA4, 0xDF, 0x27, 0x68, 0x3C, 0xC1, 0xA0, 0x60, 0xAD, 0x43, 0xF3, 0xFC, 0x86,
0xC1, 0x3E, 0x6C, 0x46, 0xF7, 0x7C, 0x29, 0x9F, 0xFA, 0xFD, 0xF0, 0xE3, 0xCE, 0x64, 0xE7, 0x35,
0xF2, 0xF6, 0x56, 0x56, 0x6F, 0x6D, 0xF1, 0xE2, 0x42, 0xB0, 0x83, 0x40, 0xA5, 0xC3, 0x20, 0x2B,
0xCC, 0x9A, 0xAE, 0xCA, 0xED, 0x4D, 0x70, 0x30, 0xA8, 0x70, 0x1C, 0x70, 0xFD, 0x13, 0x63, 0x29,
0x02, 0x79, 0xEA, 0xD2, 0xA7, 0xAF, 0x35, 0x28, 0x32, 0x1C, 0x7B, 0xE6, 0x2F, 0x1A, 0xAA, 0x40,
0x7E, 0x32, 0x8C, 0x27, 0x42, 0xFE, 0x82, 0x78, 0xEC, 0x0D, 0xEB, 0xE6, 0x83, 0x4B, 0x6D, 0x81,
0x04, 0x40, 0x1A, 0x9E, 0x9A, 0x67, 0xF6, 0x72, 0x29, 0xFA, 0x04, 0xF0, 0x9D, 0xE4, 0xF4, 0x03
},
{
0xAD, 0xE3, 0xE1, 0xFA, 0x04, 0x35, 0xE5, 0xB6, 0xDD, 0x49, 0xEA, 0x89, 0x29, 0xB1, 0xFF, 0xB6,
0x43, 0xDF, 0xCA, 0x96, 0xA0, 0x4A, 0x13, 0xDF, 0x43, 0xD9, 0x94, 0x97, 0x96, 0x43, 0x65, 0x48,
0x70, 0x58, 0x33, 0xA2, 0x7D, 0x35, 0x7B, 0x96, 0x74, 0x5E, 0x0B, 0x5C, 0x32, 0x18, 0x14, 0x24,
0xC2, 0x58, 0xB3, 0x6C, 0x22, 0x7A, 0xA1, 0xB7, 0xCB, 0x90, 0xA7, 0xA3, 0xF9, 0x7D, 0x45, 0x16,
0xA5, 0xC8, 0xED, 0x8F, 0xAD, 0x39, 0x5E, 0x9E, 0x4B, 0x51, 0x68, 0x7D, 0xF8, 0x0C, 0x35, 0xC6,
0x3F, 0x91, 0xAE, 0x44, 0xA5, 0x92, 0x30, 0x0D, 0x46, 0xF8, 0x40, 0xFF, 0xD0, 0xFF, 0x06, 0xD2,
0x1C, 0x7F, 0x96, 0x18, 0xDC, 0xB7, 0x1D, 0x66, 0x3E, 0xD1, 0x73, 0xBC, 0x15, 0x8A, 0x2F, 0x94,
0xF3, 0x00, 0xC1, 0x83, 0xF1, 0xCD, 0xD7, 0x81, 0x88, 0xAB, 0xDF, 0x8C, 0xEF, 0x97, 0xDD, 0x1B,
0x17, 0x5F, 0x58, 0xF6, 0x9A, 0xE9, 0xE8, 0xC2, 0x2F, 0x38, 0x15, 0xF5, 0x21, 0x07, 0xF8, 0x37,
0x90, 0x5D, 0x2E, 0x02, 0x40, 0x24, 0x15, 0x0D, 0x25, 0xB7, 0x26, 0x5D, 0x09, 0xCC, 0x4C, 0xF4,
0xF2, 0x1B, 0x94, 0x70, 0x5A, 0x9E, 0xEE, 0xED, 0x77, 0x77, 0xD4, 0x51, 0x99, 0xF5, 0xDC, 0x76,
0x1E, 0xE3, 0x6C, 0x8C, 0xD1, 0x12, 0xD4, 0x57, 0xD1, 0xB6, 0x83, 0xE4, 0xE4, 0xFE, 0xDA, 0xE9,
0xB4, 0x3B, 0x33, 0xE5, 0x37, 0x8A, 0xDF, 0xB5, 0x7F, 0x89, 0xF1, 0x9B, 0x9E, 0xB0, 0x15, 0xB2,
0x3A, 0xFE, 0xEA, 0x61, 0x84, 0x5B, 0x7D, 0x4B, 0x23, 0x12, 0x0B, 0x83, 0x12, 0xF2, 0x22, 0x6B,
0xB9, 0x22, 0x96, 0x4B, 0x26, 0x0B, 0x63, 0x5E, 0x96, 0x57, 0x52, 0xA3, 0x67, 0x64, 0x22, 0xCA,
0xD0, 0x56, 0x3E, 0x74, 0xB5, 0x98, 0x1F, 0x0D, 0xF8, 0xB3, 0x34, 0xE6, 0x98, 0x68, 0x5A, 0xAD
}
};
constexpr inline const ::ams::fssystem::NcaCryptoConfiguration DefaultNcaCryptoConfigurationDev = {
/* Header1 Signature Key Moduli */
{ HeaderSign1KeyModulusDev[0], HeaderSign1KeyModulusDev[1] },
/* Header 1 Signature Key Public Exponent */
{ 0x01, 0x00, 0x01 },
/* Key Area Encryption Key Sources */
{
/* Application */
{ 0x7F, 0x59, 0x97, 0x1E, 0x62, 0x9F, 0x36, 0xA1, 0x30, 0x98, 0x06, 0x6F, 0x21, 0x44, 0xC3, 0x0D },
/* Ocean */
{ 0x32, 0x7D, 0x36, 0x08, 0x5A, 0xD1, 0x75, 0x8D, 0xAB, 0x4E, 0x6F, 0xBA, 0xA5, 0x55, 0xD8, 0x82 },
/* System */
{ 0x87, 0x45, 0xF1, 0xBB, 0xA6, 0xBE, 0x79, 0x64, 0x7D, 0x04, 0x8B, 0xA6, 0x7B, 0x5F, 0xDA, 0x4A },
},
/* Header Encryption Key Source */
{ 0x1F, 0x12, 0x91, 0x3A, 0x4A, 0xCB, 0xF0, 0x0D, 0x4C, 0xDE, 0x3A, 0xF6, 0xD5, 0x23, 0x88, 0x2A },
/* Encrypted Header Encryption Key */
{
{ 0x5A, 0x3E, 0xD8, 0x4F, 0xDE, 0xC0, 0xD8, 0x26, 0x31, 0xF7, 0xE2, 0x5D, 0x19, 0x7B, 0xF5, 0xD0 },
{ 0x1C, 0x9B, 0x7B, 0xFA, 0xF6, 0x28, 0x18, 0x3D, 0x71, 0xF6, 0x4D, 0x73, 0xF1, 0x50, 0xB9, 0xD2 }
},
/* Key Generation Function */
nullptr,
/* Decrypt Aes Ctr Function */
nullptr,
/* Decrypt Aes Ctr External Function */
nullptr,
/* Plaintext Header Available */
false,
};
constexpr inline const ::ams::fssystem::NcaCryptoConfiguration DefaultNcaCryptoConfigurationProd = {
/* Header1 Signature Key Moduli */
{ HeaderSign1KeyModulusProd[0], HeaderSign1KeyModulusProd[1] },
/* Header 1 Signature Key Public Exponent */
{ 0x01, 0x00, 0x01 },
/* Key Area Encryption Key Sources */
{
/* Application */
{ 0x7F, 0x59, 0x97, 0x1E, 0x62, 0x9F, 0x36, 0xA1, 0x30, 0x98, 0x06, 0x6F, 0x21, 0x44, 0xC3, 0x0D },
/* Ocean */
{ 0x32, 0x7D, 0x36, 0x08, 0x5A, 0xD1, 0x75, 0x8D, 0xAB, 0x4E, 0x6F, 0xBA, 0xA5, 0x55, 0xD8, 0x82 },
/* System */
{ 0x87, 0x45, 0xF1, 0xBB, 0xA6, 0xBE, 0x79, 0x64, 0x7D, 0x04, 0x8B, 0xA6, 0x7B, 0x5F, 0xDA, 0x4A },
},
/* Header Encryption Key Source */
{ 0x1F, 0x12, 0x91, 0x3A, 0x4A, 0xCB, 0xF0, 0x0D, 0x4C, 0xDE, 0x3A, 0xF6, 0xD5, 0x23, 0x88, 0x2A },
/* Encrypted Header Encryption Key */
{
{ 0x5A, 0x3E, 0xD8, 0x4F, 0xDE, 0xC0, 0xD8, 0x26, 0x31, 0xF7, 0xE2, 0x5D, 0x19, 0x7B, 0xF5, 0xD0 },
{ 0x1C, 0x9B, 0x7B, 0xFA, 0xF6, 0x28, 0x18, 0x3D, 0x71, 0xF6, 0x4D, 0x73, 0xF1, 0x50, 0xB9, 0xD2 }
},
/* Key Generation Function */
nullptr,
/* Decrypt Aes Ctr Function */
nullptr,
/* Decrypt Aes Ctr External Function */
nullptr,
/* Plaintext Header Available */
false,
};
}
const ::ams::fssystem::NcaCryptoConfiguration *GetDefaultNcaCryptoConfiguration(bool prod) {
return prod ? std::addressof(DefaultNcaCryptoConfigurationProd) : std::addressof(DefaultNcaCryptoConfigurationDev);
}
}

View file

@ -0,0 +1,356 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
Result FileSystemBufferManager::CacheHandleTable::Initialize(s32 max_cache_count) {
/* Validate pre-conditions. */
AMS_ASSERT(this->entries == nullptr);
AMS_ASSERT(this->internal_entry_buffer == nullptr);
/* If we don't have an external buffer, try to allocate an internal one. */
if (this->external_entry_buffer == nullptr) {
this->entry_buffer_size = sizeof(Entry) * max_cache_count;
this->internal_entry_buffer = fs::impl::MakeUnique<char[]>(this->entry_buffer_size);
}
/* We need to have at least one entry buffer. */
R_UNLESS(this->internal_entry_buffer != nullptr || this->external_entry_buffer != nullptr, fs::ResultAllocationFailureInFileSystemBufferManagerA());
/* Set entries. */
this->entries = reinterpret_cast<Entry *>(this->external_entry_buffer != nullptr ? this->external_entry_buffer : this->internal_entry_buffer.get());
this->entry_count = 0;
this->entry_count_max = max_cache_count;
AMS_ASSERT(this->entries != nullptr);
this->cache_count_min = max_cache_count / 16;
this->cache_size_min = this->cache_count_min * 0x100;
return ResultSuccess();
}
void FileSystemBufferManager::CacheHandleTable::Finalize() {
if (this->entries != nullptr) {
AMS_ASSERT(this->entry_count == 0);
if (this->external_attr_info_buffer == nullptr) {
auto it = this->attr_list.begin();
while (it != this->attr_list.end()) {
const auto attr_info = std::addressof(*it);
it = this->attr_list.erase(it);
delete attr_info;
}
}
this->internal_entry_buffer.reset();
this->external_entry_buffer = nullptr;
this->entry_buffer_size = 0;
this->entries = nullptr;
this->total_cache_size = 0;
}
}
bool FileSystemBufferManager::CacheHandleTable::Register(CacheHandle *out, uintptr_t address, size_t size, const BufferAttribute &attr) {
/* Validate pre-conditions. */
AMS_ASSERT(this->entries != nullptr);
AMS_ASSERT(out != nullptr);
/* Get the entry. */
auto entry = this->AcquireEntry(address, size, attr);
/* If we don't have an entry, we can't register. */
if (entry == nullptr) {
return false;
}
/* Get the attr info. If we have one, increment. */
if (const auto attr_info = this->FindAttrInfo(attr); attr_info != nullptr) {
attr_info->IncrementCacheCount();
attr_info->AddCacheSize(size);
} else {
/* Make a new attr info and add it to the list. */
AttrInfo *new_info = nullptr;
if (this->external_attr_info_buffer == nullptr) {
new_info = new AttrInfo(attr.GetLevel(), 1, size);
} else if (0 <= attr.GetLevel() && attr.GetLevel() < this->external_attr_info_count) {
const auto buffer = this->external_attr_info_buffer + attr.GetLevel() * sizeof(AttrInfo);
new_info = new (buffer) AttrInfo(attr.GetLevel(), 1, size);
}
/* If we failed to make a new attr info, we can't register. */
if (new_info == nullptr) {
this->ReleaseEntry(entry);
return false;
}
this->attr_list.push_back(*new_info);
}
this->total_cache_size += size;
*out = entry->GetHandle();
return true;
}
bool FileSystemBufferManager::CacheHandleTable::Unregister(uintptr_t *out_address, size_t *out_size, CacheHandle handle) {
/* Validate pre-conditions. */
AMS_ASSERT(this->entries != nullptr);
AMS_ASSERT(out_address != nullptr);
AMS_ASSERT(out_size != nullptr);
/* Find the lower bound for the entry. */
const auto entry = std::lower_bound(this->entries, this->entries + this->entry_count, handle, [](const Entry &entry, CacheHandle handle) {
return entry.GetHandle() < handle;
});
/* If the entry is a match, unregister it. */
if (entry != this->entries + this->entry_count && entry->GetHandle() == handle) {
this->UnregisterCore(out_address, out_size, entry);
return true;
} else {
return false;
}
}
bool FileSystemBufferManager::CacheHandleTable::UnregisterOldest(uintptr_t *out_address, size_t *out_size, const BufferAttribute &attr, size_t required_size) {
/* Validate pre-conditions. */
AMS_ASSERT(this->entries != nullptr);
AMS_ASSERT(out_address != nullptr);
AMS_ASSERT(out_size != nullptr);
/* If we have no entries, we can't unregister any. */
if (this->entry_count == 0) {
return false;
}
const auto CanUnregister = [this](const Entry &entry) {
const auto attr_info = this->FindAttrInfo(entry.GetBufferAttribute());
AMS_ASSERT(attr_info != nullptr);
const auto ccm = this->GetCacheCountMin(entry.GetBufferAttribute());
const auto csm = this->GetCacheSizeMin(entry.GetBufferAttribute());
return ccm < attr_info->GetCacheCount() && csm + entry.GetSize() <= attr_info->GetCacheSize();
};
/* Find an entry, falling back to the first entry. */
auto entry = std::find_if(this->entries, this->entries + this->entry_count, CanUnregister);
if (entry == this->entries + this->entry_count) {
entry = this->entries;
}
AMS_ASSERT(entry != this->entries + this->entry_count);
this->UnregisterCore(out_address, out_size, entry);
return true;
}
void FileSystemBufferManager::CacheHandleTable::UnregisterCore(uintptr_t *out_address, size_t *out_size, Entry *entry) {
/* Validate pre-conditions. */
AMS_ASSERT(this->entries != nullptr);
AMS_ASSERT(out_address != nullptr);
AMS_ASSERT(out_size != nullptr);
AMS_ASSERT(entry != nullptr);
/* Get the attribute info. */
const auto attr_info = this->FindAttrInfo(entry->GetBufferAttribute());
AMS_ASSERT(attr_info != nullptr);
AMS_ASSERT(attr_info->GetCacheCount() > 0);
AMS_ASSERT(attr_info->GetCacheSize() >= entry->GetSize());
/* Release from the attr info. */
attr_info->DecrementCacheCount();
attr_info->SubtractCacheSize(entry->GetSize());
/* Release from cached size. */
AMS_ASSERT(this->total_cache_size >= entry->GetSize());
this->total_cache_size -= entry->GetSize();
/* Release the entry. */
*out_address = entry->GetAddress();
*out_size = entry->GetSize();
this->ReleaseEntry(entry);
}
FileSystemBufferManager::CacheHandle FileSystemBufferManager::CacheHandleTable::PublishCacheHandle() {
AMS_ASSERT(this->entries != nullptr);
return (++this->current_handle);
}
size_t FileSystemBufferManager::CacheHandleTable::GetTotalCacheSize() const {
return this->total_cache_size;
}
FileSystemBufferManager::CacheHandleTable::Entry *FileSystemBufferManager::CacheHandleTable::AcquireEntry(uintptr_t address, size_t size, const BufferAttribute &attr) {
/* Validate pre-conditions. */
AMS_ASSERT(this->entries != nullptr);
Entry *entry = nullptr;
if (this->entry_count < this->entry_count_max) {
entry = this->entries + this->entry_count;
entry->Initialize(this->PublishCacheHandle(), address, size, attr);
++this->entry_count;
AMS_ASSERT(this->entry_count == 1 || (entry-1)->GetHandle() < entry->GetHandle());
}
return entry;
}
void FileSystemBufferManager::CacheHandleTable::ReleaseEntry(Entry *entry) {
/* Validate pre-conditions. */
AMS_ASSERT(this->entries != nullptr);
AMS_ASSERT(entry != nullptr);
/* Ensure the entry is valid. */
const auto entry_buffer = this->external_entry_buffer != nullptr ? this->external_entry_buffer : this->internal_entry_buffer.get();
AMS_ASSERT(static_cast<void *>(entry_buffer) <= static_cast<void *>(entry));
AMS_ASSERT(static_cast<void *>(entry) < static_cast<void *>(entry_buffer + this->entry_buffer_size));
/* Copy the entries back by one. */
std::memmove(entry, entry + 1, sizeof(Entry) * (this->entry_count - ((entry + 1) - this->entries)));
/* Decrement our entry count. */
--this->entry_count;
}
FileSystemBufferManager::CacheHandleTable::AttrInfo *FileSystemBufferManager::CacheHandleTable::FindAttrInfo(const BufferAttribute &attr) {
const auto it = std::find_if(this->attr_list.begin(), this->attr_list.end(), [&attr](const AttrInfo &info) {
return attr.GetLevel() == attr.GetLevel();
});
return it != this->attr_list.end() ? std::addressof(*it) : nullptr;
}
const std::pair<uintptr_t, size_t> FileSystemBufferManager::AllocateBufferImpl(size_t size, const BufferAttribute &attr) {
std::scoped_lock lk(this->mutex);
std::pair<uintptr_t, size_t> range = {};
const auto order = this->buddy_heap.GetOrderFromBytes(size);
AMS_ASSERT(order >= 0);
while (true) {
if (auto address = this->buddy_heap.AllocateByOrder(order); address != 0) {
const auto allocated_size = this->buddy_heap.GetBytesFromOrder(order);
AMS_ASSERT(size <= allocated_size);
range.first = reinterpret_cast<uintptr_t>(address);
range.second = allocated_size;
const size_t free_size = this->buddy_heap.GetTotalFreeSize();
this->peak_free_size = std::min(this->peak_free_size, free_size);
const size_t total_allocatable_size = free_size + this->cache_handle_table.GetTotalCacheSize();
this->peak_total_allocatable_size = std::min(this->peak_total_allocatable_size, total_allocatable_size);
break;
}
/* Deallocate a buffer. */
uintptr_t deallocate_address = 0;
size_t deallocate_size = 0;
++this->retried_count;
if (this->cache_handle_table.UnregisterOldest(std::addressof(deallocate_address), std::addressof(deallocate_size), attr, size)) {
this->DeallocateBuffer(deallocate_address, deallocate_size);
} else {
break;
}
}
return range;
}
void FileSystemBufferManager::DeallocateBufferImpl(uintptr_t address, size_t size) {
AMS_ASSERT(util::IsPowerOfTwo(size));
std::scoped_lock lk(this->mutex);
this->buddy_heap.Free(reinterpret_cast<void *>(address), this->buddy_heap.GetOrderFromBytes(size));
}
FileSystemBufferManager::CacheHandle FileSystemBufferManager::RegisterCacheImpl(uintptr_t address, size_t size, const BufferAttribute &attr) {
std::scoped_lock lk(this->mutex);
CacheHandle handle = 0;
while (true) {
/* Try to register the handle. */
if (this->cache_handle_table.Register(std::addressof(handle), address, size, attr)) {
break;
}
/* Deallocate a buffer. */
uintptr_t deallocate_address = 0;
size_t deallocate_size = 0;
++this->retried_count;
if (this->cache_handle_table.UnregisterOldest(std::addressof(deallocate_address), std::addressof(deallocate_size), attr)) {
this->DeallocateBuffer(deallocate_address, deallocate_size);
} else {
this->DeallocateBuffer(address, size);
handle = this->cache_handle_table.PublishCacheHandle();
break;
}
}
return handle;
}
const std::pair<uintptr_t, size_t> FileSystemBufferManager::AcquireCacheImpl(CacheHandle handle) {
std::scoped_lock lk(this->mutex);
std::pair<uintptr_t, size_t> range = {};
if (this->cache_handle_table.Unregister(std::addressof(range.first), std::addressof(range.second), handle)) {
const size_t total_allocatable_size = this->buddy_heap.GetTotalFreeSize() + this->cache_handle_table.GetTotalCacheSize();
this->peak_total_allocatable_size = std::min(this->peak_total_allocatable_size, total_allocatable_size);
} else {
range.first = 0;
range.second = 0;
}
return range;
}
size_t FileSystemBufferManager::GetTotalSizeImpl() const {
return this->total_size;
}
size_t FileSystemBufferManager::GetFreeSizeImpl() const {
std::scoped_lock lk(this->mutex);
return this->buddy_heap.GetTotalFreeSize();
}
size_t FileSystemBufferManager::GetTotalAllocatableSizeImpl() const {
return this->GetFreeSize() + this->cache_handle_table.GetTotalCacheSize();
}
size_t FileSystemBufferManager::GetPeakFreeSizeImpl() const {
return this->peak_free_size;
}
size_t FileSystemBufferManager::GetPeakTotalAllocatableSizeImpl() const {
return this->peak_total_allocatable_size;
}
size_t FileSystemBufferManager::GetRetriedCountImpl() const {
return this->retried_count;
}
void FileSystemBufferManager::ClearPeakImpl() {
this->peak_free_size = this->GetFreeSize();
this->retried_count = 0;
}
}

View file

@ -0,0 +1,296 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
namespace {
class SoftwareDecryptor final : public AesCtrCounterExtendedStorage::IDecryptor {
public:
virtual void Decrypt(void *buf, size_t buf_size, const void *enc_key, size_t enc_key_size, void *iv, size_t iv_size) override final;
virtual bool HasExternalDecryptionKey() const override final { return false; }
};
class ExternalDecryptor final : public AesCtrCounterExtendedStorage::IDecryptor {
public:
static constexpr size_t BlockSize = AesCtrCounterExtendedStorage::BlockSize;
static constexpr size_t KeySize = AesCtrCounterExtendedStorage::KeySize;
static constexpr size_t IvSize = AesCtrCounterExtendedStorage::IvSize;
private:
AesCtrCounterExtendedStorage::DecryptFunction decrypt_function;
s32 key_index;
public:
ExternalDecryptor(AesCtrCounterExtendedStorage::DecryptFunction df, s32 key_idx) : decrypt_function(df), key_index(key_idx) {
AMS_ASSERT(this->decrypt_function != nullptr);
}
public:
virtual void Decrypt(void *buf, size_t buf_size, const void *enc_key, size_t enc_key_size, void *iv, size_t iv_size) override final;
virtual bool HasExternalDecryptionKey() const override final { return this->key_index < 0; }
};
}
Result AesCtrCounterExtendedStorage::CreateExternalDecryptor(std::unique_ptr<IDecryptor> *out, DecryptFunction func, s32 key_index) {
std::unique_ptr<IDecryptor> decryptor = std::make_unique<ExternalDecryptor>(func, key_index);
R_UNLESS(decryptor != nullptr, fs::ResultAllocationFailureInAesCtrCounterExtendedStorageA());
*out = std::move(decryptor);
return ResultSuccess();
}
Result AesCtrCounterExtendedStorage::CreateSoftwareDecryptor(std::unique_ptr<IDecryptor> *out) {
std::unique_ptr<IDecryptor> decryptor = std::make_unique<SoftwareDecryptor>();
R_UNLESS(decryptor != nullptr, fs::ResultAllocationFailureInAesCtrCounterExtendedStorageA());
*out = std::move(decryptor);
return ResultSuccess();
}
Result AesCtrCounterExtendedStorage::Initialize(IAllocator *allocator, const void *key, size_t key_size, u32 secure_value, fs::SubStorage data_storage, fs::SubStorage table_storage) {
/* Read and verify the bucket tree header. */
BucketTree::Header header;
R_TRY(table_storage.Read(0, std::addressof(header), sizeof(header)));
R_TRY(header.Verify());
/* Determine extents. */
const auto node_storage_size = QueryNodeStorageSize(header.entry_count);
const auto entry_storage_size = QueryEntryStorageSize(header.entry_count);
const auto node_storage_offset = QueryHeaderStorageSize();
const auto entry_storage_offset = node_storage_offset + node_storage_size;
/* Create a software decryptor. */
std::unique_ptr<IDecryptor> sw_decryptor;
R_TRY(CreateSoftwareDecryptor(std::addressof(sw_decryptor)));
/* Initialize. */
return this->Initialize(allocator, key, key_size, secure_value, 0, data_storage, fs::SubStorage(std::addressof(table_storage), node_storage_offset, node_storage_size), fs::SubStorage(std::addressof(table_storage), entry_storage_offset, entry_storage_size), header.entry_count, std::move(sw_decryptor));
}
Result AesCtrCounterExtendedStorage::Initialize(IAllocator *allocator, const void *key, size_t key_size, u32 secure_value, s64 counter_offset, fs::SubStorage data_storage, fs::SubStorage node_storage, fs::SubStorage entry_storage, s32 entry_count, std::unique_ptr<IDecryptor> &&decryptor) {
/* Validate preconditions. */
AMS_ASSERT(key != nullptr);
AMS_ASSERT(key_size == KeySize);
AMS_ASSERT(counter_offset >= 0);
AMS_ASSERT(decryptor != nullptr);
/* Initialize the bucket tree table. */
R_TRY(this->table.Initialize(allocator, node_storage, entry_storage, NodeSize, sizeof(Entry), entry_count));
/* Set members. */
this->data_storage = data_storage;
std::memcpy(this->key, key, key_size);
this->secure_value = secure_value;
this->counter_offset = counter_offset;
this->decryptor = std::move(decryptor);
return ResultSuccess();
}
void AesCtrCounterExtendedStorage::Finalize() {
if (this->IsInitialized()) {
this->table.Finalize();
this->data_storage = fs::SubStorage();
}
}
Result AesCtrCounterExtendedStorage::Read(s64 offset, void *buffer, size_t size) {
/* Validate preconditions. */
AMS_ASSERT(offset >= 0);
AMS_ASSERT(this->IsInitialized());
/* Allow zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
R_UNLESS(util::IsAligned(offset, BlockSize), fs::ResultInvalidOffset());
R_UNLESS(util::IsAligned(size, BlockSize), fs::ResultInvalidSize());
R_UNLESS(this->table.Includes(offset, size), fs::ResultOutOfRange());
/* Read the data. */
R_TRY(this->data_storage.Read(offset, buffer, size));
/* Temporarily increase our thread priority. */
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
/* Find the offset in our tree. */
BucketTree::Visitor visitor;
R_TRY(this->table.Find(std::addressof(visitor), offset));
{
const auto entry_offset = visitor.Get<Entry>()->GetOffset();
R_UNLESS(util::IsAligned(entry_offset, BlockSize), fs::ResultInvalidAesCtrCounterExtendedEntryOffset());
R_UNLESS(0 <= entry_offset && this->table.Includes(entry_offset), fs::ResultInvalidAesCtrCounterExtendedEntryOffset());
}
/* Prepare to read in chunks. */
u8 *cur_data = static_cast<u8 *>(buffer);
auto cur_offset = offset;
const auto end_offset = offset + static_cast<s64>(size);
while (cur_offset < end_offset) {
/* Get the current entry. */
const auto cur_entry = *visitor.Get<Entry>();
/* Get and validate the entry's offset. */
const auto cur_entry_offset = cur_entry.GetOffset();
R_UNLESS(cur_entry_offset <= cur_offset, fs::ResultInvalidAesCtrCounterExtendedEntryOffset());
/* Get and validate the next entry offset. */
s64 next_entry_offset;
if (visitor.CanMoveNext()) {
R_TRY(visitor.MoveNext());
next_entry_offset = visitor.Get<Entry>()->GetOffset();
R_UNLESS(this->table.Includes(next_entry_offset), fs::ResultInvalidAesCtrCounterExtendedEntryOffset());
} else {
next_entry_offset = this->table.GetEnd();
}
R_UNLESS(util::IsAligned(next_entry_offset, BlockSize), fs::ResultInvalidAesCtrCounterExtendedEntryOffset());
R_UNLESS(cur_offset < next_entry_offset, fs::ResultInvalidAesCtrCounterExtendedEntryOffset());
/* Get the offset of the entry in the data we read. */
const auto data_offset = cur_offset - cur_entry_offset;
const auto data_size = (next_entry_offset - cur_entry_offset) - data_offset;
AMS_ASSERT(data_size > 0);
/* Determine how much is left. */
const auto remaining_size = end_offset - cur_offset;
const auto cur_size = static_cast<size_t>(std::min(remaining_size, data_size));
AMS_ASSERT(cur_size <= size);
/* Make the CTR for the data we're decrypting. */
const auto counter_offset = this->counter_offset + cur_entry_offset + data_offset;
NcaAesCtrUpperIv upper_iv = { .part = { .generation = static_cast<u32>(cur_entry.generation), .secure_value = this->secure_value } };
u8 iv[IvSize];
AesCtrStorage::MakeIv(iv, IvSize, upper_iv.value, counter_offset);
/* Decrypt. */
this->decryptor->Decrypt(cur_data, cur_size, this->key, KeySize, iv, IvSize);
/* Advance. */
cur_data += cur_size;
cur_offset += cur_size;
}
return ResultSuccess();
}
Result AesCtrCounterExtendedStorage::OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) {
switch (op_id) {
case fs::OperationId::InvalidateCache:
{
/* Validate preconditions. */
AMS_ASSERT(offset >= 0);
AMS_ASSERT(this->IsInitialized());
/* Succeed if there's nothing to operate on. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(util::IsAligned(offset, BlockSize), fs::ResultInvalidOffset());
R_UNLESS(util::IsAligned(size, BlockSize), fs::ResultInvalidSize());
R_UNLESS(this->table.Includes(offset, size), fs::ResultOutOfRange());
/* Invalidate our table's cache. */
R_TRY(this->table.InvalidateCache());
/* Operate on our data storage. */
R_TRY(this->data_storage.OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
return ResultSuccess();
}
case fs::OperationId::QueryRange:
{
/* Validate preconditions. */
AMS_ASSERT(offset >= 0);
AMS_ASSERT(this->IsInitialized());
/* Validate that we have an output range info. */
R_UNLESS(dst != nullptr, fs::ResultNullptrArgument());
R_UNLESS(dst_size == sizeof(fs::QueryRangeInfo), fs::ResultInvalidSize());
/* Succeed if there's nothing to operate on. */
if (size == 0) {
reinterpret_cast<fs::QueryRangeInfo *>(dst)->Clear();
return ResultSuccess();
}
/* Validate arguments. */
R_UNLESS(util::IsAligned(offset, BlockSize), fs::ResultInvalidOffset());
R_UNLESS(util::IsAligned(size, BlockSize), fs::ResultInvalidSize());
R_UNLESS(this->table.Includes(offset, size), fs::ResultOutOfRange());
/* Operate on our data storage. */
R_TRY(this->data_storage.OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
/* Add in new flags. */
fs::QueryRangeInfo new_info;
new_info.Clear();
new_info.aes_ctr_key_type = static_cast<s32>(this->decryptor->HasExternalDecryptionKey() ? fs::AesCtrKeyTypeFlag::ExternalKeyForHardwareAes : fs::AesCtrKeyTypeFlag::InternalKeyForHardwareAes);
/* Merge in the new info. */
reinterpret_cast<fs::QueryRangeInfo *>(dst)->Merge(new_info);
return ResultSuccess();
}
default:
return fs::ResultUnsupportedOperationInAesCtrCounterExtendedStorageC();
}
}
void SoftwareDecryptor::Decrypt(void *buf, size_t buf_size, const void *enc_key, size_t enc_key_size, void *iv, size_t iv_size) {
crypto::DecryptAes128Ctr(buf, buf_size, enc_key, enc_key_size, iv, iv_size, buf, buf_size);
}
void ExternalDecryptor::Decrypt(void *buf, size_t buf_size, const void *enc_key, size_t enc_key_size, void *iv, size_t iv_size) {
/* Validate preconditions. */
AMS_ASSERT(buf != nullptr);
AMS_ASSERT(enc_key != nullptr);
AMS_ASSERT(enc_key_size == KeySize);
AMS_ASSERT(iv != nullptr);
AMS_ASSERT(iv_size == IvSize);
/* Copy the ctr. */
u8 ctr[IvSize];
std::memcpy(ctr, iv, IvSize);
/* Setup tracking. */
size_t remaining_size = buf_size;
s64 cur_offset = 0;
/* Allocate a pooled buffer for decryption. */
PooledBuffer pooled_buffer;
pooled_buffer.AllocateParticularlyLarge(buf_size, BlockSize);
AMS_ASSERT(pooled_buffer.GetSize() > 0 && util::IsAligned(pooled_buffer.GetSize(), BlockSize));
/* Read and decrypt in chunks. */
while (remaining_size > 0) {
size_t cur_size = std::min(pooled_buffer.GetSize(), remaining_size);
u8 *dst = static_cast<u8 *>(buf) + cur_offset;
this->decrypt_function(pooled_buffer.GetBuffer(), cur_size, this->key_index, enc_key, enc_key_size, ctr, IvSize, dst, cur_size);
std::memcpy(dst, pooled_buffer.GetBuffer(), cur_size);
cur_offset += cur_size;
remaining_size -= cur_size;
if (remaining_size > 0) {
AddCounter(ctr, IvSize, cur_size / BlockSize);
}
}
}
}

View file

@ -0,0 +1,256 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
namespace {
template<typename T>
constexpr ALWAYS_INLINE size_t GetRoundDownDifference(T x, size_t align) {
return static_cast<size_t>(x - util::AlignDown(x, align));
}
template<typename T>
constexpr ALWAYS_INLINE size_t GetRoundUpDifference(T x, size_t align) {
return static_cast<size_t>(util::AlignUp(x, align) - x);
}
template<typename T>
ALWAYS_INLINE size_t GetRoundUpDifference(T *x, size_t align) {
return GetRoundUpDifference(reinterpret_cast<uintptr_t>(x), align);
}
}
Result AlignmentMatchingStorageImpl::Read(fs::IStorage *base_storage, char *work_buf, size_t work_buf_size, size_t data_alignment, size_t buffer_alignment, s64 offset, char *buffer, size_t size) {
/* Check preconditions. */
AMS_ASSERT(work_buf_size >= data_alignment);
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* Determine extents. */
char *aligned_core_buffer;
s64 core_offset;
size_t core_size;
size_t buffer_gap;
size_t offset_gap;
s64 covered_offset;
const size_t offset_round_up_difference = GetRoundUpDifference(offset, data_alignment);
if (util::IsAligned(reinterpret_cast<uintptr_t>(buffer) + offset_round_up_difference, buffer_alignment)) {
aligned_core_buffer = buffer + offset_round_up_difference;
core_offset = util::AlignUp(offset, data_alignment);
core_size = (size < offset_round_up_difference) ? 0 : util::AlignDown(size - offset_round_up_difference, data_alignment);
buffer_gap = 0;
offset_gap = 0;
covered_offset = core_size > 0 ? core_offset : offset;
} else {
const size_t buffer_round_up_difference = GetRoundUpDifference(buffer, buffer_alignment);
aligned_core_buffer = buffer + buffer_round_up_difference;
core_offset = util::AlignDown(offset, data_alignment);
core_size = (size < buffer_round_up_difference) ? 0 : util::AlignDown(size - buffer_round_up_difference, data_alignment);
buffer_gap = buffer_round_up_difference;
offset_gap = GetRoundDownDifference(offset, data_alignment);
}
/* Read the core portion. */
if (core_size > 0) {
R_TRY(base_storage->Read(core_offset, aligned_core_buffer, core_size));
if (offset_gap != 0 || buffer_gap != 0) {
std::memmove(aligned_core_buffer - buffer_gap, aligned_core_buffer + offset_gap, core_size - offset_gap);
core_size -= offset_gap;
}
}
/* Handle the head portion. */
if (offset < covered_offset) {
const s64 head_offset = util::AlignDown(offset, data_alignment);
const size_t head_size = static_cast<size_t>(covered_offset - offset);
AMS_ASSERT(GetRoundDownDifference(offset, data_alignment) + head_size <= work_buf_size);
R_TRY(base_storage->Read(head_offset, work_buf, data_alignment));
std::memcpy(buffer, work_buf + GetRoundDownDifference(offset, data_alignment), head_size);
}
/* Handle the tail portion. */
s64 tail_offset = covered_offset + core_size;
size_t remaining_tail_size = static_cast<size_t>((offset + size) - tail_offset);
while (remaining_tail_size > 0) {
const auto aligned_tail_offset = util::AlignDown(tail_offset, data_alignment);
const auto cur_size = std::min(static_cast<size_t>(aligned_tail_offset + data_alignment - tail_offset), remaining_tail_size);
R_TRY(base_storage->Read(aligned_tail_offset, work_buf, data_alignment));
AMS_ASSERT((tail_offset - offset) + cur_size <= size);
AMS_ASSERT((tail_offset - aligned_tail_offset) + cur_size <= data_alignment);
std::memcpy(static_cast<char *>(buffer) + (tail_offset - offset), work_buf + (tail_offset - aligned_tail_offset), cur_size);
remaining_tail_size -= cur_size;
tail_offset += cur_size;
}
return ResultSuccess();
}
Result AlignmentMatchingStorageImpl::Write(fs::IStorage *base_storage, char *work_buf, size_t work_buf_size, size_t data_alignment, size_t buffer_alignment, s64 offset, const char *buffer, size_t size) {
/* Check preconditions. */
AMS_ASSERT(work_buf_size >= data_alignment);
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* Determine extents. */
const char *aligned_core_buffer;
s64 core_offset;
size_t core_size;
s64 covered_offset;
const size_t offset_round_up_difference = GetRoundUpDifference(offset, data_alignment);
if (util::IsAligned(reinterpret_cast<uintptr_t>(buffer) + offset_round_up_difference, buffer_alignment)) {
aligned_core_buffer = buffer + offset_round_up_difference;
core_offset = util::AlignUp(offset, data_alignment);
core_size = (size < offset_round_up_difference) ? 0 : util::AlignDown(size - offset_round_up_difference, data_alignment);
covered_offset = core_size > 0 ? core_offset : offset;
} else {
aligned_core_buffer = nullptr;
core_offset = util::AlignDown(offset, data_alignment);
core_size = 0;
covered_offset = offset;
}
/* Write the core portion. */
if (core_size > 0) {
R_TRY(base_storage->Write(core_offset, aligned_core_buffer, core_size));
}
/* Handle the head portion. */
if (offset < covered_offset) {
const s64 head_offset = util::AlignDown(offset, data_alignment);
const size_t head_size = static_cast<size_t>(covered_offset - offset);
AMS_ASSERT((offset - head_offset) + head_size <= data_alignment);
R_TRY(base_storage->Read(head_offset, work_buf, data_alignment));
std::memcpy(work_buf + (offset - head_offset), buffer, head_size);
R_TRY(base_storage->Write(head_offset, work_buf, data_alignment));
}
/* Handle the tail portion. */
s64 tail_offset = covered_offset + core_size;
size_t remaining_tail_size = static_cast<size_t>((offset + size) - tail_offset);
while (remaining_tail_size > 0) {
AMS_ASSERT(static_cast<size_t>(tail_offset - offset) < size);
const auto aligned_tail_offset = util::AlignDown(tail_offset, data_alignment);
const auto cur_size = std::min(static_cast<size_t>(aligned_tail_offset + data_alignment - tail_offset), remaining_tail_size);
R_TRY(base_storage->Read(aligned_tail_offset, work_buf, data_alignment));
std::memcpy(work_buf + GetRoundDownDifference(tail_offset, data_alignment), buffer + (tail_offset - offset), cur_size);
R_TRY(base_storage->Write(aligned_tail_offset, work_buf, data_alignment));
remaining_tail_size -= cur_size;
tail_offset += cur_size;
}
return ResultSuccess();
}
template<>
Result AlignmentMatchingStorageInBulkRead<1>::Read(s64 offset, void *buffer, size_t size) {
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
s64 bs_size = 0;
R_TRY(this->GetSize(std::addressof(bs_size)));
R_UNLESS(fs::IStorage::IsRangeValid(offset, size, bs_size), fs::ResultOutOfRange());
/* Determine extents. */
const auto offset_end = offset + static_cast<s64>(size);
const auto aligned_offset = util::AlignDown(offset, this->data_align);
const auto aligned_offset_end = util::AlignUp(offset_end, this->data_align);
const auto aligned_size = static_cast<size_t>(aligned_offset_end - aligned_offset);
/* If we aren't aligned, we need to allocate a buffer. */
PooledBuffer pooled_buffer;
if (aligned_offset != offset || aligned_size != size) {
if (aligned_size <= pooled_buffer.GetAllocatableSizeMax()) {
pooled_buffer.Allocate(aligned_size, this->data_align);
if (aligned_size <= pooled_buffer.GetSize()) {
R_TRY(this->base_storage->Read(aligned_offset, pooled_buffer.GetBuffer(), aligned_size));
std::memcpy(buffer, pooled_buffer.GetBuffer() + (offset - aligned_offset), size);
return ResultSuccess();
} else {
pooled_buffer.Shrink(this->data_align);
}
} else {
pooled_buffer.Allocate(this->data_align, this->data_align);
}
AMS_ASSERT(pooled_buffer.GetSize() >= static_cast<size_t>(this->data_align));
}
/* Determine read extents for the aligned portion. */
const auto core_offset = util::AlignUp(offset, this->data_align);
const auto core_offset_end = util::AlignDown(offset_end, this->data_align);
/* Handle any data before the aligned portion. */
if (offset < core_offset) {
const auto head_size = static_cast<size_t>(core_offset - offset);
AMS_ASSERT(head_size < size);
R_TRY(this->base_storage->Read(aligned_offset, pooled_buffer.GetBuffer(), this->data_align));
std::memcpy(buffer, pooled_buffer.GetBuffer() + (offset - aligned_offset), head_size);
}
/* Handle the aligned portion. */
if (core_offset < core_offset_end) {
const auto core_buffer = static_cast<char *>(buffer) + (core_offset - offset);
const auto core_size = static_cast<size_t>(core_offset_end - core_offset);
R_TRY(this->base_storage->Read(core_offset, core_buffer, core_size));
}
/* Handle any data after the aligned portion. */
if (core_offset_end < offset_end) {
const auto tail_size = static_cast<size_t>(offset_end - core_offset_end);
R_TRY(this->base_storage->Read(core_offset_end, pooled_buffer.GetBuffer(), this->data_align));
std::memcpy(buffer, pooled_buffer.GetBuffer(), tail_size);
}
return ResultSuccess();
}
}

View file

@ -0,0 +1,65 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
namespace {
constexpr bool UseDefaultAllocators = false;
bool g_used_default_allocator;
void *DefaultAllocate(size_t size) {
g_used_default_allocator = true;
return std::malloc(size);
}
void DefaultDeallocate(void *ptr, size_t size) {
std::free(ptr);
}
AllocateFunction g_allocate_func = UseDefaultAllocators ? DefaultAllocate : nullptr;
DeallocateFunction g_deallocate_func = UseDefaultAllocators ? DefaultDeallocate : nullptr;
}
void *Allocate(size_t size) {
AMS_ASSERT(g_allocate_func != nullptr);
return g_allocate_func(size);
}
void Deallocate(void *ptr, size_t size) {
AMS_ASSERT(g_deallocate_func != nullptr);
return g_deallocate_func(ptr, size);
}
void InitializeAllocator(AllocateFunction allocate_func, DeallocateFunction deallocate_func) {
AMS_ASSERT(allocate_func != nullptr);
AMS_ASSERT(deallocate_func != nullptr);
if constexpr (UseDefaultAllocators) {
AMS_ASSERT(g_used_default_allocator == false);
} else {
AMS_ASSERT(g_allocate_func == nullptr);
AMS_ASSERT(g_deallocate_func == nullptr);
}
g_allocate_func = allocate_func;
g_deallocate_func = deallocate_func;
}
}

View file

@ -0,0 +1,544 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
namespace {
using Node = impl::BucketTreeNode<const s64 *>;
static_assert(sizeof(Node) == sizeof(BucketTree::NodeHeader));
static_assert(std::is_pod<Node>::value);
constexpr inline s32 NodeHeaderSize = sizeof(BucketTree::NodeHeader);
class StorageNode {
private:
class Offset {
public:
using difference_type = s64;
private:
s64 offset;
s32 stride;
public:
constexpr Offset(s64 offset, s32 stride) : offset(offset), stride(stride) { /* ... */ }
constexpr Offset &operator++() { this->offset += this->stride; return *this; }
constexpr Offset operator++(int) { Offset ret(*this); this->offset += this->stride; return ret; }
constexpr Offset &operator--() { this->offset -= this->stride; return *this; }
constexpr Offset operator--(int) { Offset ret(*this); this->offset -= this->stride; return ret; }
constexpr difference_type operator-(const Offset &rhs) const { return (this->offset - rhs.offset) / this->stride; }
constexpr Offset operator+(difference_type ofs) const { return Offset(this->offset + ofs * this->stride, this->stride); }
constexpr Offset operator-(difference_type ofs) const { return Offset(this->offset - ofs * this->stride, this->stride); }
constexpr Offset &operator+=(difference_type ofs) { this->offset += ofs * this->stride; return *this; }
constexpr Offset &operator-=(difference_type ofs) { this->offset -= ofs * this->stride; return *this; }
constexpr bool operator==(const Offset &rhs) const { return this->offset == rhs.offset; }
constexpr bool operator!=(const Offset &rhs) const { return this->offset != rhs.offset; }
constexpr s64 Get() const { return this->offset; }
};
private:
const Offset start;
const s32 count;
s32 index;
public:
StorageNode(size_t size, s32 count) : start(NodeHeaderSize, static_cast<s32>(size)), count(count), index(-1) { /* ... */ }
StorageNode(s64 ofs, size_t size, s32 count) : start(NodeHeaderSize + ofs, static_cast<s32>(size)), count(count), index(-1) { /* ... */ }
s32 GetIndex() const { return this->index; }
void Find(const char *buffer, s64 virtual_address) {
s32 end = this->count;
auto pos = this->start;
while (end > 0) {
auto half = end / 2;
auto mid = pos + half;
s64 offset = 0;
std::memcpy(std::addressof(offset), buffer + mid.Get(), sizeof(s64));
if (offset <= virtual_address) {
pos = mid + 1;
end -= half + 1;
} else {
end = half;
}
}
this->index = static_cast<s32>(pos - this->start) - 1;
}
Result Find(fs::SubStorage &storage, s64 virtual_address) {
s32 end = this->count;
auto pos = this->start;
while (end > 0) {
auto half = end / 2;
auto mid = pos + half;
s64 offset = 0;
R_TRY(storage.Read(mid.Get(), std::addressof(offset), sizeof(s64)));
if (offset <= virtual_address) {
pos = mid + 1;
end -= half + 1;
} else {
end = half;
}
}
this->index = static_cast<s32>(pos - this->start) - 1;
return ResultSuccess();
}
};
}
void BucketTree::Header::Format(s32 entry_count) {
AMS_ASSERT(entry_count >= 0);
this->magic = Magic;
this->version = Version;
this->entry_count = entry_count;
this->reserved = 0;
}
Result BucketTree::Header::Verify() const {
R_UNLESS(this->magic == Magic, fs::ResultInvalidBucketTreeSignature());
R_UNLESS(this->entry_count >= 0, fs::ResultInvalidBucketTreeEntryCount());
R_UNLESS(this->version <= Version, fs::ResultUnsupportedVersion());
return ResultSuccess();
}
Result BucketTree::NodeHeader::Verify(s32 node_index, size_t node_size, size_t entry_size) const {
R_UNLESS(this->index == node_index, fs::ResultInvalidArgument());
R_UNLESS(entry_size == 0 || node_size < entry_size + NodeHeaderSize, fs::ResultInvalidSize());
const size_t max_entry_count = (node_size - NodeHeaderSize) / entry_size;
R_UNLESS(this->count > 0 && static_cast<size_t>(this->count) <= max_entry_count, fs::ResultInvalidBucketTreeNodeEntryCount());
R_UNLESS(this->offset > 0, fs::ResultInvalidBucketTreeNodeOffset());
return ResultSuccess();
}
Result BucketTree::Initialize(IAllocator *allocator, fs::SubStorage node_storage, fs::SubStorage entry_storage, size_t node_size, size_t entry_size, s32 entry_count) {
/* Validate preconditions. */
AMS_ASSERT(allocator != nullptr);
AMS_ASSERT(entry_size >= sizeof(s64));
AMS_ASSERT(node_size >= entry_size + sizeof(NodeHeader));
AMS_ASSERT(NodeSizeMin <= node_size && node_size <= NodeSizeMax);
AMS_ASSERT(util::IsPowerOfTwo(node_size));
AMS_ASSERT(!this->IsInitialized());
/* Ensure valid entry count. */
R_UNLESS(entry_count > 0, fs::ResultInvalidArgument());
/* Allocate node. */
R_UNLESS(this->node_l1.Allocate(allocator, node_size), fs::ResultBufferAllocationFailed());
auto node_guard = SCOPE_GUARD { this->node_l1.Free(node_size); };
/* Read node. */
R_TRY(node_storage.Read(0, this->node_l1.Get(), node_size));
/* Verify node. */
R_TRY(this->node_l1->Verify(0, node_size, sizeof(s64)));
/* Validate offsets. */
const auto offset_count = GetOffsetCount(node_size);
const auto entry_set_count = GetEntrySetCount(node_size, entry_size, entry_count);
const auto * const node = this->node_l1.Get<Node>();
s64 start_offset;
if (offset_count < entry_set_count && node->GetCount() < offset_count) {
start_offset = *node->GetEnd();
} else {
start_offset = *node->GetBegin();
}
const auto end_offset = node->GetEndOffset();
R_UNLESS(0 <= start_offset && start_offset <= node->GetBeginOffset(), fs::ResultInvalidBucketTreeEntryOffset());
R_UNLESS(start_offset < end_offset, fs::ResultInvalidBucketTreeEntryOffset());
/* Set member variables. */
this->node_storage = node_storage;
this->entry_storage = entry_storage;
this->node_size = node_size;
this->entry_size = entry_size;
this->entry_count = entry_count;
this->offset_count = offset_count;
this->entry_set_count = entry_set_count;
this->start_offset = start_offset;
this->end_offset = end_offset;
/* Cancel guard. */
node_guard.Cancel();
return ResultSuccess();
}
void BucketTree::Initialize(size_t node_size, s64 end_offset) {
AMS_ASSERT(NodeSizeMin <= node_size && node_size <= NodeSizeMax);
AMS_ASSERT(util::IsPowerOfTwo(node_size));
AMS_ASSERT(end_offset > 0);
AMS_ASSERT(!this->IsInitialized());
this->node_size = node_size;
this->end_offset = end_offset;
}
void BucketTree::Finalize() {
if (this->IsInitialized()) {
this->node_storage = fs::SubStorage();
this->entry_storage = fs::SubStorage();
this->node_l1.Free(this->node_size);
this->node_size = 0;
this->entry_size = 0;
this->entry_count = 0;
this->offset_count = 0;
this->entry_set_count = 0;
this->start_offset = 0;
this->end_offset = 0;
}
}
Result BucketTree::Find(Visitor *visitor, s64 virtual_address) const {
AMS_ASSERT(visitor != nullptr);
AMS_ASSERT(this->IsInitialized());
R_UNLESS(virtual_address >= 0, fs::ResultInvalidOffset());
R_UNLESS(!this->IsEmpty(), fs::ResultOutOfRange());
R_TRY(visitor->Initialize(this));
return visitor->Find(virtual_address);
}
Result BucketTree::InvalidateCache() {
/* Invalidate the node storage cache. */
{
s64 storage_size;
R_TRY(this->node_storage.GetSize(std::addressof(storage_size)));
R_TRY(this->node_storage.OperateRange(fs::OperationId::InvalidateCache, 0, storage_size));
}
/* Refresh start/end offsets. */
{
/* Read node. */
R_TRY(node_storage.Read(0, this->node_l1.Get(), this->node_size));
/* Verify node. */
R_TRY(this->node_l1->Verify(0, this->node_size, sizeof(s64)));
/* Validate offsets. */
const auto * const node = this->node_l1.Get<Node>();
s64 start_offset;
if (offset_count < this->entry_set_count && node->GetCount() < this->offset_count) {
start_offset = *node->GetEnd();
} else {
start_offset = *node->GetBegin();
}
const auto end_offset = node->GetEndOffset();
R_UNLESS(0 <= start_offset && start_offset <= node->GetBeginOffset(), fs::ResultInvalidBucketTreeEntryOffset());
R_UNLESS(start_offset < end_offset, fs::ResultInvalidBucketTreeEntryOffset());
/* Set refreshed offsets. */
this->start_offset = start_offset;
this->end_offset = end_offset;
}
/* Invalidate the entry storage cache. */
{
s64 storage_size;
R_TRY(this->entry_storage.GetSize(std::addressof(storage_size)));
R_TRY(this->entry_storage.OperateRange(fs::OperationId::InvalidateCache, 0, storage_size));
}
return ResultSuccess();
}
Result BucketTree::Visitor::Initialize(const BucketTree *tree) {
AMS_ASSERT(tree != nullptr);
AMS_ASSERT(this->tree == nullptr || this->tree == tree);
if (this->entry == nullptr) {
this->entry = tree->GetAllocator()->Allocate(tree->entry_size);
R_UNLESS(this->entry != nullptr, fs::ResultBufferAllocationFailed());
this->tree = tree;
}
return ResultSuccess();
}
Result BucketTree::Visitor::MoveNext() {
R_UNLESS(this->IsValid(), fs::ResultOutOfRange());
/* Invalidate our index, and read the header for the next index. */
auto entry_index = this->entry_index + 1;
if (entry_index == this->entry_set.info.count) {
const auto entry_set_index = this->entry_set.info.index + 1;
R_UNLESS(entry_set_index < this->entry_set_count, fs::ResultOutOfRange());
this->entry_index = -1;
const auto end = this->entry_set.info.end;
const auto entry_set_size = this->tree->node_size;
const auto entry_set_offset = entry_set_index * static_cast<s64>(entry_set_size);
R_TRY(this->tree->entry_storage.Read(entry_set_offset, std::addressof(this->entry_set), sizeof(EntrySetHeader)));
R_TRY(this->entry_set.header.Verify(entry_set_index, entry_set_size, this->tree->entry_size));
R_UNLESS(this->entry_set.info.start == end && this->entry_set.info.start < this->entry_set.info.end, fs::ResultInvalidBucketTreeEntrySetOffset());
entry_index = 0;
} else {
this->entry_index = 1;
}
/* Read the new entry. */
const auto entry_size = this->tree->entry_size;
const auto entry_offset = impl::GetBucketTreeEntryOffset(this->entry_set.info.index, this->tree->node_size, entry_size, entry_index);
R_TRY(this->tree->entry_storage.Read(entry_offset, std::addressof(this->entry), entry_size));
/* Note that we changed index. */
this->entry_index = entry_index;
return ResultSuccess();
}
Result BucketTree::Visitor::MovePrevious() {
R_UNLESS(this->IsValid(), fs::ResultOutOfRange());
/* Invalidate our index, and read the heasder for the previous index. */
auto entry_index = this->entry_index;
if (entry_index == 0) {
R_UNLESS(this->entry_set.info.index > 0, fs::ResultOutOfRange());
this->entry_index = -1;
const auto start = this->entry_set.info.start;
const auto entry_set_size = this->tree->node_size;
const auto entry_set_index = this->entry_set.info.index - 1;
const auto entry_set_offset = entry_set_index * static_cast<s64>(entry_set_size);
R_TRY(this->tree->entry_storage.Read(entry_set_offset, std::addressof(this->entry_set), sizeof(EntrySetHeader)));
R_TRY(this->entry_set.header.Verify(entry_set_index, entry_set_size, this->tree->entry_size));
R_UNLESS(this->entry_set.info.end == start && this->entry_set.info.start < this->entry_set.info.end, fs::ResultInvalidBucketTreeEntrySetOffset());
entry_index = this->entry_set.info.count;
} else {
this->entry_index = -1;
}
--entry_index;
/* Read the new entry. */
const auto entry_size = this->tree->entry_size;
const auto entry_offset = impl::GetBucketTreeEntryOffset(this->entry_set.info.index, this->tree->node_size, entry_size, entry_index);
R_TRY(this->tree->entry_storage.Read(entry_offset, std::addressof(this->entry), entry_size));
/* Note that we changed index. */
this->entry_index = entry_index;
return ResultSuccess();
}
Result BucketTree::Visitor::Find(s64 virtual_address) {
AMS_ASSERT(this->tree != nullptr);
/* Get the node. */
const auto * const node = this->tree->node_l1.Get<Node>();
R_UNLESS(virtual_address < node->GetEndOffset(), fs::ResultOutOfRange());
/* Get the entry set index. */
s32 entry_set_index = -1;
if (this->tree->IsExistOffsetL2OnL1() && virtual_address < node->GetBeginOffset()) {
const auto start = node->GetEnd();
const auto end = node->GetBegin() + tree->offset_count;
auto pos = std::upper_bound(start, end, virtual_address);
R_UNLESS(start < pos, fs::ResultOutOfRange());
--pos;
entry_set_index = static_cast<s32>(pos - start);
} else {
const auto start = node->GetBegin();
const auto end = node->GetEnd();
auto pos = std::upper_bound(start, end, virtual_address);
R_UNLESS(start < pos, fs::ResultOutOfRange());
--pos;
if (this->tree->IsExistL2()) {
const auto node_index = static_cast<s32>(pos - start);
R_UNLESS(0 <= node_index && node_index < this->tree->offset_count, fs::ResultInvalidBucketTreeNodeOffset());
R_TRY(this->FindEntrySet(std::addressof(entry_set_index), virtual_address, node_index));
} else {
entry_set_index = static_cast<s32>(pos - start);
}
}
/* Validate the entry set index. */
R_UNLESS(0 <= entry_set_index && entry_set_index < this->tree->entry_set_count, fs::ResultInvalidBucketTreeNodeOffset());
/* Find the entry. */
R_TRY(this->FindEntry(virtual_address, entry_set_index));
/* Set count. */
this->entry_set_count = this->tree->entry_set_count;
return ResultSuccess();
}
Result BucketTree::Visitor::FindEntrySet(s32 *out_index, s64 virtual_address, s32 node_index) {
const auto node_size = this->tree->node_size;
PooledBuffer pool(node_size, 1);
if (node_size <= pool.GetSize()) {
return this->FindEntrySetWithBuffer(out_index, virtual_address, node_index, pool.GetBuffer());
} else {
pool.Deallocate();
return this->FindEntrySetWithoutBuffer(out_index, virtual_address, node_index);
}
}
Result BucketTree::Visitor::FindEntrySetWithBuffer(s32 *out_index, s64 virtual_address, s32 node_index, char *buffer) {
/* Calculate node extents. */
const auto node_size = this->tree->node_size;
const auto node_offset = (node_index + 1) * static_cast<s64>(node_size);
fs::SubStorage &storage = tree->node_storage;
/* Read the node. */
R_TRY(storage.Read(node_offset, buffer, node_size));
/* Validate the header. */
NodeHeader header;
std::memcpy(std::addressof(header), buffer, NodeHeaderSize);
R_TRY(header.Verify(node_index, node_size, sizeof(s64)));
/* Create the node, and find. */
StorageNode node(sizeof(s64), header.count);
node.Find(buffer, virtual_address);
R_UNLESS(node.GetIndex() >= 0, fs::ResultOutOfRange());
/* Return the index. */
*out_index = this->tree->GetEntrySetIndex(header.index, node.GetIndex());
return ResultSuccess();
}
Result BucketTree::Visitor::FindEntrySetWithoutBuffer(s32 *out_index, s64 virtual_address, s32 node_index) {
/* Calculate node extents. */
const auto node_size = this->tree->node_size;
const auto node_offset = (node_index + 1) * static_cast<s64>(node_size);
fs::SubStorage &storage = tree->node_storage;
/* Read and validate the header. */
NodeHeader header;
R_TRY(storage.Read(node_offset, std::addressof(header), NodeHeaderSize));
R_TRY(header.Verify(node_index, node_size, sizeof(s64)));
/* Create the node, and find. */
StorageNode node(node_offset, sizeof(s64), header.count);
R_TRY(node.Find(storage, virtual_address));
R_UNLESS(node.GetIndex() >= 0, fs::ResultOutOfRange());
/* Return the index. */
*out_index = this->tree->GetEntrySetIndex(header.index, node.GetIndex());
return ResultSuccess();
}
Result BucketTree::Visitor::FindEntry(s64 virtual_address, s32 entry_set_index) {
const auto entry_set_size = this->tree->node_size;
PooledBuffer pool(entry_set_size, 1);
if (entry_set_size <= pool.GetSize()) {
return this->FindEntryWithBuffer(virtual_address, entry_set_index, pool.GetBuffer());
} else {
pool.Deallocate();
return this->FindEntryWithoutBuffer(virtual_address, entry_set_index);
}
}
Result BucketTree::Visitor::FindEntryWithBuffer(s64 virtual_address, s32 entry_set_index, char *buffer) {
/* Calculate entry set extents. */
const auto entry_size = this->tree->entry_size;
const auto entry_set_size = this->tree->node_size;
const auto entry_set_offset = entry_set_index * static_cast<s64>(entry_set_size);
fs::SubStorage &storage = tree->node_storage;
/* Read the entry set. */
R_TRY(storage.Read(entry_set_offset, buffer, entry_set_size));
/* Validate the entry_set. */
EntrySetHeader entry_set;
std::memcpy(std::addressof(entry_set), buffer, sizeof(EntrySetHeader));
R_TRY(entry_set.header.Verify(entry_set_index, entry_set_size, entry_size));
/* Create the node, and find. */
StorageNode node(entry_size, entry_set.info.count);
node.Find(buffer, virtual_address);
R_UNLESS(node.GetIndex() >= 0, fs::ResultOutOfRange());
/* Copy the data into entry. */
const auto entry_index = node.GetIndex();
const auto entry_offset = impl::GetBucketTreeEntryOffset(0, entry_size, entry_index);
std::memcpy(this->entry, buffer + entry_offset, entry_size);
/* Set our entry set/index. */
this->entry_set = entry_set;
this->entry_index = entry_index;
return ResultSuccess();
}
Result BucketTree::Visitor::FindEntryWithoutBuffer(s64 virtual_address, s32 entry_set_index) {
/* Calculate entry set extents. */
const auto entry_size = this->tree->entry_size;
const auto entry_set_size = this->tree->node_size;
const auto entry_set_offset = entry_set_index * static_cast<s64>(entry_set_size);
fs::SubStorage &storage = tree->node_storage;
/* Read and validate the entry_set. */
EntrySetHeader entry_set;
R_TRY(storage.Read(entry_set_offset, std::addressof(entry_set), sizeof(EntrySetHeader)));
R_TRY(entry_set.header.Verify(entry_set_index, entry_set_size, entry_size));
/* Create the node, and find. */
StorageNode node(entry_set_offset, entry_size, entry_set.info.count);
R_TRY(node.Find(storage, virtual_address));
R_UNLESS(node.GetIndex() >= 0, fs::ResultOutOfRange());
/* Copy the data into entry. */
const auto entry_index = node.GetIndex();
const auto entry_offset = impl::GetBucketTreeEntryOffset(entry_set_offset, entry_size, entry_index);
R_TRY(storage.Read(entry_offset, this->entry, entry_size));
/* Set our entry set/index. */
this->entry_set = entry_set;
this->entry_index = entry_index;
return ResultSuccess();
}
}

View file

@ -0,0 +1,232 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "fssystem_key_slot_cache.hpp"
namespace ams::fssystem {
namespace {
constexpr inline const size_t KeySize = crypto::AesDecryptor128::KeySize;
constexpr inline const size_t AcidSignatureKeyGenerationMax = 1;
constexpr inline const u8 AcidSignatureKeyModulusDev[AcidSignatureKeyGenerationMax + 1][AcidSignatureKeyModulusSize] = {
{
0xD6, 0x34, 0xA5, 0x78, 0x6C, 0x68, 0xCE, 0x5A, 0xC2, 0x37, 0x17, 0xF3, 0x82, 0x45, 0xC6, 0x89,
0xE1, 0x2D, 0x06, 0x67, 0xBF, 0xB4, 0x06, 0x19, 0x55, 0x6B, 0x27, 0x66, 0x0C, 0xA4, 0xB5, 0x87,
0x81, 0x25, 0xF4, 0x30, 0xBC, 0x53, 0x08, 0x68, 0xA2, 0x48, 0x49, 0x8C, 0x3F, 0x38, 0x40, 0x9C,
0xC4, 0x26, 0xF4, 0x79, 0xE2, 0xA1, 0x85, 0xF5, 0x5C, 0x7F, 0x58, 0xBA, 0xA6, 0x1C, 0xA0, 0x8B,
0x84, 0x16, 0x14, 0x6F, 0x85, 0xD9, 0x7C, 0xE1, 0x3C, 0x67, 0x22, 0x1E, 0xFB, 0xD8, 0xA7, 0xA5,
0x9A, 0xBF, 0xEC, 0x0E, 0xCF, 0x96, 0x7E, 0x85, 0xC2, 0x1D, 0x49, 0x5D, 0x54, 0x26, 0xCB, 0x32,
0x7C, 0xF6, 0xBB, 0x58, 0x03, 0x80, 0x2B, 0x5D, 0xF7, 0xFB, 0xD1, 0x9D, 0xC7, 0xC6, 0x2E, 0x53,
0xC0, 0x6F, 0x39, 0x2C, 0x1F, 0xA9, 0x92, 0xF2, 0x4D, 0x7D, 0x4E, 0x74, 0xFF, 0xE4, 0xEF, 0xE4,
0x7C, 0x3D, 0x34, 0x2A, 0x71, 0xA4, 0x97, 0x59, 0xFF, 0x4F, 0xA2, 0xF4, 0x66, 0x78, 0xD8, 0xBA,
0x99, 0xE3, 0xE6, 0xDB, 0x54, 0xB9, 0xE9, 0x54, 0xA1, 0x70, 0xFC, 0x05, 0x1F, 0x11, 0x67, 0x4B,
0x26, 0x8C, 0x0C, 0x3E, 0x03, 0xD2, 0xA3, 0x55, 0x5C, 0x7D, 0xC0, 0x5D, 0x9D, 0xFF, 0x13, 0x2F,
0xFD, 0x19, 0xBF, 0xED, 0x44, 0xC3, 0x8C, 0xA7, 0x28, 0xCB, 0xE5, 0xE0, 0xB1, 0xA7, 0x9C, 0x33,
0x8D, 0xB8, 0x6E, 0xDE, 0x87, 0x18, 0x22, 0x60, 0xC4, 0xAE, 0xF2, 0x87, 0x9F, 0xCE, 0x09, 0x5C,
0xB5, 0x99, 0xA5, 0x9F, 0x49, 0xF2, 0xD7, 0x58, 0xFA, 0xF9, 0xC0, 0x25, 0x7D, 0xD6, 0xCB, 0xF3,
0xD8, 0x6C, 0xA2, 0x69, 0x91, 0x68, 0x73, 0xB1, 0x94, 0x6F, 0xA3, 0xF3, 0xB9, 0x7D, 0xF8, 0xE0,
0x72, 0x9E, 0x93, 0x7B, 0x7A, 0xA2, 0x57, 0x60, 0xB7, 0x5B, 0xA9, 0x84, 0xAE, 0x64, 0x88, 0x69
},
{
0xBC, 0xA5, 0x6A, 0x7E, 0xEA, 0x38, 0x34, 0x62, 0xA6, 0x10, 0x18, 0x3C, 0xE1, 0x63, 0x7B, 0xF0,
0xD3, 0x08, 0x8C, 0xF5, 0xC5, 0xC4, 0xC7, 0x93, 0xE9, 0xD9, 0xE6, 0x32, 0xF3, 0xA0, 0xF6, 0x6E,
0x8A, 0x98, 0x76, 0x47, 0x33, 0x47, 0x65, 0x02, 0x70, 0xDC, 0x86, 0x5F, 0x3D, 0x61, 0x5A, 0x70,
0xBC, 0x5A, 0xCA, 0xCA, 0x50, 0xAD, 0x61, 0x7E, 0xC9, 0xEC, 0x27, 0xFF, 0xE8, 0x64, 0x42, 0x9A,
0xEE, 0xBE, 0xC3, 0xD1, 0x0B, 0xC0, 0xE9, 0xBF, 0x83, 0x8D, 0xC0, 0x0C, 0xD8, 0x00, 0x5B, 0x76,
0x90, 0xD2, 0x4B, 0x30, 0x84, 0x35, 0x8B, 0x1E, 0x20, 0xB7, 0xE4, 0xDC, 0x63, 0xE5, 0xDF, 0xCD,
0x00, 0x5F, 0x81, 0x5F, 0x67, 0xC5, 0x8B, 0xDF, 0xFC, 0xE1, 0x37, 0x5F, 0x07, 0xD9, 0xDE, 0x4F,
0xE6, 0x7B, 0xF1, 0xFB, 0xA1, 0x5A, 0x71, 0x40, 0xFE, 0xBA, 0x1E, 0xAE, 0x13, 0x22, 0xD2, 0xFE,
0x37, 0xA2, 0xB6, 0x8B, 0xAB, 0xEB, 0x84, 0x81, 0x4E, 0x7C, 0x1E, 0x02, 0xD1, 0xFB, 0xD7, 0x5D,
0x11, 0x84, 0x64, 0xD2, 0x4D, 0xBB, 0x50, 0x00, 0x67, 0x54, 0xE2, 0x77, 0x89, 0xBA, 0x0B, 0xE7,
0x05, 0x57, 0x9A, 0x22, 0x5A, 0xEC, 0x76, 0x1C, 0xFD, 0xE8, 0xA8, 0x18, 0x16, 0x41, 0x65, 0x03,
0xFA, 0xC4, 0xA6, 0x31, 0x5C, 0x1A, 0x7F, 0xAB, 0x11, 0xC8, 0x4A, 0x99, 0xB9, 0xE6, 0xCF, 0x62,
0x21, 0xA6, 0x72, 0x47, 0xDB, 0xBA, 0x96, 0x26, 0x4E, 0x2E, 0xD4, 0x8C, 0x46, 0xD6, 0xA7, 0x1A,
0x6C, 0x32, 0xA7, 0xDF, 0x85, 0x1C, 0x03, 0xC3, 0x6D, 0xA9, 0xE9, 0x68, 0xF4, 0x17, 0x1E, 0xB2,
0x70, 0x2A, 0xA1, 0xE5, 0xE1, 0xF3, 0x8F, 0x6F, 0x63, 0xAC, 0xEB, 0x72, 0x0B, 0x4C, 0x4A, 0x36,
0x3C, 0x60, 0x91, 0x9F, 0x6E, 0x1C, 0x71, 0xEA, 0xD0, 0x78, 0x78, 0xA0, 0x2E, 0xC6, 0x32, 0x6B
}
};
constexpr inline const u8 AcidSignatureKeyModulusProd[AcidSignatureKeyGenerationMax + 1][AcidSignatureKeyModulusSize] = {
{
0xDD, 0xC8, 0xDD, 0xF2, 0x4E, 0x6D, 0xF0, 0xCA, 0x9E, 0xC7, 0x5D, 0xC7, 0x7B, 0xAD, 0xFE, 0x7D,
0x23, 0x89, 0x69, 0xB6, 0xF2, 0x06, 0xA2, 0x02, 0x88, 0xE1, 0x55, 0x91, 0xAB, 0xCB, 0x4D, 0x50,
0x2E, 0xFC, 0x9D, 0x94, 0x76, 0xD6, 0x4C, 0xD8, 0xFF, 0x10, 0xFA, 0x5E, 0x93, 0x0A, 0xB4, 0x57,
0xAC, 0x51, 0xC7, 0x16, 0x66, 0xF4, 0x1A, 0x54, 0xC2, 0xC5, 0x04, 0x3D, 0x1B, 0xFE, 0x30, 0x20,
0x8A, 0xAC, 0x6F, 0x6F, 0xF5, 0xC7, 0xB6, 0x68, 0xB8, 0xC9, 0x40, 0x6B, 0x42, 0xAD, 0x11, 0x21,
0xE7, 0x8B, 0xE9, 0x75, 0x01, 0x86, 0xE4, 0x48, 0x9B, 0x0A, 0x0A, 0xF8, 0x7F, 0xE8, 0x87, 0xF2,
0x82, 0x01, 0xE6, 0xA3, 0x0F, 0xE4, 0x66, 0xAE, 0x83, 0x3F, 0x4E, 0x9F, 0x5E, 0x01, 0x30, 0xA4,
0x00, 0xB9, 0x9A, 0xAE, 0x5F, 0x03, 0xCC, 0x18, 0x60, 0xE5, 0xEF, 0x3B, 0x5E, 0x15, 0x16, 0xFE,
0x1C, 0x82, 0x78, 0xB5, 0x2F, 0x47, 0x7C, 0x06, 0x66, 0x88, 0x5D, 0x35, 0xA2, 0x67, 0x20, 0x10,
0xE7, 0x6C, 0x43, 0x68, 0xD3, 0xE4, 0x5A, 0x68, 0x2A, 0x5A, 0xE2, 0x6D, 0x73, 0xB0, 0x31, 0x53,
0x1C, 0x20, 0x09, 0x44, 0xF5, 0x1A, 0x9D, 0x22, 0xBE, 0x12, 0xA1, 0x77, 0x11, 0xE2, 0xA1, 0xCD,
0x40, 0x9A, 0xA2, 0x8B, 0x60, 0x9B, 0xEF, 0xA0, 0xD3, 0x48, 0x63, 0xA2, 0xF8, 0xA3, 0x2C, 0x08,
0x56, 0x52, 0x2E, 0x60, 0x19, 0x67, 0x5A, 0xA7, 0x9F, 0xDC, 0x3F, 0x3F, 0x69, 0x2B, 0x31, 0x6A,
0xB7, 0x88, 0x4A, 0x14, 0x84, 0x80, 0x33, 0x3C, 0x9D, 0x44, 0xB7, 0x3F, 0x4C, 0xE1, 0x75, 0xEA,
0x37, 0xEA, 0xE8, 0x1E, 0x7C, 0x77, 0xB7, 0xC6, 0x1A, 0xA2, 0xF0, 0x9F, 0x10, 0x61, 0xCD, 0x7B,
0x5B, 0x32, 0x4C, 0x37, 0xEF, 0xB1, 0x71, 0x68, 0x53, 0x0A, 0xED, 0x51, 0x7D, 0x35, 0x22, 0xFD
},
{
0xE7, 0xAA, 0x25, 0xC8, 0x01, 0xA5, 0x14, 0x6B, 0x01, 0x60, 0x3E, 0xD9, 0x96, 0x5A, 0xBF, 0x90,
0xAC, 0xA7, 0xFD, 0x9B, 0x5B, 0xBD, 0x8A, 0x26, 0xB0, 0xCB, 0x20, 0x28, 0x9A, 0x72, 0x12, 0xF5,
0x20, 0x65, 0xB3, 0xB9, 0x84, 0x58, 0x1F, 0x27, 0xBC, 0x7C, 0xA2, 0xC9, 0x9E, 0x18, 0x95, 0xCF,
0xC2, 0x73, 0x2E, 0x74, 0x8C, 0x66, 0xE5, 0x9E, 0x79, 0x2B, 0xB8, 0x07, 0x0C, 0xB0, 0x4E, 0x8E,
0xAB, 0x85, 0x21, 0x42, 0xC4, 0xC5, 0x6D, 0x88, 0x9C, 0xDB, 0x15, 0x95, 0x3F, 0x80, 0xDB, 0x7A,
0x9A, 0x7D, 0x41, 0x56, 0x25, 0x17, 0x18, 0x42, 0x4D, 0x8C, 0xAC, 0xA5, 0x7B, 0xDB, 0x42, 0x5D,
0x59, 0x35, 0x45, 0x5D, 0x8A, 0x02, 0xB5, 0x70, 0xC0, 0x72, 0x35, 0x46, 0xD0, 0x1D, 0x60, 0x01,
0x4A, 0xCC, 0x1C, 0x46, 0xD3, 0xD6, 0x35, 0x52, 0xD6, 0xE1, 0xF8, 0x3B, 0x5D, 0xEA, 0xDD, 0xB8,
0xFE, 0x7D, 0x50, 0xCB, 0x35, 0x23, 0x67, 0x8B, 0xB6, 0xE4, 0x74, 0xD2, 0x60, 0xFC, 0xFD, 0x43,
0xBF, 0x91, 0x08, 0x81, 0xC5, 0x4F, 0x5D, 0x16, 0x9A, 0xC4, 0x9A, 0xC6, 0xF6, 0xF3, 0xE1, 0xF6,
0x5C, 0x07, 0xAA, 0x71, 0x6C, 0x13, 0xA4, 0xB1, 0xB3, 0x66, 0xBF, 0x90, 0x4C, 0x3D, 0xA2, 0xC4,
0x0B, 0xB8, 0x3D, 0x7A, 0x8C, 0x19, 0xFA, 0xFF, 0x6B, 0xB9, 0x1F, 0x02, 0xCC, 0xB6, 0xD3, 0x0C,
0x7D, 0x19, 0x1F, 0x47, 0xF9, 0xC7, 0x40, 0x01, 0xFA, 0x46, 0xEA, 0x0B, 0xD4, 0x02, 0xE0, 0x3D,
0x30, 0x9A, 0x1A, 0x0F, 0xEA, 0xA7, 0x66, 0x55, 0xF7, 0xCB, 0x28, 0xE2, 0xBB, 0x99, 0xE4, 0x83,
0xC3, 0x43, 0x03, 0xEE, 0xDC, 0x1F, 0x02, 0x23, 0xDD, 0xD1, 0x2D, 0x39, 0xA4, 0x65, 0x75, 0x03,
0xEF, 0x37, 0x9C, 0x06, 0xD6, 0xFA, 0xA1, 0x15, 0xF0, 0xDB, 0x17, 0x47, 0x26, 0x4F, 0x49, 0x03
}
};
static_assert(sizeof(AcidSignatureKeyModulusProd) == sizeof(AcidSignatureKeyModulusDev));
constexpr inline const u8 AcidSignatureKeyPublicExponent[] = {
0x01, 0x00, 0x01
};
NcaCryptoConfiguration g_nca_crypto_configuration_dev;
NcaCryptoConfiguration g_nca_crypto_configuration_prod;
constexpr inline s32 KeySlotCacheEntryCount = 3;
KeySlotCache g_key_slot_cache;
std::optional<KeySlotCacheEntry> g_key_slot_cache_entry[KeySlotCacheEntryCount];
spl::AccessKey &GetNcaKekAccessKey(s32 key_type) {
static spl::AccessKey s_nca_kek_access_key_array[KeyAreaEncryptionKeyCount] = {};
static spl::AccessKey s_nca_header_kek_access_key = {};
static spl::AccessKey s_invalid_nca_kek_access_key = {};
if (key_type > static_cast<s32>(KeyType::NcaHeaderKey) || IsInvalidKeyTypeValue(key_type)) {
return s_invalid_nca_kek_access_key;
} else if (key_type == static_cast<s32>(KeyType::NcaHeaderKey)) {
return s_nca_header_kek_access_key;
} else {
return s_nca_kek_access_key_array[key_type];
}
}
void GenerateNcaKey(void *dst, size_t dst_size, const void *src, size_t src_size, s32 key_type, const NcaCryptoConfiguration &cfg) {
R_ABORT_UNLESS(spl::GenerateAesKey(dst, dst_size, GetNcaKekAccessKey(key_type), src, src_size));
}
void DecryptAesCtr(void *dst, size_t dst_size, s32 key_type, const void *enc_key, size_t enc_key_size, const void *iv, size_t iv_size, const void *src, size_t src_size) {
std::unique_ptr<KeySlotCacheAccessor> accessor;
R_TRY_CATCH(g_key_slot_cache.Find(std::addressof(accessor), enc_key, enc_key_size, key_type)) {
R_CATCH(fs::ResultTargetNotFound) {
R_ABORT_UNLESS(g_key_slot_cache.AllocateHighPriority(std::addressof(accessor), enc_key, enc_key_size, key_type));
R_ABORT_UNLESS(spl::LoadAesKey(accessor->GetKeySlotIndex(), GetNcaKekAccessKey(key_type), enc_key, enc_key_size));
}
} R_END_TRY_CATCH_WITH_ABORT_UNLESS;
R_ABORT_UNLESS(spl::ComputeCtr(dst, dst_size, accessor->GetKeySlotIndex(), src, src_size, iv, iv_size));
}
void DecryptAesCtrForPreparedKey(void *dst, size_t dst_size, s32 key_type, const void *enc_key, size_t enc_key_size, const void *iv, size_t iv_size, const void *src, size_t src_size) {
std::unique_ptr<KeySlotCacheAccessor> accessor;
key_type = static_cast<s32>(KeyType::NcaExternalKey);
R_TRY_CATCH(g_key_slot_cache.Find(std::addressof(accessor), enc_key, enc_key_size, key_type)) {
R_CATCH(fs::ResultTargetNotFound) {
R_ABORT_UNLESS(g_key_slot_cache.AllocateHighPriority(std::addressof(accessor), enc_key, enc_key_size, key_type));
spl::AccessKey access_key;
AMS_ABORT_UNLESS(enc_key_size == sizeof(access_key));
std::memcpy(std::addressof(access_key), enc_key, sizeof(access_key));
R_ABORT_UNLESS(spl::LoadPreparedAesKey(accessor->GetKeySlotIndex(), access_key));
}
} R_END_TRY_CATCH_WITH_ABORT_UNLESS;
R_ABORT_UNLESS(spl::ComputeCtr(dst, dst_size, accessor->GetKeySlotIndex(), src, src_size, iv, iv_size));
}
}
const ::ams::fssystem::NcaCryptoConfiguration *GetNcaCryptoConfiguration(bool prod) {
/* Decide which configuration to use. */
NcaCryptoConfiguration *cfg = prod ? std::addressof(g_nca_crypto_configuration_prod) : std::addressof(g_nca_crypto_configuration_dev);
std::memcpy(cfg, fssrv::GetDefaultNcaCryptoConfiguration(prod), sizeof(NcaCryptoConfiguration));
/* Set the key generation functions. */
cfg->generate_key = GenerateNcaKey;
cfg->decrypt_aes_ctr = DecryptAesCtr;
cfg->decrypt_aes_ctr_external = DecryptAesCtrForPreparedKey;
cfg->is_plaintext_header_available = !prod;
return cfg;
}
void SetUpKekAccessKeys(bool prod) {
/* Get the crypto configuration. */
const NcaCryptoConfiguration *nca_crypto_cfg = GetNcaCryptoConfiguration(prod);
/* Setup the nca keys. */
{
constexpr s32 Option = 0;
/* Setup the key area encryption keys. */
for (u8 i = 0; i < NcaCryptoConfiguration::KeyGenerationMax; ++i) {
spl::GenerateAesKek(std::addressof(GetNcaKekAccessKey(GetKeyTypeValue(0, i))), nca_crypto_cfg->key_area_encryption_key_source[0], KeySize, i, Option);
spl::GenerateAesKek(std::addressof(GetNcaKekAccessKey(GetKeyTypeValue(1, i))), nca_crypto_cfg->key_area_encryption_key_source[1], KeySize, i, Option);
spl::GenerateAesKek(std::addressof(GetNcaKekAccessKey(GetKeyTypeValue(2, i))), nca_crypto_cfg->key_area_encryption_key_source[2], KeySize, i, Option);
}
/* Setup the header encryption key. */
R_ABORT_UNLESS(spl::GenerateAesKek(std::addressof(GetNcaKekAccessKey(static_cast<s32>(KeyType::NcaHeaderKey))), nca_crypto_cfg->header_encryption_key_source, KeySize, 0, Option));
}
/* TODO FS-REIMPL: Save stuff. */
/* Setup the keyslot cache. */
for (s32 i = 0; i < KeySlotCacheEntryCount; i++) {
s32 slot_index;
R_ABORT_UNLESS(spl::AllocateAesKeySlot(std::addressof(slot_index)));
g_key_slot_cache_entry[i].emplace(slot_index);
g_key_slot_cache.AddEntry(std::addressof(g_key_slot_cache_entry[i].value()));
}
}
void InvalidateHardwareAesKey() {
constexpr u8 InvalidKey[KeySize] = {};
for (s32 i = 0; i < KeySlotCacheEntryCount; ++i) {
std::unique_ptr<KeySlotCacheAccessor> accessor;
R_ABORT_UNLESS(g_key_slot_cache.AllocateHighPriority(std::addressof(accessor), InvalidKey, KeySize, -1 - i));
}
}
const u8 *GetAcidSignatureKeyModulus(bool prod, size_t key_generation) {
AMS_ASSERT(key_generation <= AcidSignatureKeyGenerationMax);
const size_t used_keygen = (key_generation % (AcidSignatureKeyGenerationMax + 1));
return prod ? AcidSignatureKeyModulusProd[used_keygen] : AcidSignatureKeyModulusDev[used_keygen];
}
const u8 *GetAcidSignatureKeyPublicExponent() {
return AcidSignatureKeyPublicExponent;
}
}

View file

@ -0,0 +1,152 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
/* TODO: All of this should really be inside fs process, but ams.mitm wants it to. */
/* How should we handle this? */
namespace {
/* Official FS has a 4.5 MB exp heap, a 6 MB buffer pool, an 8 MB device buffer manager heap, and a 14 MB buffer manager heap. */
/* We don't need so much memory for ams.mitm (as we're servicing a much more limited context). */
/* We'll give ourselves a 2.5 MB exp heap, a 2 MB buffer pool, a 2 MB device buffer manager heap, and a 2 MB buffer manager heap. */
/* These numbers match signed-system-partition safe FS. */
constexpr size_t ExpHeapSize = 2_MB + 512_KB;
constexpr size_t BufferPoolSize = 2_MB;
constexpr size_t DeviceBufferSize = 2_MB;
constexpr size_t BufferManagerHeapSize = 2_MB;
constexpr size_t MaxCacheCount = 1024;
constexpr size_t BlockSize = 16_KB;
alignas(os::MemoryPageSize) u8 g_exp_heap_buffer[ExpHeapSize];
lmem::HeapHandle g_exp_heap_handle = nullptr;
fssrv::PeakCheckableMemoryResourceFromExpHeap g_exp_allocator(ExpHeapSize);
void InitializeExpHeap() {
if (g_exp_heap_handle == nullptr) {
g_exp_heap_handle = lmem::CreateExpHeap(g_exp_heap_buffer, ExpHeapSize, lmem::CreateOption_ThreadSafe);
AMS_ABORT_UNLESS(g_exp_heap_handle != nullptr);
g_exp_allocator.SetHeapHandle(g_exp_heap_handle);
}
}
void *AllocateForFileSystemProxy(size_t size) {
AMS_ABORT_UNLESS(g_exp_heap_handle != nullptr);
auto scoped_lock = g_exp_allocator.GetScopedLock();
void *p = lmem::AllocateFromExpHeap(g_exp_heap_handle, size);
g_exp_allocator.OnAllocate(p, size);
return p;
}
void DeallocateForFileSystemProxy(void *p, size_t size) {
AMS_ABORT_UNLESS(g_exp_heap_handle != nullptr);
auto scoped_lock = g_exp_allocator.GetScopedLock();
g_exp_allocator.OnDeallocate(p, size);
lmem::FreeToExpHeap(g_exp_heap_handle, p);
}
alignas(os::MemoryPageSize) u8 g_device_buffer[DeviceBufferSize];
alignas(os::MemoryPageSize) u8 g_buffer_pool[BufferPoolSize];
TYPED_STORAGE(mem::StandardAllocator) g_buffer_allocator;
TYPED_STORAGE(fssrv::MemoryResourceFromStandardAllocator) g_allocator;
/* TODO: Nintendo uses os::SetMemoryHeapSize (svc::SetHeapSize) and os::AllocateMemoryBlock for the BufferManager heap. */
/* It's unclear how we should handle this in ams.mitm (especially hoping to reuse some logic for fs reimpl). */
/* Should we be doing the same(?) */
TYPED_STORAGE(fssystem::FileSystemBufferManager) g_buffer_manager;
alignas(os::MemoryPageSize) u8 g_buffer_manager_heap[BufferManagerHeapSize];
/* FileSystem creators. */
TYPED_STORAGE(fssrv::fscreator::RomFileSystemCreator) g_rom_fs_creator;
TYPED_STORAGE(fssrv::fscreator::PartitionFileSystemCreator) g_partition_fs_creator;
TYPED_STORAGE(fssrv::fscreator::StorageOnNcaCreator) g_storage_on_nca_creator;
fssrv::fscreator::FileSystemCreatorInterfaces g_fs_creator_interfaces = {};
}
void InitializeForFileSystemProxy() {
/* TODO FS-REIMPL: fssystem::RegisterServiceContext */
/* TODO FS-REIMPL: spl::InitializeForFs(); */
/* Determine whether we're prod or dev. */
bool is_prod = !spl::IsDevelopment();
bool is_development_function_enabled = spl::IsDevelopmentFunctionEnabled();
/* Setup our crypto configuration. */
SetUpKekAccessKeys(is_prod);
/* Setup our heap. */
InitializeExpHeap();
/* Initialize buffer allocator. */
new (GetPointer(g_buffer_allocator)) mem::StandardAllocator(g_buffer_pool, BufferPoolSize);
new (GetPointer(g_allocator)) fssrv::MemoryResourceFromStandardAllocator(GetPointer(g_buffer_allocator));
/* Set allocators. */
fs::SetAllocator(AllocateForFileSystemProxy, DeallocateForFileSystemProxy);
fssystem::InitializeAllocator(AllocateForFileSystemProxy, DeallocateForFileSystemProxy);
/* Initialize the buffer manager. */
/* TODO FS-REIMPL: os::AllocateMemoryBlock(...); */
new (GetPointer(g_buffer_manager)) fssystem::FileSystemBufferManager;
GetReference(g_buffer_manager).Initialize(MaxCacheCount, reinterpret_cast<uintptr_t>(g_buffer_manager_heap), BufferManagerHeapSize, BlockSize);
/* TODO FS-REIMPL: Memory Report Creators, fssrv::SetMemoryReportCreator */
/* TODO FS-REIMPL: Create Pooled Threads, fssystem::RegisterThreadPool. */
/* Initialize fs creators. */
new (GetPointer(g_rom_fs_creator)) fssrv::fscreator::RomFileSystemCreator(GetPointer(g_allocator));
new (GetPointer(g_partition_fs_creator)) fssrv::fscreator::PartitionFileSystemCreator;
new (GetPointer(g_storage_on_nca_creator)) fssrv::fscreator::StorageOnNcaCreator(GetPointer(g_allocator), *GetNcaCryptoConfiguration(is_prod), is_prod, GetPointer(g_buffer_manager));
/* TODO FS-REIMPL: Initialize other creators. */
g_fs_creator_interfaces = {
.rom_fs_creator = GetPointer(g_rom_fs_creator),
.partition_fs_creator = GetPointer(g_partition_fs_creator),
.storage_on_nca_creator = GetPointer(g_storage_on_nca_creator),
};
/* TODO FS-REIMPL: Sd Card detection, speed emulation. */
/* Initialize fssrv. TODO FS-REIMPL: More arguments, more actions taken. */
fssrv::InitializeForFileSystemProxy(std::addressof(g_fs_creator_interfaces), GetPointer(g_buffer_manager), is_development_function_enabled);
/* Disable auto-abort in fs library code. */
/* TODO: fs::SetEnabledAutoAbort(false); */
/* TODO FS-REIMPL: Initialize fsp server. */
/* NOTE: This is done in fsp server init, normally. */
fssystem::InitializeBufferPool(reinterpret_cast<char *>(g_device_buffer), DeviceBufferSize);
}
const ::ams::fssrv::fscreator::FileSystemCreatorInterfaces *GetFileSystemCreatorInterfaces() {
return std::addressof(g_fs_creator_interfaces);
}
}

View file

@ -0,0 +1,184 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "fssystem_hierarchical_sha256_storage.hpp"
namespace ams::fssystem {
namespace {
s32 Log2(s32 value) {
AMS_ASSERT(value > 0);
AMS_ASSERT(util::IsPowerOfTwo(value));
s32 log = 0;
while ((value >>= 1) > 0) {
++log;
}
return log;
}
}
Result HierarchicalSha256Storage::Initialize(IStorage **base_storages, s32 layer_count, size_t htbs, void *hash_buf, size_t hash_buf_size) {
/* Validate preconditions. */
AMS_ASSERT(layer_count == LayerCount);
AMS_ASSERT(util::IsPowerOfTwo(htbs));
AMS_ASSERT(hash_buf != nullptr);
/* Set size tracking members. */
this->hash_target_block_size = htbs;
this->log_size_ratio = Log2(this->hash_target_block_size / HashSize);
/* Get the base storage size. */
R_TRY(base_storages[2]->GetSize(std::addressof(this->base_storage_size)));
{
auto size_guard = SCOPE_GUARD { this->base_storage_size = 0; };
R_UNLESS(this->base_storage_size <= static_cast<s64>(HashSize) << log_size_ratio << log_size_ratio, fs::ResultHierarchicalSha256BaseStorageTooLarge());
size_guard.Cancel();
}
/* Set hash buffer tracking members. */
this->base_storage = base_storages[2];
this->hash_buffer = static_cast<char *>(hash_buf);
this->hash_buffer_size = hash_buf_size;
/* Read the master hash. */
u8 master_hash[HashSize];
R_TRY(base_storages[0]->Read(0, master_hash, HashSize));
/* Read and validate the data being hashed. */
s64 hash_storage_size;
R_TRY(base_storages[1]->GetSize(std::addressof(hash_storage_size)));
AMS_ASSERT(util::IsAligned(hash_storage_size, HashSize));
AMS_ASSERT(hash_storage_size <= this->hash_target_block_size);
AMS_ASSERT(hash_storage_size <= static_cast<s64>(this->hash_buffer_size));
R_TRY(base_storages[1]->Read(0, this->hash_buffer, static_cast<size_t>(hash_storage_size)));
/* Calculate and verify the master hash. */
u8 calc_hash[HashSize];
crypto::GenerateSha256Hash(calc_hash, sizeof(calc_hash), this->hash_buffer, static_cast<size_t>(hash_storage_size));
R_UNLESS(crypto::IsSameBytes(master_hash, calc_hash, HashSize), fs::ResultHierarchicalSha256HashVerificationFailed());
return ResultSuccess();
}
Result HierarchicalSha256Storage::Read(s64 offset, void *buffer, size_t size) {
/* Succeed if zero-size. */
R_SUCCEED_IF(size == 0);
/* Validate that we have a buffer to read into. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* Validate preconditions. */
R_UNLESS(util::IsAligned(offset, this->hash_target_block_size), fs::ResultInvalidArgument());
R_UNLESS(util::IsAligned(size, this->hash_target_block_size), fs::ResultInvalidArgument());
/* Read the data. */
const size_t reduced_size = static_cast<size_t>(std::min<s64>(this->base_storage_size, util::AlignUp(offset + size, this->hash_target_block_size) - offset));
R_TRY(this->base_storage->Read(offset, buffer, reduced_size));
/* Temporarily increase our thread priority. */
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
/* Setup tracking variables. */
auto cur_offset = offset;
auto remaining_size = reduced_size;
while (remaining_size > 0) {
/* Generate the hash of the region we're validating. */
u8 hash[HashSize];
const auto cur_size = static_cast<size_t>(std::min<s64>(this->hash_target_block_size, remaining_size));
crypto::GenerateSha256Hash(hash, sizeof(hash), static_cast<u8 *>(buffer) + (cur_offset - offset), cur_size);
AMS_ASSERT(static_cast<size_t>(cur_offset >> this->log_size_ratio) < this->hash_buffer_size);
/* Check the hash. */
{
std::scoped_lock lk(this->mutex);
auto clear_guard = SCOPE_GUARD { std::memset(buffer, 0, size); };
R_UNLESS(crypto::IsSameBytes(hash, std::addressof(this->hash_buffer[cur_offset >> this->log_size_ratio]), HashSize), fs::ResultHierarchicalSha256HashVerificationFailed());
clear_guard.Cancel();
}
/* Advance. */
cur_offset += cur_size;
remaining_size -= cur_size;
}
return ResultSuccess();
}
Result HierarchicalSha256Storage::Write(s64 offset, const void *buffer, size_t size) {
/* Succeed if zero-size. */
R_SUCCEED_IF(size == 0);
/* Validate that we have a buffer to read into. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* Validate preconditions. */
R_UNLESS(util::IsAligned(offset, this->hash_target_block_size), fs::ResultInvalidArgument());
R_UNLESS(util::IsAligned(size, this->hash_target_block_size), fs::ResultInvalidArgument());
/* Setup tracking variables. */
const size_t reduced_size = static_cast<size_t>(std::min<s64>(this->base_storage_size, util::AlignUp(offset + size, this->hash_target_block_size) - offset));
auto cur_offset = offset;
auto remaining_size = reduced_size;
while (remaining_size > 0) {
/* Generate the hash of the region we're validating. */
u8 hash[HashSize];
const auto cur_size = static_cast<size_t>(std::min<s64>(this->hash_target_block_size, remaining_size));
{
/* Temporarily increase our thread priority. */
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
crypto::GenerateSha256Hash(hash, sizeof(hash), static_cast<const u8 *>(buffer) + (cur_offset - offset), cur_size);
}
/* Write the data. */
R_TRY(this->base_storage->Write(cur_offset, static_cast<const u8 *>(buffer) + (cur_offset - offset), cur_size));
/* Write the hash. */
{
std::scoped_lock lk(this->mutex);
std::memcpy(std::addressof(this->hash_buffer[cur_offset >> this->log_size_ratio]), hash, HashSize);
}
/* Advance. */
cur_offset += cur_size;
remaining_size -= cur_size;
}
return ResultSuccess();
}
Result HierarchicalSha256Storage::OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) {
/* Succeed if zero-size. */
R_SUCCEED_IF(size == 0);
/* Validate preconditions. */
R_UNLESS(util::IsAligned(offset, this->hash_target_block_size), fs::ResultInvalidArgument());
R_UNLESS(util::IsAligned(size, this->hash_target_block_size), fs::ResultInvalidArgument());
/* Determine size to use. */
const auto reduced_size = std::min<s64>(this->base_storage_size, util::AlignUp(offset + size, this->hash_target_block_size) - offset);
/* Operate on the base storage. */
return this->base_storage->OperateRange(dst, dst_size, op_id, offset, reduced_size, src, src_size);
}
}

View file

@ -0,0 +1,57 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere.hpp>
namespace ams::fssystem {
class HierarchicalSha256Storage : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(HierarchicalSha256Storage);
NON_MOVEABLE(HierarchicalSha256Storage);
public:
static constexpr s32 LayerCount = 3;
static constexpr size_t HashSize = crypto::Sha256Generator::HashSize;
private:
os::Mutex mutex;
IStorage *base_storage;
s64 base_storage_size;
char *hash_buffer;
size_t hash_buffer_size;
s32 hash_target_block_size;
s32 log_size_ratio;
public:
HierarchicalSha256Storage() : mutex(false) { /* ... */ }
Result Initialize(IStorage **base_storages, s32 layer_count, size_t htbs, void *hash_buf, size_t hash_buf_size);
virtual Result Read(s64 offset, void *buffer, size_t size) override;
virtual Result Write(s64 offset, const void *buffer, size_t size) override;
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override;
virtual Result GetSize(s64 *out) override {
return this->base_storage->GetSize(out);
}
virtual Result Flush() override {
return ResultSuccess();
}
virtual Result SetSize(s64 size) override {
return fs::ResultUnsupportedOperationInHierarchicalSha256StorageA();
}
};
}

View file

@ -0,0 +1,177 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
Result IndirectStorage::Initialize(IAllocator *allocator, fs::SubStorage table_storage) {
/* Read and verify the bucket tree header. */
BucketTree::Header header;
R_TRY(table_storage.Read(0, std::addressof(header), sizeof(header)));
R_TRY(header.Verify());
/* Determine extents. */
const auto node_storage_size = QueryNodeStorageSize(header.entry_count);
const auto entry_storage_size = QueryEntryStorageSize(header.entry_count);
const auto node_storage_offset = QueryHeaderStorageSize();
const auto entry_storage_offset = node_storage_offset + node_storage_size;
/* Initialize. */
return this->Initialize(allocator, fs::SubStorage(std::addressof(table_storage), node_storage_offset, node_storage_size), fs::SubStorage(std::addressof(table_storage), entry_storage_offset, entry_storage_size), header.entry_count);
}
void IndirectStorage::Finalize() {
if (this->IsInitialized()) {
this->table.Finalize();
for (auto i = 0; i < StorageCount; i++) {
this->data_storage[i] = fs::SubStorage();
}
}
}
Result IndirectStorage::GetEntryList(Entry *out_entries, s32 *out_entry_count, s32 entry_count, s64 offset, s64 size) {
/* Validate pre-conditions. */
AMS_ASSERT(offset >= 0);
AMS_ASSERT(size >= 0);
AMS_ASSERT(this->IsInitialized());
/* Clear the out count. */
R_UNLESS(out_entry_count != nullptr, fs::ResultNullptrArgument());
*out_entry_count = 0;
/* Succeed if there's no range. */
R_SUCCEED_IF(size == 0);
/* If we have an output array, we need it to be non-null. */
R_UNLESS(out_entries != nullptr || entry_count == 0, fs::ResultNullptrArgument());
/* Check that our range is valid. */
R_UNLESS(this->table.Includes(offset, size), fs::ResultOutOfRange());
/* Find the offset in our tree. */
BucketTree::Visitor visitor;
R_TRY(this->table.Find(std::addressof(visitor), offset));
{
const auto entry_offset = visitor.Get<Entry>()->GetVirtualOffset();
R_UNLESS(0 <= entry_offset && this->table.Includes(entry_offset), fs::ResultInvalidIndirectEntryOffset());
}
/* Prepare to loop over entries. */
const auto end_offset = offset + static_cast<s64>(size);
s32 count = 0;
auto cur_entry = *visitor.Get<Entry>();
while (cur_entry.GetVirtualOffset() < end_offset) {
/* Try to write the entry to the out list */
if (entry_count != 0) {
if (count >= entry_count) {
break;
}
std::memcpy(out_entries + count, std::addressof(cur_entry), sizeof(Entry));
}
count++;
/* Advance. */
if (visitor.CanMoveNext()) {
R_TRY(visitor.MoveNext());
cur_entry = *visitor.Get<Entry>();
} else {
break;
}
}
/* Write the output count. */
*out_entry_count = count;
return ResultSuccess();
}
Result IndirectStorage::Read(s64 offset, void *buffer, size_t size) {
/* Validate pre-conditions. */
AMS_ASSERT(offset >= 0);
AMS_ASSERT(this->IsInitialized());
/* Succeed if there's nothing to read. */
R_SUCCEED_IF(size == 0);
/* Ensure that we have a buffer to read to. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
R_TRY(this->OperatePerEntry<true>(offset, size, [=](fs::IStorage *storage, s64 data_offset, s64 cur_offset, s64 cur_size) -> Result {
R_TRY(storage->Read(data_offset, reinterpret_cast<u8 *>(buffer) + (cur_offset - offset), static_cast<size_t>(cur_size)));
return ResultSuccess();
}));
return ResultSuccess();
}
Result IndirectStorage::OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) {
switch (op_id) {
case fs::OperationId::InvalidateCache:
{
if (size > 0) {
/* Validate arguments. */
R_UNLESS(this->table.Includes(offset, size), fs::ResultOutOfRange());
if (!this->table.IsEmpty()) {
/* Invalidate our table's cache. */
R_TRY(this->table.InvalidateCache());
/* Operate on our entries. */
R_TRY(this->OperatePerEntry<false>(offset, size, [=](fs::IStorage *storage, s64 data_offset, s64 cur_offset, s64 cur_size) -> Result {
R_TRY(storage->OperateRange(dst, dst_size, op_id, data_offset, cur_size, src, src_size));
return ResultSuccess();
}));
}
return ResultSuccess();
}
return ResultSuccess();
}
case fs::OperationId::QueryRange:
{
/* Validate that we have an output range info. */
R_UNLESS(dst != nullptr, fs::ResultNullptrArgument());
R_UNLESS(dst_size == sizeof(fs::QueryRangeInfo), fs::ResultInvalidSize());
if (size > 0) {
/* Validate arguments. */
R_UNLESS(this->table.Includes(offset, size), fs::ResultOutOfRange());
if (!this->table.IsEmpty()) {
/* Create a new info. */
fs::QueryRangeInfo merged_info;
merged_info.Clear();
/* Operate on our entries. */
R_TRY(this->OperatePerEntry<false>(offset, size, [=, &merged_info](fs::IStorage *storage, s64 data_offset, s64 cur_offset, s64 cur_size) -> Result {
fs::QueryRangeInfo cur_info;
R_TRY(storage->OperateRange(std::addressof(cur_info), sizeof(cur_info), op_id, data_offset, cur_size, src, src_size));
merged_info.Merge(cur_info);
return ResultSuccess();
}));
/* Write the merged info. */
*reinterpret_cast<fs::QueryRangeInfo *>(dst) = merged_info;
}
}
return ResultSuccess();
}
default:
return fs::ResultUnsupportedOperationInIndirectStorageC();
}
return ResultSuccess();
}
}

View file

@ -0,0 +1,45 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
Result IntegrityRomFsStorage::Initialize(save::HierarchicalIntegrityVerificationInformation level_hash_info, Hash master_hash, save::HierarchicalIntegrityVerificationStorage::HierarchicalStorageInformation storage_info, IBufferManager *bm) {
/* Validate preconditions. */
AMS_ASSERT(bm != nullptr);
/* Set master hash. */
this->master_hash = master_hash;
this->master_hash_storage = std::make_unique<fs::MemoryStorage>(std::addressof(this->master_hash), sizeof(Hash));
R_UNLESS(this->master_hash_storage != nullptr, fs::ResultAllocationFailureInIntegrityRomFsStorageA());
/* Set the master hash storage. */
storage_info[0] = fs::SubStorage(this->master_hash_storage.get(), 0, sizeof(Hash));
/* Set buffers. */
for (size_t i = 0; i < util::size(this->buffers.buffers); ++i) {
this->buffers.buffers[i] = bm;
}
/* Initialize our integrity storage. */
return this->integrity_storage.Initialize(level_hash_info, storage_info, std::addressof(this->buffers), std::addressof(this->mutex), fs::StorageType_RomFs);
}
void IntegrityRomFsStorage::Finalize() {
this->integrity_storage.Finalize();
}
}

View file

@ -0,0 +1,133 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere.hpp>
namespace ams::fssystem {
class KeySlotCacheAccessor : public ::ams::fs::impl::Newable {
NON_COPYABLE(KeySlotCacheAccessor);
NON_MOVEABLE(KeySlotCacheAccessor);
private:
std::unique_lock<os::Mutex> lk;
const s32 slot_index;
public:
KeySlotCacheAccessor(s32 idx, std::unique_lock<os::Mutex> &&l) : lk(std::move(l)), slot_index(idx) { /* ... */ }
s32 GetKeySlotIndex() const { return this->slot_index; }
};
class KeySlotCacheEntry : public util::IntrusiveListBaseNode<KeySlotCacheEntry> {
NON_COPYABLE(KeySlotCacheEntry);
NON_MOVEABLE(KeySlotCacheEntry);
public:
static constexpr size_t KeySize = crypto::AesDecryptor128::KeySize;
private:
const s32 slot_index;
u8 key1[KeySize];
s32 key2;
public:
explicit KeySlotCacheEntry(s32 idx) : slot_index(idx), key2(-1) {
std::memset(this->key1, 0, sizeof(this->key1));
}
bool Contains(const void *key, size_t key_size, s32 key2) const {
AMS_ASSERT(key_size == KeySize);
return key2 == this->key2 && std::memcmp(this->key1, key, KeySize) == 0;
}
s32 GetKeySlotIndex() const { return this->slot_index; }
void SetKey(const void *key, size_t key_size, s32 key2) {
AMS_ASSERT(key_size == KeySize);
std::memcpy(this->key1, key, key_size);
this->key2 = key2;
}
};
class KeySlotCache {
NON_COPYABLE(KeySlotCache);
NON_MOVEABLE(KeySlotCache);
private:
using KeySlotCacheEntryList = util::IntrusiveListBaseTraits<KeySlotCacheEntry>::ListType;
private:
os::Mutex mutex;
KeySlotCacheEntryList high_priority_mru_list;
KeySlotCacheEntryList low_priority_mru_list;
public:
constexpr KeySlotCache() : mutex(false), high_priority_mru_list(), low_priority_mru_list() { /* ... */ }
Result AllocateHighPriority(std::unique_ptr<KeySlotCacheAccessor> *out, const void *key, size_t key_size, s32 key2) {
return this->AllocateFromLru(out, this->high_priority_mru_list, key, key_size, key2);
}
Result AllocateLowPriority(std::unique_ptr<KeySlotCacheAccessor> *out, const void *key, size_t key_size, s32 key2) {
return this->AllocateFromLru(out, this->high_priority_mru_list, key, key_size, key2);
}
Result Find(std::unique_ptr<KeySlotCacheAccessor> *out, const void *key, size_t key_size, s32 key2) {
std::unique_lock lk(this->mutex);
KeySlotCacheEntryList *lists[2] = { std::addressof(this->high_priority_mru_list), std::addressof(this->low_priority_mru_list) };
for (auto list : lists) {
for (auto it = list->begin(); it != list->end(); ++it) {
if (it->Contains(key, key_size, key2)) {
std::unique_ptr accessor = std::make_unique<KeySlotCacheAccessor>(it->GetKeySlotIndex(), std::move(lk));
R_UNLESS(accessor != nullptr, fs::ResultAllocationFailure());
*out = std::move(accessor);
this->UpdateMru(list, it);
return ResultSuccess();
}
}
}
return fs::ResultTargetNotFound();
}
void AddEntry(KeySlotCacheEntry *entry) {
std::unique_lock lk(this->mutex);
this->low_priority_mru_list.push_front(*entry);
}
private:
Result AllocateFromLru(std::unique_ptr<KeySlotCacheAccessor> *out, KeySlotCacheEntryList &dst_list, const void *key, size_t key_size, s32 key2) {
std::unique_lock lk(this->mutex);
KeySlotCacheEntryList &src_list = this->low_priority_mru_list.empty() ? this->high_priority_mru_list : this->low_priority_mru_list;
AMS_ASSERT(!src_list.empty());
auto it = src_list.rbegin();
std::unique_ptr accessor = std::make_unique<KeySlotCacheAccessor>(it->GetKeySlotIndex(), std::move(lk));
*out = std::move(accessor);
it->SetKey(key, key_size, key2);
auto *entry = std::addressof(*it);
src_list.pop_back();
dst_list.push_front(*entry);
return ResultSuccess();
}
void UpdateMru(KeySlotCacheEntryList *list, KeySlotCacheEntryList::iterator it) {
auto *entry = std::addressof(*it);
list->erase(it);
list->push_front(*entry);
}
};
}

View file

@ -0,0 +1,89 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere.hpp>
namespace ams::fssystem {
template<typename Key, typename Value>
class LruListCache {
NON_COPYABLE(LruListCache);
NON_MOVEABLE(LruListCache);
public:
class Node : public ::ams::fs::impl::Newable {
NON_COPYABLE(Node);
NON_MOVEABLE(Node);
public:
Key key;
Value value;
util::IntrusiveListNode mru_list_node;
public:
explicit Node(const Value &value) : value(value) { /* ... */ }
};
private:
using MruList = typename util::IntrusiveListMemberTraits<&Node::mru_list_node>::ListType;
private:
MruList mru_list;
public:
constexpr LruListCache() : mru_list() { /* ... */ }
bool FindValueAndUpdateMru(Value *out, const Key &key) {
for (auto it = this->mru_list.begin(); it != this->mru_list.end(); ++it) {
if (it->key == key) {
*out = it->value;
this->mru_list.erase(it);
this->mru_list.push_front(*it);
return true;
}
}
return false;
}
std::unique_ptr<Node> PopLruNode() {
AMS_ABORT_UNLESS(!this->mru_list.empty());
Node *lru = std::addressof(*this->mru_list.rbegin());
this->mru_list.pop_back();
return std::unique_ptr<Node>(lru);
}
void PushMruNode(std::unique_ptr<Node> &&node, const Key &key) {
node->key = key;
this->mru_list.push_front(*node);
node.release();
}
void DeleteAllNodes() {
while (!this->mru_list.empty()) {
Node *lru = std::addressof(*this->mru_list.rbegin());
this->mru_list.erase(this->mru_list.iterator_to(*lru));
delete lru;
}
}
size_t GetSize() const {
return this->mru_list.size();
}
bool IsEmpty() const {
return this->mru_list.empty();
}
};
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,31 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
u8 NcaHeader::GetProperKeyGeneration() const {
return std::max(this->key_generation, this->key_generation_2);
}
bool NcaPatchInfo::HasIndirectTable() const {
return this->indirect_size != 0;
}
bool NcaPatchInfo::HasAesCtrExTable() const {
return this->aes_ctr_ex_size != 0;
}
}

View file

@ -0,0 +1,434 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
namespace {
constexpr inline u32 SdkAddonVersionMin = 0x000B0000;
constexpr Result CheckNcaMagic(u32 magic) {
/* Verify the magic is not a deprecated one. */
R_UNLESS(magic != NcaHeader::Magic0, fs::ResultUnsupportedSdkVersion());
R_UNLESS(magic != NcaHeader::Magic1, fs::ResultUnsupportedSdkVersion());
R_UNLESS(magic != NcaHeader::Magic2, fs::ResultUnsupportedSdkVersion());
/* Verify the magic is the current one. */
R_UNLESS(magic == NcaHeader::Magic3, fs::ResultInvalidNcaSignature());
return ResultSuccess();
}
}
NcaReader::NcaReader() : shared_base_storage(), header_storage(), body_storage(), decrypt_aes_ctr(), decrypt_aes_ctr_external(), is_software_aes_prioritized(false), header_encryption_type(NcaHeader::EncryptionType::Auto) {
std::memset(std::addressof(this->header), 0, sizeof(this->header));
std::memset(std::addressof(this->decryption_keys), 0, sizeof(this->decryption_keys));
std::memset(std::addressof(this->external_decryption_key), 0, sizeof(this->external_decryption_key));
}
NcaReader::~NcaReader() {
/* ... */
}
Result NcaReader::Initialize(std::shared_ptr<fs::IStorage> base_storage, const NcaCryptoConfiguration &crypto_cfg) {
this->shared_base_storage = base_storage;
return this->Initialize(this->shared_base_storage.get(), crypto_cfg);
}
Result NcaReader::Initialize(fs::IStorage *base_storage, const NcaCryptoConfiguration &crypto_cfg) {
/* Validate preconditions. */
AMS_ASSERT(base_storage != nullptr);
AMS_ASSERT(this->body_storage == nullptr);
R_UNLESS(crypto_cfg.generate_key != nullptr, fs::ResultInvalidArgument());
/* Generate keys for header. */
u8 header_decryption_keys[NcaCryptoConfiguration::HeaderEncryptionKeyCount][NcaCryptoConfiguration::Aes128KeySize];
for (size_t i = 0; i < NcaCryptoConfiguration::HeaderEncryptionKeyCount; i++) {
crypto_cfg.generate_key(header_decryption_keys[i], AesXtsStorage::KeySize, crypto_cfg.header_encrypted_encryption_keys[i], AesXtsStorage::KeySize, static_cast<s32>(KeyType::NcaHeaderKey), crypto_cfg);
}
/* Create the header storage. */
const u8 header_iv[AesXtsStorage::IvSize] = {};
std::unique_ptr<fs::IStorage> work_header_storage = std::make_unique<AesXtsStorage>(base_storage, header_decryption_keys[0], header_decryption_keys[1], AesXtsStorage::KeySize, header_iv, AesXtsStorage::IvSize, NcaHeader::XtsBlockSize);
R_UNLESS(work_header_storage != nullptr, fs::ResultAllocationFailureInNcaReaderA());
/* Read the header. */
R_TRY(work_header_storage->Read(0, std::addressof(this->header), sizeof(this->header)));
/* Validate the magic. */
if (Result magic_result = CheckNcaMagic(this->header.magic); R_FAILED(magic_result)) {
/* If we're not allowed to use plaintext headers, stop here. */
R_UNLESS(crypto_cfg.is_plaintext_header_available, magic_result);
/* Try to use a plaintext header. */
R_TRY(base_storage->Read(0, std::addressof(this->header), sizeof(this->header)));
R_UNLESS(R_SUCCEEDED(CheckNcaMagic(this->header.magic)), magic_result);
/* Configure to use the plaintext header. */
s64 base_storage_size;
R_TRY(base_storage->GetSize(std::addressof(base_storage_size)));
work_header_storage.reset(new fs::SubStorage(base_storage, 0, base_storage_size));
R_UNLESS(work_header_storage != nullptr, fs::ResultAllocationFailureInNcaReaderA());
this->header_encryption_type = NcaHeader::EncryptionType::None;
}
/* Validate the fixed key signature. */
R_UNLESS(this->header.header1_signature_key_generation <= NcaCryptoConfiguration::Header1SignatureKeyGenerationMax, fs::ResultInvalidNcaHeader1SignatureKeyGeneration());
const u8 *header_1_sign_key_modulus = crypto_cfg.header_1_sign_key_moduli[this->header.header1_signature_key_generation];
AMS_ABORT_UNLESS(header_1_sign_key_modulus != nullptr);
{
const u8 *sig = this->header.header_sign_1;
const size_t sig_size = NcaHeader::HeaderSignSize;
const u8 *mod = header_1_sign_key_modulus;
const size_t mod_size = NcaCryptoConfiguration::Rsa2048KeyModulusSize;
const u8 *exp = crypto_cfg.header_1_sign_key_public_exponent;
const size_t exp_size = NcaCryptoConfiguration::Rsa2048KeyPublicExponentSize;
const u8 *msg = static_cast<const u8 *>(static_cast<const void *>(std::addressof(this->header.magic)));
const size_t msg_size = NcaHeader::Size - NcaHeader::HeaderSignSize * NcaHeader::HeaderSignCount;
const bool is_signature_valid = crypto::VerifyRsa2048PssSha256(sig, sig_size, mod, mod_size, exp, exp_size, msg, msg_size);
R_UNLESS(is_signature_valid, fs::ResultNcaHeaderSignature1VerificationFailed());
}
/* Validate the sdk version. */
R_UNLESS(this->header.sdk_addon_version >= SdkAddonVersionMin, fs::ResultUnsupportedSdkVersion());
/* Validate the key index. */
R_UNLESS(this->header.key_index < NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount, fs::ResultInvalidNcaKeyIndex());
/* Check if we have a rights id. */
constexpr const u8 ZeroRightsId[NcaHeader::RightsIdSize] = {};
if (crypto::IsSameBytes(ZeroRightsId, this->header.rights_id, NcaHeader::RightsIdSize)) {
/* If we do, then we don't have an external key, so we need to generate decryption keys. */
crypto_cfg.generate_key(this->decryption_keys[NcaHeader::DecryptionKey_AesCtr], crypto::AesDecryptor128::KeySize, this->header.encrypted_key_area + NcaHeader::DecryptionKey_AesCtr * crypto::AesDecryptor128::KeySize, crypto::AesDecryptor128::KeySize, GetKeyTypeValue(this->header.key_index, this->header.GetProperKeyGeneration()), crypto_cfg);
/* Copy the hardware speed emulation key. */
std::memcpy(this->decryption_keys[NcaHeader::DecryptionKey_AesCtrHw], this->header.encrypted_key_area + NcaHeader::DecryptionKey_AesCtrHw * crypto::AesDecryptor128::KeySize, crypto::AesDecryptor128::KeySize);
}
/* Clear the external decryption key. */
std::memset(this->external_decryption_key, 0, sizeof(this->external_decryption_key));
/* Set our decryptor functions. */
this->decrypt_aes_ctr = crypto_cfg.decrypt_aes_ctr;
this->decrypt_aes_ctr_external = crypto_cfg.decrypt_aes_ctr_external;
/* Set our storages. */
this->header_storage = std::move(work_header_storage);
this->body_storage = base_storage;
return ResultSuccess();
}
fs::IStorage *NcaReader::GetBodyStorage() {
return this->body_storage;
}
u32 NcaReader::GetMagic() const {
AMS_ASSERT(this->body_storage != nullptr);
return this->header.magic;
}
NcaHeader::DistributionType NcaReader::GetDistributionType() const {
AMS_ASSERT(this->body_storage != nullptr);
return this->header.distribution_type;
}
NcaHeader::ContentType NcaReader::GetContentType() const {
AMS_ASSERT(this->body_storage != nullptr);
return this->header.content_type;
}
u8 NcaReader::GetKeyGeneration() const {
AMS_ASSERT(this->body_storage != nullptr);
return this->header.GetProperKeyGeneration();
}
u8 NcaReader::GetKeyIndex() const {
AMS_ASSERT(this->body_storage != nullptr);
return this->header.key_index;
}
u64 NcaReader::GetContentSize() const {
AMS_ASSERT(this->body_storage != nullptr);
return this->header.content_size;
}
u64 NcaReader::GetProgramId() const {
AMS_ASSERT(this->body_storage != nullptr);
return this->header.program_id;
}
u32 NcaReader::GetContentIndex() const {
AMS_ASSERT(this->body_storage != nullptr);
return this->header.content_index;
}
u32 NcaReader::GetSdkAddonVersion() const {
AMS_ASSERT(this->body_storage != nullptr);
return this->header.sdk_addon_version;
}
void NcaReader::GetRightsId(u8 *dst, size_t dst_size) const {
AMS_ASSERT(dst != nullptr);
AMS_ASSERT(dst_size >= NcaHeader::RightsIdSize);
std::memcpy(dst, this->header.rights_id, NcaHeader::RightsIdSize);
}
bool NcaReader::HasFsInfo(s32 index) const {
AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return this->header.fs_info[index].start_sector != 0 || this->header.fs_info[index].end_sector != 0;
}
s32 NcaReader::GetFsCount() const {
AMS_ASSERT(this->body_storage != nullptr);
for (s32 i = 0; i < NcaHeader::FsCountMax; i++) {
if (!this->HasFsInfo(i)) {
return i;
}
}
return NcaHeader::FsCountMax;
}
const Hash &NcaReader::GetFsHeaderHash(s32 index) const {
AMS_ASSERT(this->body_storage != nullptr);
AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return this->header.fs_header_hash[index];
}
void NcaReader::GetFsHeaderHash(Hash *dst, s32 index) const {
AMS_ASSERT(this->body_storage != nullptr);
AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax);
AMS_ASSERT(dst != nullptr);
std::memcpy(dst, std::addressof(this->header.fs_header_hash[index]), sizeof(*dst));
}
void NcaReader::GetFsInfo(NcaHeader::FsInfo *dst, s32 index) const {
AMS_ASSERT(this->body_storage != nullptr);
AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax);
AMS_ASSERT(dst != nullptr);
std::memcpy(dst, std::addressof(this->header.fs_info[index]), sizeof(*dst));
}
u64 NcaReader::GetFsOffset(s32 index) const {
AMS_ASSERT(this->body_storage != nullptr);
AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return NcaHeader::SectorToByte(this->header.fs_info[index].start_sector);
}
u64 NcaReader::GetFsEndOffset(s32 index) const {
AMS_ASSERT(this->body_storage != nullptr);
AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return NcaHeader::SectorToByte(this->header.fs_info[index].end_sector);
}
u64 NcaReader::GetFsSize(s32 index) const {
AMS_ASSERT(this->body_storage != nullptr);
AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return NcaHeader::SectorToByte(this->header.fs_info[index].end_sector - this->header.fs_info[index].start_sector);
}
void NcaReader::GetEncryptedKey(void *dst, size_t size) const {
AMS_ASSERT(this->body_storage != nullptr);
AMS_ASSERT(dst != nullptr);
AMS_ASSERT(size >= NcaHeader::EncryptedKeyAreaSize);
std::memcpy(dst, this->header.encrypted_key_area, NcaHeader::EncryptedKeyAreaSize);
}
const void *NcaReader::GetDecryptionKey(s32 index) const {
AMS_ASSERT(this->body_storage != nullptr);
AMS_ASSERT(0 <= index && index < NcaHeader::DecryptionKey_Count);
return this->decryption_keys[index];
}
bool NcaReader::HasValidInternalKey() const {
constexpr const u8 ZeroKey[crypto::AesDecryptor128::KeySize] = {};
for (s32 i = 0; i < NcaHeader::DecryptionKey_Count; i++) {
if (!crypto::IsSameBytes(ZeroKey, this->header.encrypted_key_area + i * crypto::AesDecryptor128::KeySize, crypto::AesDecryptor128::KeySize)) {
return true;
}
}
return false;
}
bool NcaReader::HasInternalDecryptionKeyForAesHardwareSpeedEmulation() const {
constexpr const u8 ZeroKey[crypto::AesDecryptor128::KeySize] = {};
return !crypto::IsSameBytes(ZeroKey, this->GetDecryptionKey(NcaHeader::DecryptionKey_AesCtrHw), crypto::AesDecryptor128::KeySize);
}
bool NcaReader::IsSoftwareAesPrioritized() const {
return this->is_software_aes_prioritized;
}
void NcaReader::PrioritizeSoftwareAes() {
this->is_software_aes_prioritized = true;
}
bool NcaReader::HasExternalDecryptionKey() const {
constexpr const u8 ZeroKey[crypto::AesDecryptor128::KeySize] = {};
return !crypto::IsSameBytes(ZeroKey, this->GetExternalDecryptionKey(), crypto::AesDecryptor128::KeySize);
}
const void *NcaReader::GetExternalDecryptionKey() const {
return this->external_decryption_key;
}
void NcaReader::SetExternalDecryptionKey(const void *src, size_t size) {
AMS_ASSERT(src != nullptr);
AMS_ASSERT(size == sizeof(this->external_decryption_key));
std::memcpy(this->external_decryption_key, src, sizeof(this->external_decryption_key));
}
void NcaReader::GetRawData(void *dst, size_t dst_size) const {
AMS_ASSERT(this->body_storage != nullptr);
AMS_ASSERT(dst != nullptr);
AMS_ASSERT(dst_size >= sizeof(NcaHeader));
std::memcpy(dst, std::addressof(this->header), sizeof(NcaHeader));
}
DecryptAesCtrFunction NcaReader::GetExternalDecryptAesCtrFunction() const {
AMS_ASSERT(this->decrypt_aes_ctr != nullptr);
return this->decrypt_aes_ctr;
}
DecryptAesCtrFunction NcaReader::GetExternalDecryptAesCtrFunctionForExternalKey() const {
AMS_ASSERT(this->decrypt_aes_ctr_external != nullptr);
return this->decrypt_aes_ctr_external;
}
NcaHeader::EncryptionType NcaReader::GetEncryptionType() const {
return this->header_encryption_type;
}
Result NcaReader::ReadHeader(NcaFsHeader *dst, s32 index) const {
AMS_ASSERT(dst != nullptr);
AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax);
const s64 offset = sizeof(NcaHeader) + sizeof(NcaFsHeader) * index;
return this->header_storage->Read(offset, dst, sizeof(NcaFsHeader));
}
Result NcaReader::VerifyHeaderSign2(const void *mod, size_t mod_size) {
AMS_ASSERT(this->body_storage != nullptr);
constexpr const u8 HeaderSign2KeyPublicExponent[] = { 0x01, 0x00, 0x01 };
const u8 *sig = this->header.header_sign_2;
const size_t sig_size = NcaHeader::HeaderSignSize;
const u8 *exp = HeaderSign2KeyPublicExponent;
const size_t exp_size = sizeof(HeaderSign2KeyPublicExponent);
const u8 *msg = static_cast<const u8 *>(static_cast<const void *>(std::addressof(this->header.magic)));
const size_t msg_size = NcaHeader::Size - NcaHeader::HeaderSignSize * NcaHeader::HeaderSignCount;
const bool is_signature_valid = crypto::VerifyRsa2048PssSha256(sig, sig_size, mod, mod_size, exp, exp_size, msg, msg_size);
R_UNLESS(is_signature_valid, fs::ResultNcaHeaderSignature2VerificationFailed());
return ResultSuccess();
}
Result NcaFsHeaderReader::Initialize(const NcaReader &reader, s32 index) {
/* Reset ourselves to uninitialized. */
this->fs_index = -1;
/* Read the header. */
R_TRY(reader.ReadHeader(std::addressof(this->data), index));
/* Generate the hash. */
Hash hash;
crypto::GenerateSha256Hash(std::addressof(hash), sizeof(hash), std::addressof(this->data), sizeof(NcaFsHeader));
/* Validate the hash. */
R_UNLESS(crypto::IsSameBytes(std::addressof(reader.GetFsHeaderHash(index)), std::addressof(hash), sizeof(Hash)), fs::ResultNcaFsHeaderHashVerificationFailed());
/* Set our index. */
this->fs_index = index;
return ResultSuccess();
}
void NcaFsHeaderReader::GetRawData(void *dst, size_t dst_size) const {
AMS_ASSERT(this->IsInitialized());
AMS_ASSERT(dst != nullptr);
AMS_ASSERT(dst_size >= sizeof(NcaFsHeader));
std::memcpy(dst, std::addressof(this->data), sizeof(NcaFsHeader));
}
NcaFsHeader::HashData &NcaFsHeaderReader::GetHashData() {
AMS_ASSERT(this->IsInitialized());
return this->data.hash_data;
}
const NcaFsHeader::HashData &NcaFsHeaderReader::GetHashData() const {
AMS_ASSERT(this->IsInitialized());
return this->data.hash_data;
}
u16 NcaFsHeaderReader::GetVersion() const {
AMS_ASSERT(this->IsInitialized());
return this->data.version;
}
s32 NcaFsHeaderReader::GetFsIndex() const {
AMS_ASSERT(this->IsInitialized());
return this->fs_index;
}
NcaFsHeader::FsType NcaFsHeaderReader::GetFsType() const {
AMS_ASSERT(this->IsInitialized());
return this->data.fs_type;
}
NcaFsHeader::HashType NcaFsHeaderReader::GetHashType() const {
AMS_ASSERT(this->IsInitialized());
return this->data.hash_type;
}
NcaFsHeader::EncryptionType NcaFsHeaderReader::GetEncryptionType() const {
AMS_ASSERT(this->IsInitialized());
return this->data.encryption_type;
}
NcaPatchInfo &NcaFsHeaderReader::GetPatchInfo() {
AMS_ASSERT(this->IsInitialized());
return this->data.patch_info;
}
const NcaPatchInfo &NcaFsHeaderReader::GetPatchInfo() const {
AMS_ASSERT(this->IsInitialized());
return this->data.patch_info;
}
const NcaAesCtrUpperIv NcaFsHeaderReader::GetAesCtrUpperIv() const {
AMS_ASSERT(this->IsInitialized());
return this->data.aes_ctr_upper_iv;
}
bool NcaFsHeaderReader::ExistsSparseLayer() const {
AMS_ASSERT(this->IsInitialized());
return this->data.sparse_info.generation != 0;
}
NcaSparseInfo &NcaFsHeaderReader::GetSparseInfo() {
AMS_ASSERT(this->IsInitialized());
return this->data.sparse_info;
}
const NcaSparseInfo &NcaFsHeaderReader::GetSparseInfo() const {
AMS_ASSERT(this->IsInitialized());
return this->data.sparse_info;
}
}

View file

@ -0,0 +1,139 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere.hpp>
#include "fssystem_lru_list_cache.hpp"
namespace ams::fssystem {
class ReadOnlyBlockCacheStorage : public ::ams::fs::IStorage, public ::ams::fs::impl::Newable {
NON_COPYABLE(ReadOnlyBlockCacheStorage);
NON_MOVEABLE(ReadOnlyBlockCacheStorage);
private:
using BlockCache = LruListCache<s64, char *>;
private:
os::Mutex mutex;
BlockCache block_cache;
fs::IStorage * const base_storage;
s32 block_size;
public:
ReadOnlyBlockCacheStorage(IStorage *bs, s32 bsz, char *buf, size_t buf_size, s32 cache_block_count) : mutex(false), base_storage(bs), block_size(bsz) {
/* Validate preconditions. */
AMS_ASSERT(buf_size >= static_cast<size_t>(this->block_size));
AMS_ASSERT(util::IsPowerOfTwo(this->block_size));
AMS_ASSERT(cache_block_count > 0);
AMS_ASSERT(buf_size >= static_cast<size_t>(this->block_size * cache_block_count));
/* Create a node for each cache block. */
for (auto i = 0; i < cache_block_count; i++) {
std::unique_ptr node = std::make_unique<BlockCache::Node>(buf + this->block_size * i);
AMS_ASSERT(node != nullptr);
if (node != nullptr) {
this->block_cache.PushMruNode(std::move(node), -1);
}
}
}
~ReadOnlyBlockCacheStorage() {
this->block_cache.DeleteAllNodes();
}
virtual Result Read(s64 offset, void *buffer, size_t size) override {
/* Validate preconditions. */
AMS_ASSERT(util::IsAligned(offset, this->block_size));
AMS_ASSERT(util::IsAligned(size, this->block_size));
if (size == static_cast<size_t>(this->block_size)) {
char *cached_buffer = nullptr;
/* Try to find a cached copy of the data. */
{
std::scoped_lock lk(this->mutex);
bool found = this->block_cache.FindValueAndUpdateMru(std::addressof(cached_buffer), offset / this->block_size);
if (found) {
std::memcpy(buffer, cached_buffer, size);
return ResultSuccess();
}
}
/* We failed to get a cache hit, so read in the data. */
R_TRY(this->base_storage->Read(offset, buffer, size));
/* Add the block to the cache. */
{
std::scoped_lock lk(this->mutex);
auto lru = this->block_cache.PopLruNode();
std::memcpy(lru->value, buffer, this->block_size);
this->block_cache.PushMruNode(std::move(lru), offset / this->block_size);
}
return ResultSuccess();
} else {
return this->base_storage->Read(offset, buffer, size);
}
}
virtual Result OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override {
/* Validate preconditions. */
AMS_ASSERT(util::IsAligned(offset, this->block_size));
AMS_ASSERT(util::IsAligned(size, this->block_size));
/* If invalidating cache, invalidate our blocks. */
if (op_id == fs::OperationId::InvalidateCache) {
R_UNLESS(offset >= 0, fs::ResultInvalidOffset());
std::scoped_lock lk(this->mutex);
const size_t cache_block_count = this->block_cache.GetSize();
BlockCache valid_cache;
for (size_t count = 0; count < cache_block_count; ++count) {
auto lru = this->block_cache.PopLruNode();
if (offset <= lru->key && lru->key < offset + size) {
this->block_cache.PushMruNode(std::move(lru), -1);
} else {
valid_cache.PushMruNode(std::move(lru), lru->key);
}
}
while (!valid_cache.IsEmpty()) {
auto lru = valid_cache.PopLruNode();
this->block_cache.PushMruNode(std::move(lru), lru->key);
}
}
/* Operate on the base storage. */
return this->base_storage->OperateRange(dst, dst_size, op_id, offset, size, src, src_size);
}
virtual Result GetSize(s64 *out) override {
return this->base_storage->GetSize(out);
}
virtual Result Flush() override {
return ResultSuccess();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return fs::ResultUnsupportedOperationInReadOnlyBlockCacheStorageA();
}
virtual Result SetSize(s64 size) override {
return fs::ResultUnsupportedOperationInReadOnlyBlockCacheStorageB();
}
};
}

View file

@ -0,0 +1,44 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
Result SparseStorage::Read(s64 offset, void *buffer, size_t size) {
/* Validate preconditions. */
AMS_ASSERT(offset >= 0);
AMS_ASSERT(this->IsInitialized());
/* Allow zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
if (this->GetEntryTable().IsEmpty()) {
R_UNLESS(this->GetEntryTable().Includes(offset, size), fs::ResultOutOfRange());
std::memset(buffer, 0, size);
} else {
R_TRY(this->OperatePerEntry<false>(offset, size, [=](fs::IStorage *storage, s64 data_offset, s64 cur_offset, s64 cur_size) -> Result {
R_TRY(storage->Read(data_offset, reinterpret_cast<u8 *>(buffer) + (cur_offset - offset), static_cast<size_t>(cur_size)));
return ResultSuccess();
}));
}
return ResultSuccess();
}
}

View file

@ -0,0 +1,34 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
namespace {
std::atomic<::ams::fs::SpeedEmulationMode> g_speed_emulation_mode = ::ams::fs::SpeedEmulationMode::None;
}
void SpeedEmulationConfiguration::SetSpeedEmulationMode(::ams::fs::SpeedEmulationMode mode) {
g_speed_emulation_mode = mode;
}
::ams::fs::SpeedEmulationMode SpeedEmulationConfiguration::GetSpeedEmulationMode() {
return g_speed_emulation_mode;
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,352 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem::save {
namespace {
constexpr inline u32 IntegrityVerificationStorageMagic = util::FourCC<'I','V','F','C'>::Code;
constexpr inline u32 IntegrityVerificationStorageVersion = 0x00020000;
constexpr inline u32 IntegrityVerificationStorageVersionMask = 0xFFFF0000;
constexpr inline auto MaxSaveDataFsDataCacheEntryCount = 32;
constexpr inline auto MaxSaveDataFsHashCacheEntryCount = 4;
constexpr inline auto MaxRomFsDataCacheEntryCount = 24;
constexpr inline auto MaxRomFsHashCacheEntryCount = 8;
constexpr inline auto AccessCountMax = 5;
constexpr inline auto AccessTimeout = TimeSpan::FromMilliSeconds(10);
os::Semaphore g_read_semaphore(AccessCountMax, AccessCountMax);
os::Semaphore g_write_semaphore(AccessCountMax, AccessCountMax);
constexpr inline const char MasterKey[] = "HierarchicalIntegrityVerificationStorage::Master";
constexpr inline const char L1Key[] = "HierarchicalIntegrityVerificationStorage::L1";
constexpr inline const char L2Key[] = "HierarchicalIntegrityVerificationStorage::L2";
constexpr inline const char L3Key[] = "HierarchicalIntegrityVerificationStorage::L3";
constexpr inline const char L4Key[] = "HierarchicalIntegrityVerificationStorage::L4";
constexpr inline const char L5Key[] = "HierarchicalIntegrityVerificationStorage::L5";
constexpr inline const struct {
const char *key;
size_t size;
} KeyArray[] = {
{ MasterKey, sizeof(MasterKey) },
{ L1Key, sizeof(L1Key) },
{ L2Key, sizeof(L2Key) },
{ L3Key, sizeof(L3Key) },
{ L4Key, sizeof(L4Key) },
{ L5Key, sizeof(L5Key) },
};
}
/* Instantiate the global random generation function. */
HierarchicalIntegrityVerificationStorage::GenerateRandomFunction HierarchicalIntegrityVerificationStorage::s_generate_random = nullptr;
Result HierarchicalIntegrityVerificationStorageControlArea::QuerySize(HierarchicalIntegrityVerificationSizeSet *out, const InputParam &input_param, s32 layer_count, s64 data_size) {
/* Validate preconditions. */
AMS_ASSERT(out != nullptr);
AMS_ASSERT((static_cast<s32>(IntegrityMinLayerCount) <= layer_count) && (layer_count <= static_cast<s32>(IntegrityMaxLayerCount)));
for (s32 level = 0; level < (layer_count - 1); ++level) {
AMS_ASSERT(input_param.level_block_size[level] > 0);
AMS_ASSERT(IsPowerOfTwo(static_cast<s32>(input_param.level_block_size[level])));
}
/* Set the control size. */
out->control_size = sizeof(HierarchicalIntegrityVerificationMetaInformation);
/* Determine the level sizes. */
s64 level_size[IntegrityMaxLayerCount];
s32 level = layer_count - 1;
level_size[level] = util::AlignUp(data_size, input_param.level_block_size[level - 1]);
--level;
for (/* ... */; level > 0; --level) {
level_size[level] = util::AlignUp(level_size[level + 1] / input_param.level_block_size[level] * HashSize, input_param.level_block_size[level - 1]);
}
/* Determine the master size. */
level_size[0] = level_size[1] / input_param.level_block_size[0] * HashSize;
/* Set the master size. */
out->master_hash_size = level_size[0];
/* Set the level sizes. */
for (level = 1; level < layer_count - 1; ++level) {
out->layered_hash_sizes[level - 1] = level_size[level];
}
return ResultSuccess();
}
Result HierarchicalIntegrityVerificationStorageControlArea::Expand(fs::SubStorage meta_storage, const HierarchicalIntegrityVerificationMetaInformation &meta) {
/* Check the meta size. */
{
s64 meta_size = 0;
R_TRY(meta_storage.GetSize(std::addressof(meta_size)));
R_UNLESS(meta_size >= static_cast<s64>(sizeof(meta)), fs::ResultInvalidSize());
}
/* Validate both the previous and new metas. */
{
/* Read the previous meta. */
HierarchicalIntegrityVerificationMetaInformation prev_meta = {};
R_TRY(meta_storage.Read(0, std::addressof(prev_meta), sizeof(prev_meta)));
/* Validate both magics. */
R_UNLESS(prev_meta.magic == IntegrityVerificationStorageMagic, fs::ResultIncorrectIntegrityVerificationMagic());
R_UNLESS(prev_meta.magic == meta.magic, fs::ResultIncorrectIntegrityVerificationMagic());
/* Validate both versions. */
R_UNLESS(prev_meta.version == IntegrityVerificationStorageVersion, fs::ResultUnsupportedVersion());
R_UNLESS(prev_meta.version == meta.version, fs::ResultUnsupportedVersion());
}
/* Write the new meta. */
R_TRY(meta_storage.Write(0, std::addressof(meta), sizeof(meta)));
R_TRY(meta_storage.Flush());
return ResultSuccess();
}
Result HierarchicalIntegrityVerificationStorageControlArea::Initialize(fs::SubStorage meta_storage) {
/* Check the meta size. */
{
s64 meta_size = 0;
R_TRY(meta_storage.GetSize(std::addressof(meta_size)));
R_UNLESS(meta_size >= static_cast<s64>(sizeof(this->meta)), fs::ResultInvalidSize());
}
/* Set the storage and read the meta. */
this->storage = meta_storage;
R_TRY(this->storage.Read(0, std::addressof(this->meta), sizeof(this->meta)));
/* Validate the meta magic. */
R_UNLESS(this->meta.magic == IntegrityVerificationStorageMagic, fs::ResultIncorrectIntegrityVerificationMagic());
/* Validate the meta version. */
R_UNLESS((this->meta.version & IntegrityVerificationStorageVersionMask) == (IntegrityVerificationStorageVersion & IntegrityVerificationStorageVersionMask), fs::ResultUnsupportedVersion());
return ResultSuccess();
}
void HierarchicalIntegrityVerificationStorageControlArea::Finalize() {
this->storage = fs::SubStorage();
}
Result HierarchicalIntegrityVerificationStorage::Initialize(const HierarchicalIntegrityVerificationInformation &info, HierarchicalStorageInformation storage, FileSystemBufferManagerSet *bufs, os::Mutex *mtx, fs::StorageType storage_type) {
/* Validate preconditions. */
AMS_ASSERT(bufs != nullptr);
AMS_ASSERT(IntegrityMinLayerCount <= info.max_layers && info.max_layers <= IntegrityMaxLayerCount);
/* Set member variables. */
this->max_layers = info.max_layers;
this->buffers = bufs;
this->mutex = mtx;
/* Determine our cache counts. */
const auto max_data_cache_entry_count = (storage_type == fs::StorageType_SaveData) ? MaxSaveDataFsDataCacheEntryCount : MaxRomFsDataCacheEntryCount;
const auto max_hash_cache_entry_count = (storage_type == fs::StorageType_SaveData) ? MaxSaveDataFsHashCacheEntryCount : MaxRomFsHashCacheEntryCount;
/* Initialize the top level verification storage. */
{
fs::HashSalt mac;
crypto::GenerateHmacSha256Mac(mac.value, sizeof(mac), info.seed.value, sizeof(info.seed), KeyArray[0].key, KeyArray[0].size);
this->verify_storages[0].Initialize(storage[HierarchicalStorageInformation::MasterStorage], storage[HierarchicalStorageInformation::Layer1Storage], static_cast<s64>(1) << info.info[0].block_order, HashSize, this->buffers->buffers[this->max_layers - 2], mac, false, storage_type);
}
/* Ensure we don't leak state if further initialization goes wrong. */
auto top_verif_guard = SCOPE_GUARD {
this->verify_storages[0].Finalize();
this->data_size = -1;
this->buffers = nullptr;
this->mutex = nullptr;
};
/* Initialize the top level buffer storage. */
R_TRY(this->buffer_storages[0].Initialize(this->buffers->buffers[0], this->mutex, std::addressof(this->verify_storages[0]), info.info[0].size, static_cast<s64>(1) << info.info[0].block_order, max_hash_cache_entry_count, false, 0x10, false, storage_type));
auto top_buffer_guard = SCOPE_GUARD { this->buffer_storages[0].Finalize(); };
/* Prepare to initialize the level storages. */
s32 level = 0;
/* Ensure we don't leak state if further initialization goes wrong. */
auto level_guard = SCOPE_GUARD {
this->verify_storages[level + 1].Finalize();
for (/* ... */; level > 0; --level) {
this->buffer_storages[level].Finalize();
this->verify_storages[level].Finalize();
}
};
/* Initialize the level storages. */
for (/* ... */; level < this->max_layers - 3; ++level) {
/* Initialize the verification storage. */
{
fs::SubStorage buffer_storage(std::addressof(this->buffer_storages[level]), 0, info.info[level].size);
fs::HashSalt mac;
crypto::GenerateHmacSha256Mac(mac.value, sizeof(mac), info.seed.value, sizeof(info.seed), KeyArray[level + 1].key, KeyArray[level + 1].size);
this->verify_storages[level + 1].Initialize(buffer_storage, storage[level + 2], static_cast<s64>(1) << info.info[level + 1].block_order, static_cast<s64>(1) << info.info[level].block_order, this->buffers->buffers[this->max_layers - 2], mac, false, storage_type);
}
/* Initialize the buffer storage. */
R_TRY(this->buffer_storages[level + 1].Initialize(this->buffers->buffers[level + 1], this->mutex, std::addressof(this->verify_storages[level + 1]), info.info[level + 1].size, static_cast<s64>(1) << info.info[level + 1].block_order, max_hash_cache_entry_count, false, 0x11 + static_cast<s8>(level), false, storage_type));
}
/* Initialize the final level storage. */
{
/* Initialize the verification storage. */
{
fs::SubStorage buffer_storage(std::addressof(this->buffer_storages[level]), 0, info.info[level].size);
fs::HashSalt mac;
crypto::GenerateHmacSha256Mac(mac.value, sizeof(mac), info.seed.value, sizeof(info.seed), KeyArray[level + 1].key, KeyArray[level + 1].size);
this->verify_storages[level + 1].Initialize(buffer_storage, storage[level + 2], static_cast<s64>(1) << info.info[level + 1].block_order, static_cast<s64>(1) << info.info[level].block_order, this->buffers->buffers[this->max_layers - 2], mac, true, storage_type);
}
/* Initialize the buffer storage. */
R_TRY(this->buffer_storages[level + 1].Initialize(this->buffers->buffers[level + 1], this->mutex, std::addressof(this->verify_storages[level + 1]), info.info[level + 1].size, static_cast<s64>(1) << info.info[level + 1].block_order, max_data_cache_entry_count, true, 0x11 + static_cast<s8>(level), true, storage_type));
}
/* Set the data size. */
this->data_size = info.info[level + 1].size;
/* We succeeded. */
level_guard.Cancel();
top_buffer_guard.Cancel();
top_verif_guard.Cancel();
return ResultSuccess();
}
void HierarchicalIntegrityVerificationStorage::Finalize() {
if (this->data_size >= 0) {
this->data_size = 0;
this->buffers = nullptr;
this->mutex = nullptr;
for (s32 level = this->max_layers - 2; level >= 0; --level) {
this->buffer_storages[level].Finalize();
this->verify_storages[level].Finalize();
}
this->data_size = -1;
}
}
Result HierarchicalIntegrityVerificationStorage::Read(s64 offset, void *buffer, size_t size) {
/* Validate preconditions. */
AMS_ASSERT(this->data_size >= 0);
/* Succeed if zero-size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* Acquire access to the read semaphore. */
if (!g_read_semaphore.TimedAcquire(AccessTimeout)) {
for (auto level = this->max_layers - 2; level >= 0; --level) {
R_TRY(this->buffer_storages[level].Flush());
}
g_read_semaphore.Acquire();
}
/* Ensure that we release the semaphore when done. */
ON_SCOPE_EXIT { g_read_semaphore.Release(); };
/* Read the data. */
R_TRY(this->buffer_storages[this->max_layers - 2].Read(offset, buffer, size));
return ResultSuccess();
}
Result HierarchicalIntegrityVerificationStorage::Write(s64 offset, const void *buffer, size_t size) {
/* Validate preconditions. */
AMS_ASSERT(this->data_size >= 0);
/* Succeed if zero-size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* Acquire access to the write semaphore. */
if (!g_write_semaphore.TimedAcquire(AccessTimeout)) {
for (auto level = this->max_layers - 2; level >= 0; --level) {
R_TRY(this->buffer_storages[level].Flush());
}
g_write_semaphore.Acquire();
}
/* Ensure that we release the semaphore when done. */
ON_SCOPE_EXIT { g_write_semaphore.Release(); };
/* Write the data. */
R_TRY(this->buffer_storages[this->max_layers - 2].Write(offset, buffer, size));
this->is_written_for_rollback = true;
return ResultSuccess();
}
Result HierarchicalIntegrityVerificationStorage::GetSize(s64 *out) {
AMS_ASSERT(out != nullptr);
AMS_ASSERT(this->data_size >= 0);
*out = this->data_size;
return ResultSuccess();
}
Result HierarchicalIntegrityVerificationStorage::Flush() {
return ResultSuccess();
}
Result HierarchicalIntegrityVerificationStorage::OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) {
switch (op_id) {
case fs::OperationId::Clear:
case fs::OperationId::ClearSignature:
{
R_TRY(this->buffer_storages[this->max_layers - 2].OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
this->is_written_for_rollback = true;
return ResultSuccess();
}
case fs::OperationId::InvalidateCache:
case fs::OperationId::QueryRange:
{
R_TRY(this->buffer_storages[this->max_layers - 2].OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
return ResultSuccess();
}
default:
return fs::ResultUnsupportedOperationInHierarchicalIntegrityVerificationStorageB();
}
}
Result HierarchicalIntegrityVerificationStorage::Commit() {
for (s32 level = this->max_layers - 2; level >= 0; --level) {
R_TRY(this->buffer_storages[level].Commit());
}
return ResultSuccess();
}
Result HierarchicalIntegrityVerificationStorage::OnRollback() {
for (s32 level = this->max_layers - 2; level >= 0; --level) {
R_TRY(this->buffer_storages[level].OnRollback());
}
this->is_written_for_rollback = false;
return ResultSuccess();
}
}

View file

@ -0,0 +1,484 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem::save {
Result IntegrityVerificationStorage::Initialize(fs::SubStorage hs, fs::SubStorage ds, s64 verif_block_size, s64 upper_layer_verif_block_size, IBufferManager *bm, const fs::HashSalt &salt, bool is_real_data, fs::StorageType storage_type) {
/* Validate preconditions. */
AMS_ASSERT(verif_block_size >= HashSize);
AMS_ASSERT(bm != nullptr);
/* Set storages. */
this->hash_storage = hs;
this->data_storage = ds;
/* Set verification block sizes. */
this->verification_block_size = verif_block_size;
this->verification_block_order = ILog2(static_cast<u32>(verif_block_size));
AMS_ASSERT(this->verification_block_size == (1l << this->verification_block_order));
/* Set buffer manager. */
this->buffer_manager = bm;
/* Set upper layer block sizes. */
upper_layer_verif_block_size = std::max(upper_layer_verif_block_size, HashSize);
this->upper_layer_verification_block_size = upper_layer_verif_block_size;
this->upper_layer_verification_block_order = ILog2(static_cast<u32>(upper_layer_verif_block_size));
AMS_ASSERT(this->upper_layer_verification_block_size == (1l << this->upper_layer_verification_block_order));
/* Validate sizes. */
{
s64 hash_size = 0;
s64 data_size = 0;
AMS_ASSERT(R_SUCCEEDED(hash_storage.GetSize(std::addressof(hash_size))));
AMS_ASSERT(R_SUCCEEDED(data_storage.GetSize(std::addressof(hash_size))));
AMS_ASSERT(((hash_size / HashSize) * this->verification_block_size) >= data_size);
}
/* Set salt. */
std::memcpy(this->salt.value, salt.value, fs::HashSalt::Size);
/* Set data and storage type. */
this->is_real_data = is_real_data;
this->storage_type = storage_type;
return ResultSuccess();
}
void IntegrityVerificationStorage::Finalize() {
if (this->buffer_manager != nullptr) {
this->hash_storage = fs::SubStorage();
this->data_storage = fs::SubStorage();
this->buffer_manager = nullptr;
}
}
Result IntegrityVerificationStorage::Read(s64 offset, void *buffer, size_t size) {
/* Although we support zero-size reads, we expect non-zero sizes. */
AMS_ASSERT(size != 0);
/* Validate other preconditions. */
AMS_ASSERT(util::IsAligned(offset, static_cast<size_t>(this->verification_block_size)));
AMS_ASSERT(util::IsAligned(size, static_cast<size_t>(this->verification_block_size)));
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* Validate the offset. */
s64 data_size;
R_TRY(this->data_storage.GetSize(std::addressof(data_size)));
R_UNLESS(offset <= data_size, fs::ResultInvalidOffset());
/* Validate the access range. */
R_UNLESS(IStorage::IsRangeValid(offset, size, util::AlignUp(data_size, static_cast<size_t>(this->verification_block_size))), fs::ResultOutOfRange());
/* Determine the read extents. */
size_t read_size = size;
if (static_cast<s64>(offset + read_size) > data_size) {
/* Determine the padding sizes. */
s64 padding_offset = data_size - offset;
size_t padding_size = static_cast<size_t>(this->verification_block_size - (padding_offset & (this->verification_block_size - 1)));
AMS_ASSERT(static_cast<s64>(padding_size) < this->verification_block_size);
/* Clear the padding. */
std::memset(static_cast<u8 *>(buffer) + padding_offset, 0, padding_size);
/* Set the new in-bounds size. */
read_size = static_cast<size_t>(data_size - offset);
}
/* Perform the read. */
{
auto clear_guard = SCOPE_GUARD { std::memset(buffer, 0, size); };
R_TRY(this->data_storage.Read(offset, buffer, read_size));
clear_guard.Cancel();
}
/* Prepare to validate the signatures. */
const auto signature_count = size >> this->verification_block_order;
PooledBuffer signature_buffer(signature_count * sizeof(BlockHash), sizeof(BlockHash));
const auto buffer_count = std::min(signature_count, signature_buffer.GetSize() / sizeof(BlockHash));
/* Verify the signatures. */
Result verify_hash_result = ResultSuccess();
size_t verified_count = 0;
while (verified_count < signature_count) {
/* Read the current signatures. */
const auto cur_count = std::min(buffer_count, signature_count - verified_count);
auto cur_result = this->ReadBlockSignature(signature_buffer.GetBuffer(), signature_buffer.GetSize(), offset + (verified_count << this->verification_block_order), cur_count << this->verification_block_order);
/* Temporarily increase our priority. */
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
/* Loop over each signature we read. */
for (size_t i = 0; i < cur_count && R_SUCCEEDED(cur_result); ++i) {
const auto verified_size = (verified_count + i) << this->verification_block_order;
u8 *cur_buf = static_cast<u8 *>(buffer) + verified_size;
cur_result = this->VerifyHash(cur_buf, reinterpret_cast<BlockHash *>(signature_buffer.GetBuffer()) + i);
/* If the data is corrupted, clear the corrupted parts. */
if (fs::ResultIntegrityVerificationStorageCorrupted::Includes(cur_result)) {
std::memset(cur_buf, 0, this->verification_block_size);
/* Set the result if we should. */
if (!fs::ResultClearedRealDataVerificationFailed::Includes(cur_result) && this->storage_type != fs::StorageType_Authoring) {
verify_hash_result = cur_result;
}
cur_result = ResultSuccess();
}
}
/* If we failed, clear and return. */
if (R_FAILED(cur_result)) {
std::memset(buffer, 0, size);
return cur_result;
}
/* Advance. */
verified_count += cur_count;
}
return verify_hash_result;
}
Result IntegrityVerificationStorage::Write(s64 offset, const void *buffer, size_t size) {
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
R_UNLESS(IStorage::IsOffsetAndSizeValid(offset, size), fs::ResultInvalidOffset());
/* Validate the offset. */
s64 data_size;
R_TRY(this->data_storage.GetSize(std::addressof(data_size)));
R_UNLESS(offset < data_size, fs::ResultInvalidOffset());
/* Validate the access range. */
R_UNLESS(IStorage::IsRangeValid(offset, size, util::AlignUp(data_size, static_cast<size_t>(this->verification_block_size))), fs::ResultOutOfRange());
/* Validate preconditions. */
AMS_ASSERT(util::IsAligned(offset, this->verification_block_size));
AMS_ASSERT(util::IsAligned(size, this->verification_block_size));
AMS_ASSERT(offset <= data_size);
AMS_ASSERT(static_cast<s64>(offset + size) < data_size + this->verification_block_size);
/* Validate that if writing past the end, all extra data is zero padding. */
if (static_cast<s64>(offset + size) > data_size) {
const u8 *padding_cur = static_cast<const u8 *>(buffer) + data_size - offset;
const u8 *padding_end = padding_cur + (offset + size - data_size);
while (padding_cur < padding_end) {
AMS_ASSERT((*padding_cur) == 0);
++padding_cur;
}
}
/* Determine the unpadded size to write. */
auto write_size = size;
if (static_cast<s64>(offset + write_size) > data_size) {
write_size = static_cast<size_t>(data_size - offset);
R_SUCCEED_IF(write_size == 0);
}
/* Determine the size we're writing in blocks. */
const auto aligned_write_size = util::AlignUp(write_size, this->verification_block_size);
/* Write the updated block signatures. */
Result update_result = ResultSuccess();
size_t updated_count = 0;
{
const auto signature_count = aligned_write_size >> this->verification_block_order;
PooledBuffer signature_buffer(signature_count * sizeof(BlockHash), sizeof(BlockHash));
const auto buffer_count = std::min(signature_count, signature_buffer.GetSize() / sizeof(BlockHash));
while (updated_count < signature_count) {
const auto cur_count = std::min(buffer_count, signature_count - updated_count);
/* Calculate the hash with temporarily increased priority. */
{
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
for (size_t i = 0; i < cur_count; ++i) {
const auto updated_size = (updated_count + i) << this->verification_block_order;
this->CalcBlockHash(reinterpret_cast<BlockHash *>(signature_buffer.GetBuffer()) + i, reinterpret_cast<const u8 *>(buffer) + updated_size);
}
}
/* Write the new block signatures. */
if (R_FAILED((update_result = this->WriteBlockSignature(signature_buffer.GetBuffer(), signature_buffer.GetSize(), offset + (updated_count << this->verification_block_order), cur_count << this->verification_block_order)))) {
break;
}
/* Advance. */
updated_count += cur_count;
}
}
/* Write the data. */
R_TRY(this->data_storage.Write(offset, buffer, std::min(write_size, updated_count << this->verification_block_order)));
return update_result;
}
Result IntegrityVerificationStorage::GetSize(s64 *out) {
return this->data_storage.GetSize(out);
}
Result IntegrityVerificationStorage::Flush() {
/* Flush both storages. */
R_TRY(this->hash_storage.Flush());
R_TRY(this->data_storage.Flush());
return ResultSuccess();
}
Result IntegrityVerificationStorage::OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) {
/* Validate preconditions. */
AMS_ASSERT(util::IsAligned(offset, static_cast<size_t>(this->verification_block_size)));
AMS_ASSERT(util::IsAligned(size, static_cast<size_t>(this->verification_block_size)));
switch (op_id) {
case fs::OperationId::Clear:
{
/* Clear should only be called for save data. */
AMS_ASSERT(this->storage_type == fs::StorageType_SaveData);
/* Validate the range. */
s64 data_size = 0;
R_TRY(this->data_storage.GetSize(std::addressof(data_size)));
R_UNLESS(0 <= offset && offset <= data_size, fs::ResultInvalidOffset());
/* Determine the extents to clear. */
const auto sign_offset = (offset >> this->verification_block_order) * HashSize;
const auto sign_size = (std::min(size, data_size - offset) >> this->verification_block_order) * HashSize;
/* Allocate a work buffer. */
const auto buf_size = static_cast<size_t>(std::min(sign_size, static_cast<s64>(1) << (this->upper_layer_verification_block_order + 2)));
std::unique_ptr<char[], fs::impl::Deleter> buf = fs::impl::MakeUnique<char[]>(buf_size);
R_UNLESS(buf != nullptr, fs::ResultAllocationFailureInIntegrityVerificationStorageA());
/* Clear the work buffer. */
std::memset(buf.get(), 0, buf_size);
/* Clear in chunks. */
auto remaining_size = sign_size;
while (remaining_size > 0) {
const auto cur_size = static_cast<size_t>(std::min(remaining_size, static_cast<s64>(buf_size)));
R_TRY(this->hash_storage.Write(sign_offset + sign_size - remaining_size, buf.get(), cur_size));
remaining_size -= cur_size;
}
return ResultSuccess();
}
case fs::OperationId::ClearSignature:
{
/* Clear Signature should only be called for save data. */
AMS_ASSERT(this->storage_type == fs::StorageType_SaveData);
/* Validate the range. */
s64 data_size = 0;
R_TRY(this->data_storage.GetSize(std::addressof(data_size)));
R_UNLESS(0 <= offset && offset <= data_size, fs::ResultInvalidOffset());
/* Determine the extents to clear the signature for. */
const auto sign_offset = (offset >> this->verification_block_order) * HashSize;
const auto sign_size = (std::min(size, data_size - offset) >> this->verification_block_order) * HashSize;
/* Allocate a work buffer. */
std::unique_ptr<char[], fs::impl::Deleter> buf = fs::impl::MakeUnique<char[]>(sign_size);
R_UNLESS(buf != nullptr, fs::ResultAllocationFailureInIntegrityVerificationStorageB());
/* Read the existing signature. */
R_TRY(this->hash_storage.Read(sign_offset, buf.get(), sign_size));
/* Clear the signature. */
/* This sets all bytes to FF, with the verification bit cleared. */
for (auto i = 0; i < sign_size; ++i) {
buf[i] ^= ((i + 1) % HashSize == 0 ? 0x7F : 0xFF);
}
/* Write the cleared signature. */
return this->hash_storage.Write(sign_offset, buf.get(), sign_size);
}
case fs::OperationId::InvalidateCache:
{
/* Only allow cache invalidation for RomFs. */
R_UNLESS(this->storage_type != fs::StorageType_SaveData, fs::ResultUnsupportedOperationInIntegrityVerificationStorageB());
/* Validate the range. */
s64 data_size = 0;
R_TRY(this->data_storage.GetSize(std::addressof(data_size)));
R_UNLESS(0 <= offset && offset <= data_size, fs::ResultInvalidOffset());
/* Determine the extents to invalidate. */
const auto sign_offset = (offset >> this->verification_block_order) * HashSize;
const auto sign_size = (std::min(size, data_size - offset) >> this->verification_block_order) * HashSize;
/* Operate on our storages. */
R_TRY(this->hash_storage.OperateRange(dst, dst_size, op_id, sign_offset, sign_size, src, src_size));
R_TRY(this->data_storage.OperateRange(dst, dst_size, op_id, sign_offset, sign_size, src, src_size));
return ResultSuccess();
}
case fs::OperationId::QueryRange:
{
/* Validate the range. */
s64 data_size = 0;
R_TRY(this->data_storage.GetSize(std::addressof(data_size)));
R_UNLESS(0 <= offset && offset <= data_size, fs::ResultInvalidOffset());
/* Determine the real size to query. */
const auto actual_size = std::min(size, data_size - offset);
/* Query the data storage. */
R_TRY(this->data_storage.OperateRange(dst, dst_size, op_id, offset, actual_size, src, src_size));
return ResultSuccess();
}
default:
return fs::ResultUnsupportedOperationInIntegrityVerificationStorageC();
}
}
void IntegrityVerificationStorage::CalcBlockHash(BlockHash *out, const void *buffer, size_t block_size) const {
/* Create a sha256 generator. */
crypto::Sha256Generator sha;
sha.Initialize();
/* If calculating for save data, hash the salt. */
if (this->storage_type == fs::StorageType_SaveData) {
sha.Update(this->salt.value, sizeof(this->salt));
}
/* Update with the buffer and get the hash. */
sha.Update(buffer, block_size);
sha.GetHash(out, sizeof(*out));
/* Set the validation bit, if the hash is for save data. */
if (this->storage_type == fs::StorageType_SaveData) {
SetValidationBit(out);
}
}
Result IntegrityVerificationStorage::ReadBlockSignature(void *dst, size_t dst_size, s64 offset, size_t size) {
/* Validate preconditions. */
AMS_ASSERT(dst != nullptr);
AMS_ASSERT(util::IsAligned(offset, static_cast<size_t>(this->verification_block_size)));
AMS_ASSERT(util::IsAligned(size, static_cast<size_t>(this->verification_block_size)));
/* Determine where to read the signature. */
const s64 sign_offset = (offset >> this->verification_block_order) * HashSize;
const auto sign_size = static_cast<size_t>((size >> this->verification_block_order) * HashSize);
AMS_ASSERT(dst_size >= sign_size);
/* Create a guard in the event of failure. */
auto clear_guard = SCOPE_GUARD { std::memset(dst, 0, sign_size); };
/* Validate that we can read the signature. */
s64 hash_size;
R_TRY(this->hash_storage.GetSize(std::addressof(hash_size)));
const bool range_valid = static_cast<s64>(sign_offset + sign_size) <= hash_size;
AMS_ASSERT(range_valid);
R_UNLESS(range_valid, fs::ResultOutOfRange());
/* Read the signature. */
R_TRY(this->hash_storage.Read(sign_offset, dst, sign_size));
/* We succeeded. */
clear_guard.Cancel();
return ResultSuccess();
}
Result IntegrityVerificationStorage::WriteBlockSignature(const void *src, size_t src_size, s64 offset, size_t size) {
/* Validate preconditions. */
AMS_ASSERT(src != nullptr);
AMS_ASSERT(util::IsAligned(offset, static_cast<size_t>(this->verification_block_size)));
/* Determine where to write the signature. */
const s64 sign_offset = (offset >> this->verification_block_order) * HashSize;
const auto sign_size = static_cast<size_t>((size >> this->verification_block_order) * HashSize);
AMS_ASSERT(src_size >= sign_size);
/* Write the signature. */
R_TRY(this->hash_storage.Write(sign_offset, src, sign_size));
/* We succeeded. */
return ResultSuccess();
}
Result IntegrityVerificationStorage::VerifyHash(const void *buf, BlockHash *hash) {
/* Validate preconditions. */
AMS_ASSERT(buf != nullptr);
AMS_ASSERT(hash != nullptr);
/* Get the comparison hash. */
auto &cmp_hash = *hash;
/* If save data, check if the data is uninitialized. */
if (this->storage_type == fs::StorageType_SaveData) {
bool is_cleared = false;
R_TRY(this->IsCleared(std::addressof(is_cleared), cmp_hash));
R_UNLESS(!is_cleared, fs::ResultClearedRealDataVerificationFailed());
}
/* Get the calculated hash. */
BlockHash calc_hash;
this->CalcBlockHash(std::addressof(calc_hash), buf);
/* Check that the signatures are equal. */
if (!crypto::IsSameBytes(std::addressof(cmp_hash), std::addressof(calc_hash), sizeof(BlockHash))) {
/* Clear the comparison hash. */
std::memset(std::addressof(cmp_hash), 0, sizeof(cmp_hash));
/* Return the appropriate result. */
if (this->is_real_data) {
return fs::ResultUnclearedRealDataVerificationFailed();
} else {
return fs::ResultNonRealDataVerificationFailed();
}
}
return ResultSuccess();
}
Result IntegrityVerificationStorage::IsCleared(bool *is_cleared, const BlockHash &hash) {
/* Validate preconditions. */
AMS_ASSERT(is_cleared != nullptr);
AMS_ASSERT(this->storage_type == fs::StorageType_SaveData);
/* Default to uncleared. */
*is_cleared = false;
/* Succeed if the validation bit is set. */
R_SUCCEED_IF(IsValidationBit(std::addressof(hash)));
/* Otherwise, we expect the hash to be all zero. */
for (size_t i = 0; i < sizeof(hash.hash); ++i) {
R_UNLESS(hash.hash[i] == 0, fs::ResultInvalidZeroHash());
}
/* Set cleared. */
*is_cleared = true;
return ResultSuccess();
}
}

View file

@ -32,4 +32,12 @@ namespace ams::hos {
hos::SetVersionForLibnxInternal(); hos::SetVersionForLibnxInternal();
} }
void InitializeForStratosphereDebug(hos::Version debug_version) {
/* Initialize the global os resource managers. This *must* be done before anything else in stratosphere. */
os::InitializeForStratosphereInternal();
/* Initialize hos::Version API. */
hos::SetVersionForLibnxInternalDebug(debug_version);
}
} }

View file

@ -49,6 +49,14 @@ namespace ams::hos {
return g_hos_version; return g_hos_version;
} }
void SetVersionForLibnxInternalDebug(hos::Version debug_version) {
std::scoped_lock lk(g_mutex);
g_hos_version = debug_version;
__atomic_store_n(&g_has_cached, true, __ATOMIC_SEQ_CST);
SetVersionForLibnxInternal();
}
void SetVersionForLibnxInternal() { void SetVersionForLibnxInternal() {
const u32 hos_version_val = static_cast<u32>(hos::GetVersion()); const u32 hos_version_val = static_cast<u32>(hos::GetVersion());
const u32 major = (hos_version_val >> 24) & 0xFF; const u32 major = (hos_version_val >> 24) & 0xFF;

View file

@ -19,5 +19,6 @@
namespace ams::hos { namespace ams::hos {
void SetVersionForLibnxInternal(); void SetVersionForLibnxInternal();
void SetVersionForLibnxInternalDebug(hos::Version debug_version);
} }

View file

@ -627,7 +627,7 @@ namespace ams::ncm {
R_TRY(this->EnsureEnabled()); R_TRY(this->EnsureEnabled());
/* This command is for development hardware only. */ /* This command is for development hardware only. */
AMS_ABORT_UNLESS(spl::IsDevelopmentHardware()); AMS_ABORT_UNLESS(spl::IsDevelopment());
/* Close any cached file. */ /* Close any cached file. */
this->InvalidateFileCache(); this->InvalidateFileCache();

View file

@ -17,17 +17,204 @@
namespace ams::spl { namespace ams::spl {
HardwareType GetHardwareType() { namespace {
u64 out_val = 0;
R_ABORT_UNLESS(splGetConfig(SplConfigItem_HardwareType, &out_val)); enum class InitializeMode {
return static_cast<HardwareType>(out_val); None,
General,
Crypto,
Ssl,
Es,
Fs,
Manu
};
os::Mutex g_mutex(false);
s32 g_initialize_count = 0;
InitializeMode g_initialize_mode = InitializeMode::None;
Result AllocateAesKeySlotImpl(s32 *out) {
return serviceDispatchOut(splCryptoGetServiceSession(), 21, *out);
}
Result DeallocateAesKeySlotImpl(s32 slot) {
return serviceDispatchIn(splCryptoGetServiceSession(), 22, slot);
}
Result GetAesKeySlotAvailableEventImpl(Handle *out) {
return serviceDispatch(splCryptoGetServiceSession(), 23,
.out_handle_attrs = { SfOutHandleAttr_HipcCopy },
.out_handles = out,
);
}
void GetAesKeySlotAvailableEvent(os::SystemEvent *out) {
/* Get libnx event. */
Handle handle = svc::InvalidHandle;
R_ABORT_UNLESS(GetAesKeySlotAvailableEventImpl(std::addressof(handle)));
/* Attach to event. */
out->AttachReadableHandle(handle, true, os::EventClearMode_ManualClear);
}
template<typename F>
Result WaitAvailableKeySlotAndExecute(F f) {
os::SystemEvent event;
auto is_event_initialized = false;
while (true) {
R_TRY_CATCH(static_cast<::ams::Result>(f())) {
R_CATCH(spl::ResultOutOfKeyslots) {
if (!is_event_initialized) {
GetAesKeySlotAvailableEvent(std::addressof(event));
is_event_initialized = true;
}
event.Wait();
continue;
}
} R_END_TRY_CATCH;
return ResultSuccess();
}
}
template<typename F>
void Initialize(InitializeMode mode, F f) {
std::scoped_lock lk(g_mutex);
AMS_ASSERT(g_initialize_count >= 0);
AMS_ABORT_UNLESS(mode != InitializeMode::None);
if (g_initialize_count == 0) {
AMS_ABORT_UNLESS(g_initialize_mode == InitializeMode::None);
f();
g_initialize_mode = mode;
} else {
AMS_ABORT_UNLESS(g_initialize_mode == mode);
}
++g_initialize_count;
}
}
void Initialize() {
return Initialize(InitializeMode::General, [&]() {
R_ABORT_UNLESS(splInitialize());
});
}
void InitializeForCrypto() {
return Initialize(InitializeMode::Crypto, [&]() {
R_ABORT_UNLESS(splCryptoInitialize());
});
}
void InitializeForSsl() {
return Initialize(InitializeMode::Ssl, [&]() {
R_ABORT_UNLESS(splSslInitialize());
});
}
void InitializeForEs() {
return Initialize(InitializeMode::Es, [&]() {
R_ABORT_UNLESS(splEsInitialize());
});
}
void InitializeForFs() {
return Initialize(InitializeMode::Fs, [&]() {
R_ABORT_UNLESS(splFsInitialize());
});
}
void InitializeForManu() {
return Initialize(InitializeMode::Manu, [&]() {
R_ABORT_UNLESS(splManuInitialize());
});
}
void Finalize() {
std::scoped_lock lk(g_mutex);
AMS_ASSERT(g_initialize_count > 0);
AMS_ABORT_UNLESS(g_initialize_mode != InitializeMode::None);
if ((--g_initialize_count) == 0) {
switch (g_initialize_mode) {
case InitializeMode::General: splExit(); break;
case InitializeMode::Crypto: splCryptoExit(); break;
case InitializeMode::Ssl: splSslExit(); break;
case InitializeMode::Es: splEsExit(); break;
case InitializeMode::Fs: splFsExit(); break;
case InitializeMode::Manu: splManuExit(); break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
g_initialize_mode = InitializeMode::None;
}
}
Result AllocateAesKeySlot(s32 *out_slot) {
return WaitAvailableKeySlotAndExecute([&]() -> Result {
return AllocateAesKeySlotImpl(out_slot);
});
}
Result DeallocateAesKeySlot(s32 slot) {
return DeallocateAesKeySlotImpl(slot);
}
Result GenerateAesKek(AccessKey *access_key, const void *key_source, size_t key_source_size, s32 generation, u32 option) {
AMS_ASSERT(key_source_size == sizeof(KeySource));
return splCryptoGenerateAesKek(key_source, generation, option, static_cast<void *>(access_key));
}
Result LoadAesKey(s32 slot, const AccessKey &access_key, const void *key_source, size_t key_source_size) {
AMS_ASSERT(key_source_size == sizeof(KeySource));
return splCryptoLoadAesKey(std::addressof(access_key), key_source, static_cast<u32>(slot));
}
Result GenerateAesKey(void *dst, size_t dst_size, const AccessKey &access_key, const void *key_source, size_t key_source_size) {
AMS_ASSERT(dst_size >= crypto::AesEncryptor128::KeySize);
AMS_ASSERT(key_source_size == sizeof(KeySource));
return WaitAvailableKeySlotAndExecute([&]() -> Result {
return splCryptoGenerateAesKey(std::addressof(access_key), key_source, dst);
});
}
Result GenerateSpecificAesKey(void *dst, size_t dst_size, const void *key_source, size_t key_source_size, s32 generation, u32 option) {
AMS_ASSERT(dst_size >= crypto::AesEncryptor128::KeySize);
AMS_ASSERT(key_source_size == sizeof(KeySource));
return splFsGenerateSpecificAesKey(key_source, static_cast<u32>(generation), option, dst);
}
Result ComputeCtr(void *dst, size_t dst_size, s32 slot, const void *src, size_t src_size, const void *iv, size_t iv_size) {
AMS_ASSERT(iv_size >= 0x10);
AMS_ASSERT(dst_size >= src_size);
return splCryptoCryptAesCtr(src, dst, src_size, static_cast<s32>(slot), iv);
}
Result DecryptAesKey(void *dst, size_t dst_size, const void *key_source, size_t key_source_size, s32 generation, u32 option) {
AMS_ASSERT(dst_size >= crypto::AesEncryptor128::KeySize);
AMS_ASSERT(key_source_size == sizeof(KeySource));
return WaitAvailableKeySlotAndExecute([&]() -> Result {
return splCryptoDecryptAesKey(key_source, static_cast<u32>(generation), option, dst);
});
}
Result GetConfig(u64 *out, ConfigItem item) {
return splGetConfig(static_cast<::SplConfigItem>(item), out);
}
bool IsDevelopment() {
bool is_dev;
R_ABORT_UNLESS(splIsDevelopment(std::addressof(is_dev)));
return is_dev;
} }
MemoryArrangement GetMemoryArrangement() { MemoryArrangement GetMemoryArrangement() {
u64 arrange = 0; u64 mode = 0;
R_ABORT_UNLESS(splGetConfig(SplConfigItem_MemoryArrange, &arrange)); R_ABORT_UNLESS(spl::GetConfig(std::addressof(mode), spl::ConfigItem::MemoryMode));
arrange &= 0x3F; switch (mode & 0x3F) {
switch (arrange) {
case 2: case 2:
return MemoryArrangement_StandardForAppletDev; return MemoryArrangement_StandardForAppletDev;
case 3: case 3:
@ -41,52 +228,55 @@ namespace ams::spl {
} }
} }
bool IsDisabledProgramVerification() { Result SetBootReason(BootReasonValue boot_reason) {
u64 val = 0; static_assert(sizeof(boot_reason) == sizeof(u32));
R_ABORT_UNLESS(splGetConfig(SplConfigItem_DisableProgramVerification, &val));
return val != 0; u32 v;
std::memcpy(std::addressof(v), std::addressof(boot_reason), sizeof(v));
return splSetBootReason(v);
} }
bool IsDevelopmentHardware() { Result GetBootReason(BootReasonValue *out) {
bool is_dev_hardware; static_assert(sizeof(*out) == sizeof(u32));
R_ABORT_UNLESS(splIsDevelopment(&is_dev_hardware));
return is_dev_hardware; u32 v;
R_TRY(splGetBootReason(std::addressof(v)));
std::memcpy(out, std::addressof(v), sizeof(*out));
return ResultSuccess();
} }
bool IsDevelopmentFunctionEnabled() { SocType GetSocType() {
u64 val = 0; switch (GetHardwareType()) {
R_ABORT_UNLESS(splGetConfig(SplConfigItem_IsDebugMode, &val));
return val != 0;
}
bool IsRecoveryBoot() {
u64 val = 0;
R_ABORT_UNLESS(splGetConfig(SplConfigItem_IsRecoveryBoot, &val));
return val != 0;
}
bool IsMariko() {
const auto hw_type = GetHardwareType();
switch (hw_type) {
case HardwareType::Icosa: case HardwareType::Icosa:
case HardwareType::Copper: case HardwareType::Copper:
return false; return SocType_Erista;
case HardwareType::Hoag: case HardwareType::Hoag:
case HardwareType::Iowa: case HardwareType::Iowa:
return true; case HardwareType::_Five_:
return SocType_Mariko;
AMS_UNREACHABLE_DEFAULT_CASE(); AMS_UNREACHABLE_DEFAULT_CASE();
} }
} }
Result GenerateAesKek(AccessKey *access_key, const void *key_source, size_t key_source_size, u32 generation, u32 option) { Result GetPackage2Hash(void *dst, size_t dst_size) {
AMS_ASSERT(key_source_size == sizeof(KeySource)); AMS_ASSERT(dst_size >= crypto::Sha256Generator::HashSize);
return splCryptoGenerateAesKek(key_source, generation, option, static_cast<void *>(access_key)); return splFsGetPackage2Hash(dst);
} }
Result GenerateAesKey(void *dst, size_t dst_size, const AccessKey &access_key, const void *key_source, size_t key_source_size) { Result GenerateRandomBytes(void *out, size_t buffer_size) {
AMS_ASSERT(dst_size == crypto::AesEncryptor128::KeySize); return splGetRandomBytes(out, buffer_size);
AMS_ASSERT(key_source_size == sizeof(KeySource)); }
return splCryptoGenerateAesKey(std::addressof(access_key), key_source, dst);
Result LoadPreparedAesKey(s32 slot, const AccessKey &access_key) {
if (g_initialize_mode == InitializeMode::Fs) {
return splFsLoadTitlekey(std::addressof(access_key), static_cast<u32>(slot));
} else {
/* TODO: libnx binding not available. */
/* return splEsLoadTitlekey(std::addressof(access_key), static_cast<u32>(slot)); */
AMS_ABORT_UNLESS(false);
}
} }
} }

View file

@ -29,4 +29,6 @@
#include <vapours/crypto/crypto_rsa_oaep_sha256_decoder.hpp> #include <vapours/crypto/crypto_rsa_oaep_sha256_decoder.hpp>
#include <vapours/crypto/crypto_rsa_oaep_sha256_decryptor.hpp> #include <vapours/crypto/crypto_rsa_oaep_sha256_decryptor.hpp>
#include <vapours/crypto/crypto_rsa_oaep_sha256_encryptor.hpp> #include <vapours/crypto/crypto_rsa_oaep_sha256_encryptor.hpp>
#include <vapours/crypto/crypto_hmac_sha1_generator.hpp>
#include <vapours/crypto/crypto_hmac_sha256_generator.hpp>
#include <vapours/crypto/crypto_csrng.hpp> #include <vapours/crypto/crypto_csrng.hpp>

View file

@ -0,0 +1,51 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours/common.hpp>
#include <vapours/assert.hpp>
#include <vapours/util.hpp>
#include <vapours/crypto/impl/crypto_hmac_impl.hpp>
namespace ams::crypto {
template<typename Hash> /* requires HashFunction<Hash> */
class HmacGenerator {
NON_COPYABLE(HmacGenerator);
NON_MOVEABLE(HmacGenerator);
private:
using Impl = impl::HmacImpl<Hash>;
public:
static constexpr size_t HashSize = Impl::HashSize;
static constexpr size_t BlockSize = Impl::BlockSize;
private:
Impl impl;
public:
HmacGenerator() { /* ... */ }
void Initialize(const void *key, size_t key_size) {
return this->impl.Initialize(key, key_size);
}
void Update(const void *data, size_t size) {
return this->impl.Update(data, size);
}
void GetMac(void *dst, size_t dst_size) {
return this->impl.GetMac(dst, dst_size);
}
};
}

View file

@ -0,0 +1,27 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours/crypto/crypto_sha1_generator.hpp>
#include <vapours/crypto/crypto_hmac_generator.hpp>
namespace ams::crypto {
using HmacSha1Generator = HmacGenerator<Sha1Generator>;
void GenerateHmacSha1Mac(void *dst, size_t dst_size, const void *data, size_t data_size, const void *key, size_t key_size);
}

View file

@ -0,0 +1,27 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours/crypto/crypto_sha256_generator.hpp>
#include <vapours/crypto/crypto_hmac_generator.hpp>
namespace ams::crypto {
using HmacSha256Generator = HmacGenerator<Sha256Generator>;
void GenerateHmacSha256Mac(void *dst, size_t dst_size, const void *data, size_t data_size, const void *key, size_t key_size);
}

View file

@ -0,0 +1,126 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours/common.hpp>
#include <vapours/assert.hpp>
#include <vapours/util.hpp>
#include <vapours/crypto/impl/crypto_hash_function.hpp>
#include <vapours/crypto/crypto_memory_clear.hpp>
namespace ams::crypto::impl {
template<typename Hash> /* requires HashFunction<Hash> */
class HmacImpl {
NON_COPYABLE(HmacImpl);
NON_MOVEABLE(HmacImpl);
public:
static constexpr size_t MacSize = Hash::HashSize;
static constexpr size_t BlockSize = Hash::BlockSize;
private:
static constexpr u32 IpadMagic = 0x36363636;
static constexpr u32 OpadMagic = 0x5c5c5c5c;
static constexpr u32 IpadMagicXorOpadMagic = IpadMagic ^ OpadMagic;
static_assert(IpadMagicXorOpadMagic == 0x6a6a6a6a);
private:
enum State {
State_None = 0,
State_Initialized = 1,
State_Done = 2,
};
private:
Hash hash_function;
u32 key[BlockSize / sizeof(u32)];
u32 mac[MacSize / sizeof(u32)];
State state;
public:
HmacImpl() : state(State_None) { /* ... */ }
~HmacImpl() {
static_assert(offsetof(HmacImpl, hash_function) == 0);
/* Clear everything except for the hash function. */
ClearMemory(reinterpret_cast<u8 *>(this) + sizeof(this->hash_function), sizeof(*this) - sizeof(this->hash_function));
}
void Initialize(const void *key, size_t key_size);
void Update(const void *data, size_t data_size);
void GetMac(void *dst, size_t dst_size);
};
template<typename Hash>
inline void HmacImpl<Hash>::Initialize(const void *key, size_t key_size) {
/* Clear the key storage. */
std::memset(this->key, 0, sizeof(this->key));
/* Set the key storage. */
if (key_size > BlockSize) {
this->hash_function.Initialize();
this->hash_function.Update(key, key_size);
this->hash_function.GetHash(this->key, this->hash_function.HashSize);
} else {
std::memcpy(this->key, key, key_size);
}
/* Xor the key with the ipad. */
for (size_t i = 0; i < util::size(this->key); i++) {
this->key[i] ^= IpadMagic;
}
/* Update the hash function with the xor'd key. */
this->hash_function.Initialize();
this->hash_function.Update(this->key, BlockSize);
/* Mark initialized. */
this->state = State_Initialized;
}
template<typename Hash>
inline void HmacImpl<Hash>::Update(const void *data, size_t data_size) {
AMS_ASSERT(this->state == State_Initialized);
this->hash_function.Update(data, data_size);
}
template<typename Hash>
inline void HmacImpl<Hash>::GetMac(void *dst, size_t dst_size) {
AMS_ASSERT(this->state == State_Initialized || this->state == State_Done);
AMS_ASSERT(dst_size >= MacSize);
/* If we're not already finalized, get the final mac. */
if (this->state == State_Initialized) {
/* Get the hash of ((key ^ ipad) || data). */
this->hash_function.GetHash(this->mac, MacSize);
/* Xor the key with the opad. */
for (size_t i = 0; i < util::size(this->key); i++) {
this->key[i] ^= IpadMagicXorOpadMagic;
}
/* Calculate the final mac as hash of ((key ^ opad) || hash((key ^ ipad) || data)) */
this->hash_function.Initialize();
this->hash_function.Update(this->key, BlockSize);
this->hash_function.Update(this->mac, MacSize);
this->hash_function.GetHash(this->mac, MacSize);
/* Set our state as done. */
this->state = State_Done;
}
std::memcpy(dst, this->mac, MacSize);
}
}

View file

@ -35,9 +35,12 @@ namespace ams::fs {
R_DEFINE_ERROR_RESULT(NotEnoughFreeSpaceBisSystem, 38); R_DEFINE_ERROR_RESULT(NotEnoughFreeSpaceBisSystem, 38);
R_DEFINE_ERROR_RESULT(NotEnoughFreeSpaceSdCard, 39); R_DEFINE_ERROR_RESULT(NotEnoughFreeSpaceSdCard, 39);
R_DEFINE_ERROR_RESULT(UnsupportedSdkVersion, 50);
R_DEFINE_ERROR_RESULT(MountNameAlreadyExists, 60); R_DEFINE_ERROR_RESULT(MountNameAlreadyExists, 60);
R_DEFINE_ERROR_RESULT(TargetNotFound, 1002); R_DEFINE_ERROR_RESULT(PartitionNotFound, 1001);
R_DEFINE_ERROR_RESULT(TargetNotFound, 1002);
R_DEFINE_ERROR_RANGE(SdCardAccessFailed, 2000, 2499); R_DEFINE_ERROR_RANGE(SdCardAccessFailed, 2000, 2499);
R_DEFINE_ERROR_RESULT(SdCardNotPresent, 2001); R_DEFINE_ERROR_RESULT(SdCardNotPresent, 2001);
@ -51,48 +54,65 @@ namespace ams::fs {
R_DEFINE_ERROR_RESULT(SystemPartitionNotReady, 3100); R_DEFINE_ERROR_RESULT(SystemPartitionNotReady, 3100);
R_DEFINE_ERROR_RANGE(AllocationFailure, 3200, 3499); R_DEFINE_ERROR_RANGE(AllocationFailure, 3200, 3499);
R_DEFINE_ERROR_RESULT(AllocationFailureInFileSystemAccessorA, 3211); R_DEFINE_ERROR_RESULT(AllocationFailureInFileSystemAccessorA, 3211);
R_DEFINE_ERROR_RESULT(AllocationFailureInFileSystemAccessorB, 3212); R_DEFINE_ERROR_RESULT(AllocationFailureInFileSystemAccessorB, 3212);
R_DEFINE_ERROR_RESULT(AllocationFailureInApplicationA, 3213); R_DEFINE_ERROR_RESULT(AllocationFailureInApplicationA, 3213);
R_DEFINE_ERROR_RESULT(AllocationFailureInBisA, 3215); R_DEFINE_ERROR_RESULT(AllocationFailureInBisA, 3215);
R_DEFINE_ERROR_RESULT(AllocationFailureInBisB, 3216); R_DEFINE_ERROR_RESULT(AllocationFailureInBisB, 3216);
R_DEFINE_ERROR_RESULT(AllocationFailureInBisC, 3217); R_DEFINE_ERROR_RESULT(AllocationFailureInBisC, 3217);
R_DEFINE_ERROR_RESULT(AllocationFailureInCodeA, 3218); R_DEFINE_ERROR_RESULT(AllocationFailureInCodeA, 3218);
R_DEFINE_ERROR_RESULT(AllocationFailureInContentA, 3219); R_DEFINE_ERROR_RESULT(AllocationFailureInContentA, 3219);
R_DEFINE_ERROR_RESULT(AllocationFailureInContentStorageA, 3220); R_DEFINE_ERROR_RESULT(AllocationFailureInContentStorageA, 3220);
R_DEFINE_ERROR_RESULT(AllocationFailureInContentStorageB, 3221); R_DEFINE_ERROR_RESULT(AllocationFailureInContentStorageB, 3221);
R_DEFINE_ERROR_RESULT(AllocationFailureInDataA, 3222); R_DEFINE_ERROR_RESULT(AllocationFailureInDataA, 3222);
R_DEFINE_ERROR_RESULT(AllocationFailureInDataB, 3223); R_DEFINE_ERROR_RESULT(AllocationFailureInDataB, 3223);
R_DEFINE_ERROR_RESULT(AllocationFailureInDeviceSaveDataA, 3224); R_DEFINE_ERROR_RESULT(AllocationFailureInDeviceSaveDataA, 3224);
R_DEFINE_ERROR_RESULT(AllocationFailureInGameCardA, 3225); R_DEFINE_ERROR_RESULT(AllocationFailureInGameCardA, 3225);
R_DEFINE_ERROR_RESULT(AllocationFailureInGameCardB, 3226); R_DEFINE_ERROR_RESULT(AllocationFailureInGameCardB, 3226);
R_DEFINE_ERROR_RESULT(AllocationFailureInGameCardC, 3227); R_DEFINE_ERROR_RESULT(AllocationFailureInGameCardC, 3227);
R_DEFINE_ERROR_RESULT(AllocationFailureInGameCardD, 3228); R_DEFINE_ERROR_RESULT(AllocationFailureInGameCardD, 3228);
R_DEFINE_ERROR_RESULT(AllocationFailureInImageDirectoryA, 3232); R_DEFINE_ERROR_RESULT(AllocationFailureInImageDirectoryA, 3232);
R_DEFINE_ERROR_RESULT(AllocationFailureInSdCardA, 3244); R_DEFINE_ERROR_RESULT(AllocationFailureInSdCardA, 3244);
R_DEFINE_ERROR_RESULT(AllocationFailureInSdCardB, 3245); R_DEFINE_ERROR_RESULT(AllocationFailureInSdCardB, 3245);
R_DEFINE_ERROR_RESULT(AllocationFailureInSystemSaveDataA, 3246); R_DEFINE_ERROR_RESULT(AllocationFailureInSystemSaveDataA, 3246);
R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemA, 3247); R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemA, 3247);
R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemB, 3248); R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemB, 3248);
R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemC, 3249); R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemC, 3249);
R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemCreatorA, 3280); R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemCreatorA, 3280);
R_DEFINE_ERROR_RESULT(AllocationFailureInFileSystemBuddyHeapA, 3294); R_DEFINE_ERROR_RESULT(AllocationFailureInRomFileSystemCreatorA, 3281);
R_DEFINE_ERROR_RESULT(AllocationFailureInDirectorySaveDataFileSystem, 3321); R_DEFINE_ERROR_RESULT(AllocationFailureInStorageOnNcaCreatorA, 3288);
R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemA, 3347); R_DEFINE_ERROR_RESULT(AllocationFailureInStorageOnNcaCreatorB, 3289);
R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemB, 3348); R_DEFINE_ERROR_RESULT(AllocationFailureInFileSystemBuddyHeapA, 3294);
R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemC, 3349); R_DEFINE_ERROR_RESULT(AllocationFailureInFileSystemBufferManagerA, 3295);
R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemMetaA, 3350); R_DEFINE_ERROR_RESULT(AllocationFailureInBlockCacheBufferedStorageA, 3296);
R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemMetaB, 3351); R_DEFINE_ERROR_RESULT(AllocationFailureInBlockCacheBufferedStorageB, 3297);
R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemD, 3352); R_DEFINE_ERROR_RESULT(AllocationFailureInIntegrityVerificationStorageA, 3304);
R_DEFINE_ERROR_RESULT(AllocationFailureInSubDirectoryFileSystem, 3355); R_DEFINE_ERROR_RESULT(AllocationFailureInIntegrityVerificationStorageB, 3305);
R_DEFINE_ERROR_RESULT(AllocationFailureInRegisterA, 3365); R_DEFINE_ERROR_RESULT(AllocationFailureInDirectorySaveDataFileSystem, 3321);
R_DEFINE_ERROR_RESULT(AllocationFailureInRegisterB, 3366); R_DEFINE_ERROR_RESULT(AllocationFailureInNcaFileSystemDriverI, 3341);
R_DEFINE_ERROR_RESULT(AllocationFailureInPathNormalizer, 3367); R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemA, 3347);
R_DEFINE_ERROR_RESULT(AllocationFailureInDbmRomKeyValueStorage, 3375); R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemB, 3348);
R_DEFINE_ERROR_RESULT(AllocationFailureInReadOnlyFileSystemA, 3386); R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemC, 3349);
R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemE, 3377); R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemMetaA, 3350);
R_DEFINE_ERROR_RESULT(AllocationFailureInFileSystemInterfaceAdapter, 3407); R_DEFINE_ERROR_RESULT(AllocationFailureInPartitionFileSystemMetaB, 3351);
R_DEFINE_ERROR_RESULT(AllocationFailureInNew, 3420); R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemD, 3352);
R_DEFINE_ERROR_RESULT(AllocationFailureInSubDirectoryFileSystem, 3355);
R_DEFINE_ERROR_RESULT(AllocationFailureInNcaReaderA, 3363);
R_DEFINE_ERROR_RESULT(AllocationFailureInRegisterA, 3365);
R_DEFINE_ERROR_RESULT(AllocationFailureInRegisterB, 3366);
R_DEFINE_ERROR_RESULT(AllocationFailureInPathNormalizer, 3367);
R_DEFINE_ERROR_RESULT(AllocationFailureInDbmRomKeyValueStorage, 3375);
R_DEFINE_ERROR_RESULT(AllocationFailureInRomFsFileSystemE, 3377);
R_DEFINE_ERROR_RESULT(AllocationFailureInReadOnlyFileSystemA, 3386);
R_DEFINE_ERROR_RESULT(AllocationFailureInAesCtrCounterExtendedStorageA, 3399);
R_DEFINE_ERROR_RESULT(AllocationFailureInAesCtrCounterExtendedStorageB, 3400);
R_DEFINE_ERROR_RESULT(AllocationFailureInFileSystemInterfaceAdapter, 3407);
R_DEFINE_ERROR_RESULT(AllocationFailureInBufferedStorageA, 3411);
R_DEFINE_ERROR_RESULT(AllocationFailureInIntegrityRomFsStorageA, 3412);
R_DEFINE_ERROR_RESULT(AllocationFailureInNew, 3420);
R_DEFINE_ERROR_RESULT(AllocationFailureInMakeUnique, 3422);
R_DEFINE_ERROR_RESULT(AllocationFailureInAllocateShared, 3423);
R_DEFINE_ERROR_RESULT(AllocationFailurePooledBufferNotEnoughSize, 3424);
R_DEFINE_ERROR_RANGE(MmcAccessFailed, 3500, 3999); R_DEFINE_ERROR_RANGE(MmcAccessFailed, 3500, 3999);
@ -100,6 +120,28 @@ namespace ams::fs {
R_DEFINE_ERROR_RANGE(RomCorrupted, 4001, 4299); R_DEFINE_ERROR_RANGE(RomCorrupted, 4001, 4299);
R_DEFINE_ERROR_RESULT(UnsupportedRomVersion, 4002); R_DEFINE_ERROR_RESULT(UnsupportedRomVersion, 4002);
R_DEFINE_ERROR_RANGE(AesCtrCounterExtendedStorageCorrupted, 4011, 4019);
R_DEFINE_ERROR_RESULT(InvalidAesCtrCounterExtendedEntryOffset, 4012);
R_DEFINE_ERROR_RESULT(InvalidAesCtrCounterExtendedTableSize, 4013);
R_DEFINE_ERROR_RESULT(InvalidAesCtrCounterExtendedGeneration, 4014);
R_DEFINE_ERROR_RESULT(InvalidAesCtrCounterExtendedOffset, 4015);
R_DEFINE_ERROR_RANGE(IndirectStorageCorrupted, 4021, 4029);
R_DEFINE_ERROR_RESULT(InvalidIndirectEntryOffset, 4022);
R_DEFINE_ERROR_RESULT(InvalidIndirectEntryStorageIndex, 4023);
R_DEFINE_ERROR_RESULT(InvalidIndirectStorageSize, 4024);
R_DEFINE_ERROR_RESULT(InvalidIndirectVirtualOffset, 4025);
R_DEFINE_ERROR_RESULT(InvalidIndirectPhysicalOffset, 4026);
R_DEFINE_ERROR_RESULT(InvalidIndirectStorageIndex, 4027);
R_DEFINE_ERROR_RANGE(BucketTreeCorrupted, 4031, 4039);
R_DEFINE_ERROR_RESULT(InvalidBucketTreeSignature, 4032);
R_DEFINE_ERROR_RESULT(InvalidBucketTreeEntryCount, 4033);
R_DEFINE_ERROR_RESULT(InvalidBucketTreeNodeEntryCount, 4034);
R_DEFINE_ERROR_RESULT(InvalidBucketTreeNodeOffset, 4035);
R_DEFINE_ERROR_RESULT(InvalidBucketTreeEntryOffset, 4036);
R_DEFINE_ERROR_RESULT(InvalidBucketTreeEntrySetOffset, 4037);
R_DEFINE_ERROR_RANGE(RomNcaCorrupted, 4041, 4139); R_DEFINE_ERROR_RANGE(RomNcaCorrupted, 4041, 4139);
R_DEFINE_ERROR_RANGE(RomNcaFileSystemCorrupted, 4051, 4069); R_DEFINE_ERROR_RANGE(RomNcaFileSystemCorrupted, 4051, 4069);
R_DEFINE_ERROR_RESULT(InvalidRomNcaFileSystemType, 4052); R_DEFINE_ERROR_RESULT(InvalidRomNcaFileSystemType, 4052);
@ -154,6 +196,9 @@ namespace ams::fs {
R_DEFINE_ERROR_RANGE(SaveDataCorrupted, 4301, 4499); R_DEFINE_ERROR_RANGE(SaveDataCorrupted, 4301, 4499);
R_DEFINE_ERROR_RANGE(NcaCorrupted, 4501, 4599); R_DEFINE_ERROR_RANGE(NcaCorrupted, 4501, 4599);
R_DEFINE_ERROR_RESULT(NcaBaseStorageOutOfRangeA, 4508);
R_DEFINE_ERROR_RESULT(NcaBaseStorageOutOfRangeB, 4509);
R_DEFINE_ERROR_RANGE(NcaFileSystemCorrupted, 4511, 4529); R_DEFINE_ERROR_RANGE(NcaFileSystemCorrupted, 4511, 4529);
R_DEFINE_ERROR_RESULT(InvalidNcaFileSystemType, 4512); R_DEFINE_ERROR_RESULT(InvalidNcaFileSystemType, 4512);
R_DEFINE_ERROR_RESULT(InvalidAcidFileSize, 4513); R_DEFINE_ERROR_RESULT(InvalidAcidFileSize, 4513);
@ -167,6 +212,12 @@ namespace ams::fs {
R_DEFINE_ERROR_RESULT(InvalidNcaKeyIndex, 4521); R_DEFINE_ERROR_RESULT(InvalidNcaKeyIndex, 4521);
R_DEFINE_ERROR_RESULT(InvalidNcaFsHeaderHashType, 4522); R_DEFINE_ERROR_RESULT(InvalidNcaFsHeaderHashType, 4522);
R_DEFINE_ERROR_RESULT(InvalidNcaFsHeaderEncryptionType, 4523); R_DEFINE_ERROR_RESULT(InvalidNcaFsHeaderEncryptionType, 4523);
R_DEFINE_ERROR_RESULT(InvalidNcaPatchInfoIndirectSize, 4524);
R_DEFINE_ERROR_RESULT(InvalidNcaPatchInfoAesCtrExSize, 4525);
R_DEFINE_ERROR_RESULT(InvalidNcaPatchInfoAesCtrExOffset, 4526);
R_DEFINE_ERROR_RESULT(InvalidNcaId, 4527);
R_DEFINE_ERROR_RESULT(InvalidNcaHeader, 4528);
R_DEFINE_ERROR_RESULT(InvalidNcaFsHeader, 4529);
R_DEFINE_ERROR_RANGE(NcaHierarchicalSha256StorageCorrupted, 4531, 4539); R_DEFINE_ERROR_RANGE(NcaHierarchicalSha256StorageCorrupted, 4531, 4539);
R_DEFINE_ERROR_RESULT(InvalidHierarchicalSha256BlockSize, 4532); R_DEFINE_ERROR_RESULT(InvalidHierarchicalSha256BlockSize, 4532);
@ -174,6 +225,9 @@ namespace ams::fs {
R_DEFINE_ERROR_RESULT(HierarchicalSha256BaseStorageTooLarge, 4534); R_DEFINE_ERROR_RESULT(HierarchicalSha256BaseStorageTooLarge, 4534);
R_DEFINE_ERROR_RESULT(HierarchicalSha256HashVerificationFailed, 4535); R_DEFINE_ERROR_RESULT(HierarchicalSha256HashVerificationFailed, 4535);
/* TODO: Range? */
R_DEFINE_ERROR_RESULT(InvalidNcaHeader1SignatureKeyGeneration, 4543);
R_DEFINE_ERROR_RANGE(IntegrityVerificationStorageCorrupted, 4601, 4639); R_DEFINE_ERROR_RANGE(IntegrityVerificationStorageCorrupted, 4601, 4639);
R_DEFINE_ERROR_RESULT(IncorrectIntegrityVerificationMagic, 4602); R_DEFINE_ERROR_RESULT(IncorrectIntegrityVerificationMagic, 4602);
R_DEFINE_ERROR_RESULT(InvalidZeroHash, 4603); R_DEFINE_ERROR_RESULT(InvalidZeroHash, 4603);
@ -254,28 +308,51 @@ namespace ams::fs {
R_DEFINE_ERROR_RESULT(WriteNotPermitted, 6203); R_DEFINE_ERROR_RESULT(WriteNotPermitted, 6203);
R_DEFINE_ERROR_RANGE(UnsupportedOperation, 6300, 6399); R_DEFINE_ERROR_RANGE(UnsupportedOperation, 6300, 6399);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInSubStorageA, 6302); R_DEFINE_ERROR_RESULT(UnsupportedOperationInSubStorageA, 6302);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInSubStorageB, 6303); R_DEFINE_ERROR_RESULT(UnsupportedOperationInSubStorageB, 6303);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInMemoryStorageA, 6304); R_DEFINE_ERROR_RESULT(UnsupportedOperationInMemoryStorageA, 6304);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInMemoryStorageB, 6305); R_DEFINE_ERROR_RESULT(UnsupportedOperationInMemoryStorageB, 6305);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInFileStorageA, 6306); R_DEFINE_ERROR_RESULT(UnsupportedOperationInFileStorageA, 6306);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInFileStorageB, 6307); R_DEFINE_ERROR_RESULT(UnsupportedOperationInFileStorageB, 6307);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInAesCtrStorageA, 6315); R_DEFINE_ERROR_RESULT(UnsupportedOperationInSwitchStorageA, 6308);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInFileServiceObjectAdapterA, 6362); R_DEFINE_ERROR_RESULT(UnsupportedOperationInAesCtrCounterExtendedStorageA, 6310);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileSystemA, 6364); R_DEFINE_ERROR_RESULT(UnsupportedOperationInAesCtrCounterExtendedStorageB, 6311);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileSystemB, 6365); R_DEFINE_ERROR_RESULT(UnsupportedOperationInAesCtrCounterExtendedStorageC, 6312);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileSystemC, 6366); R_DEFINE_ERROR_RESULT(UnsupportedOperationInAesCtrStorageExternalA, 6313);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileA, 6367); R_DEFINE_ERROR_RESULT(UnsupportedOperationInAesCtrStorageExternalB, 6314);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileB, 6368); R_DEFINE_ERROR_RESULT(UnsupportedOperationInAesCtrStorageA, 6315);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileSystemTemplateA, 6369); R_DEFINE_ERROR_RESULT(UnsupportedOperationInHierarchicalIntegrityVerificationStorageA, 6316);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileSystemTemplateB, 6370); R_DEFINE_ERROR_RESULT(UnsupportedOperationInHierarchicalIntegrityVerificationStorageB, 6317);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileSystemTemplateC, 6371); R_DEFINE_ERROR_RESULT(UnsupportedOperationInIntegrityVerificationStorageA, 6318);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileA, 6372); R_DEFINE_ERROR_RESULT(UnsupportedOperationInIntegrityVerificationStorageB, 6319);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileB, 6373); R_DEFINE_ERROR_RESULT(UnsupportedOperationInIntegrityVerificationStorageC, 6320);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInPartitionFileSystemA, 6374); R_DEFINE_ERROR_RESULT(UnsupportedOperationInBlockCacheBufferedStorageA, 6321);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInPartitionFileSystemB, 6375); R_DEFINE_ERROR_RESULT(UnsupportedOperationInBlockCacheBufferedStorageB, 6322);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInPartitionFileA, 6376); R_DEFINE_ERROR_RESULT(UnsupportedOperationInBlockCacheBufferedStorageC, 6323);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInPartitionFileB, 6377); R_DEFINE_ERROR_RESULT(UnsupportedOperationInIndirectStorageA, 6324);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInIndirectStorageB, 6325);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInIndirectStorageC, 6326);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInZeroStorageA, 6327);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInZeroStorageB, 6328);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInHierarchicalSha256StorageA, 6329);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyBlockCacheStorageA, 6330);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyBlockCacheStorageB, 6331);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInIntegrityRomFsStorageA , 6332);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInFileServiceObjectAdapterA, 6362);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileSystemA, 6364);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileSystemB, 6365);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileSystemC, 6366);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileA, 6367);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInRomFsFileB, 6368);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileSystemTemplateA, 6369);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileSystemTemplateB, 6370);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileSystemTemplateC, 6371);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileA, 6372);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInReadOnlyFileB, 6373);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInPartitionFileSystemA, 6374);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInPartitionFileSystemB, 6375);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInPartitionFileA, 6376);
R_DEFINE_ERROR_RESULT(UnsupportedOperationInPartitionFileB, 6377);
R_DEFINE_ERROR_RANGE(PermissionDenied, 6400, 6449); R_DEFINE_ERROR_RANGE(PermissionDenied, 6400, 6449);

View file

@ -36,3 +36,4 @@
#include <vapours/util/util_uuid.hpp> #include <vapours/util/util_uuid.hpp>
#include <vapours/util/util_bounded_map.hpp> #include <vapours/util/util_bounded_map.hpp>
#include <vapours/util/util_string_util.hpp> #include <vapours/util/util_string_util.hpp>
#include <vapours/util/util_variadic.hpp>

View file

@ -208,4 +208,11 @@ namespace ams::util {
return T(1) << (BITSIZEOF(T) - CountLeadingZeros(x) - 1); return T(1) << (BITSIZEOF(T) - CountLeadingZeros(x) - 1);
} }
template<typename T, typename U>
constexpr ALWAYS_INLINE T DivideUp(T v, U d) {
using Unsigned = typename std::make_unsigned<U>::type;
const Unsigned add = static_cast<Unsigned>(d) - 1;
return static_cast<T>((v + add) / d);
}
} }

View file

@ -0,0 +1,84 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours/common.hpp>
#include <vapours/assert.hpp>
#define AMS_UTIL_VARIADIC_INVOKE_MACRO(__HANDLER__) \
__HANDLER__(_01_) \
__HANDLER__(_02_) \
__HANDLER__(_03_) \
__HANDLER__(_04_) \
__HANDLER__(_05_) \
__HANDLER__(_06_) \
__HANDLER__(_07_) \
__HANDLER__(_08_) \
__HANDLER__(_09_) \
__HANDLER__(_0A_) \
__HANDLER__(_0B_) \
__HANDLER__(_0C_) \
__HANDLER__(_0D_) \
__HANDLER__(_0E_) \
__HANDLER__(_0F_)
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_01_(_T_) typename _T_##_01_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_02_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_01_(_T_), typename _T_##_02_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_03_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_02_(_T_), typename _T_##_03_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_04_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_03_(_T_), typename _T_##_04_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_05_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_04_(_T_), typename _T_##_05_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_06_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_05_(_T_), typename _T_##_06_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_07_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_06_(_T_), typename _T_##_07_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_08_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_07_(_T_), typename _T_##_08_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_09_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_08_(_T_), typename _T_##_09_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0A_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_09_(_T_), typename _T_##_0A_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0B_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0A_(_T_), typename _T_##_0B_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0C_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0B_(_T_), typename _T_##_0C_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0D_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0C_(_T_), typename _T_##_0D_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0E_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0D_(_T_), typename _T_##_0E_
#define AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0F_(_T_) AMS_UTIL_VARIADIC_TEMPLATE_PARAMETERS_0E_(_T_), typename _T_##_0F_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_01_(_T_, _N_) _T_##_01_ &&_N_##_01_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_02_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_01_(_T_, _N_), _T_##_02_ &&_N_##_02_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_03_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_02_(_T_, _N_), _T_##_03_ &&_N_##_03_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_04_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_03_(_T_, _N_), _T_##_04_ &&_N_##_04_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_05_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_04_(_T_, _N_), _T_##_05_ &&_N_##_05_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_06_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_05_(_T_, _N_), _T_##_06_ &&_N_##_06_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_07_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_06_(_T_, _N_), _T_##_07_ &&_N_##_07_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_08_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_07_(_T_, _N_), _T_##_08_ &&_N_##_08_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_09_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_08_(_T_, _N_), _T_##_09_ &&_N_##_09_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0A_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_09_(_T_, _N_), _T_##_0A_ &&_N_##_0A_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0B_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0A_(_T_, _N_), _T_##_0B_ &&_N_##_0B_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0C_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0B_(_T_, _N_), _T_##_0C_ &&_N_##_0C_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0D_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0C_(_T_, _N_), _T_##_0D_ &&_N_##_0D_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0E_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0D_(_T_, _N_), _T_##_0E_ &&_N_##_0E_
#define AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0F_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_ARGUMENTS_0E_(_T_, _N_), _T_##_0F_ &&_N_##_0F_
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_01_(_T_, _N_) ::std::forward<_T_##_01_>(_N_##_01_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_02_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_01_(_T_, _N_), ::std::forward<_T_##_02_>(_N_##_02_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_03_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_02_(_T_, _N_), ::std::forward<_T_##_03_>(_N_##_03_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_04_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_03_(_T_, _N_), ::std::forward<_T_##_04_>(_N_##_04_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_05_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_04_(_T_, _N_), ::std::forward<_T_##_05_>(_N_##_05_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_06_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_05_(_T_, _N_), ::std::forward<_T_##_06_>(_N_##_06_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_07_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_06_(_T_, _N_), ::std::forward<_T_##_07_>(_N_##_07_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_08_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_07_(_T_, _N_), ::std::forward<_T_##_08_>(_N_##_08_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_09_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_08_(_T_, _N_), ::std::forward<_T_##_09_>(_N_##_09_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0A_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_09_(_T_, _N_), ::std::forward<_T_##_0A_>(_N_##_0A_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0B_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0A_(_T_, _N_), ::std::forward<_T_##_0B_>(_N_##_0B_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0C_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0B_(_T_, _N_), ::std::forward<_T_##_0C_>(_N_##_0C_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0D_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0C_(_T_, _N_), ::std::forward<_T_##_0D_>(_N_##_0D_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0E_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0D_(_T_, _N_), ::std::forward<_T_##_0E_>(_N_##_0E_)
#define AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0F_(_T_, _N_) AMS_UTIL_VARIADIC_TEMPLATE_FORWARDS_0E_(_T_, _N_), ::std::forward<_T_##_0F_>(_N_##_0F_)

View file

@ -0,0 +1,28 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vapours.hpp>
namespace ams::crypto {
void GenerateHmacSha1Mac(void *dst, size_t dst_size, const void *data, size_t data_size, const void *key, size_t key_size) {
HmacSha1Generator hmac;
hmac.Initialize(key, key_size);
hmac.Update(data, data_size);
hmac.GetMac(dst, dst_size);
}
}

View file

@ -0,0 +1,28 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vapours.hpp>
namespace ams::crypto {
void GenerateHmacSha256Mac(void *dst, size_t dst_size, const void *data, size_t data_size, const void *key, size_t key_size) {
HmacSha256Generator hmac;
hmac.Initialize(key, key_size);
hmac.Update(data, data_size);
hmac.GetMac(dst, dst_size);
}
}

View file

@ -96,7 +96,7 @@ namespace ams::mitm {
{ {
u64 key_generation = 0; u64 key_generation = 0;
if (hos::GetVersion() >= hos::Version_5_0_0) { if (hos::GetVersion() >= hos::Version_5_0_0) {
R_ABORT_UNLESS(splGetConfig(SplConfigItem_NewKeyGeneration, &key_generation)); R_ABORT_UNLESS(spl::GetConfig(std::addressof(key_generation), spl::ConfigItem::DeviceUniqueKeyGeneration));
} }
u8 bis_keys[4][2][0x10]; u8 bis_keys[4][2][0x10];
@ -107,15 +107,15 @@ namespace ams::mitm {
for (size_t partition = 0; partition < 4; partition++) { for (size_t partition = 0; partition < 4; partition++) {
if (partition == 0) { if (partition == 0) {
for (size_t i = 0; i < 2; i++) { for (size_t i = 0; i < 2; i++) {
R_ABORT_UNLESS(splFsGenerateSpecificAesKey(BisKeySources[partition][i], key_generation, i, bis_keys[partition][i])); R_ABORT_UNLESS(spl::GenerateSpecificAesKey(bis_keys[partition][i], 0x10, BisKeySources[partition][i], 0x10, key_generation, i));
} }
} else { } else {
const u32 option = (partition == 3 && spl::IsRecoveryBoot()) ? 0x4 : 0x1; const u32 option = (partition == 3 && spl::IsRecoveryBoot()) ? 0x4 : 0x1;
u8 access_key[0x10]; spl::AccessKey access_key;
R_ABORT_UNLESS(splCryptoGenerateAesKek(BisKekSource, key_generation, option, access_key)); R_ABORT_UNLESS(spl::GenerateAesKek(std::addressof(access_key), BisKekSource, 0x10, key_generation, option));
for (size_t i = 0; i < 2; i++) { for (size_t i = 0; i < 2; i++) {
R_ABORT_UNLESS(splCryptoGenerateAesKey(access_key, BisKeySources[partition][i], bis_keys[partition][i])); R_ABORT_UNLESS(spl::GenerateAesKey(bis_keys[partition][i], 0x10, access_key, BisKeySources[partition][i], 0x10));
} }
} }
} }

View file

@ -81,7 +81,7 @@ void __appInit(void) {
R_ABORT_UNLESS(fsInitialize()); R_ABORT_UNLESS(fsInitialize());
R_ABORT_UNLESS(pmdmntInitialize()); R_ABORT_UNLESS(pmdmntInitialize());
R_ABORT_UNLESS(pminfoInitialize()); R_ABORT_UNLESS(pminfoInitialize());
R_ABORT_UNLESS(splFsInitialize()); spl::InitializeForFs();
}); });
ams::CheckApiVersion(); ams::CheckApiVersion();
@ -89,7 +89,7 @@ void __appInit(void) {
void __appExit(void) { void __appExit(void) {
/* Cleanup services. */ /* Cleanup services. */
splFsExit(); spl::Finalize();
pminfoExit(); pminfoExit();
pmdmntExit(); pmdmntExit();
fsExit(); fsExit();

View file

@ -22,19 +22,6 @@ namespace ams::boot {
namespace { namespace {
/* Types. */
struct BootReasonValue {
union {
struct {
u8 power_intr;
u8 rtc_intr;
u8 nv_erc;
u8 boot_reason;
};
u32 value;
};
};
/* Globals. */ /* Globals. */
u32 g_boot_reason = 0; u32 g_boot_reason = 0;
bool g_detected_boot_reason = false; bool g_detected_boot_reason = false;
@ -90,12 +77,14 @@ namespace ams::boot {
/* Set boot reason for SPL. */ /* Set boot reason for SPL. */
if (hos::GetVersion() >= hos::Version_3_0_0) { if (hos::GetVersion() >= hos::Version_3_0_0) {
BootReasonValue boot_reason_value; spl::BootReasonValue boot_reason_value = {};
boot_reason_value.power_intr = power_intr;
boot_reason_value.rtc_intr = rtc_intr & ~rtc_intr_m; boot_reason_value.power_intr = power_intr;
boot_reason_value.nv_erc = nv_erc; boot_reason_value.rtc_intr = rtc_intr & ~rtc_intr_m;
boot_reason_value.nv_erc = nv_erc;
boot_reason_value.boot_reason = g_boot_reason; boot_reason_value.boot_reason = g_boot_reason;
R_ABORT_UNLESS(splSetBootReason(boot_reason_value.value));
R_ABORT_UNLESS(spl::SetBootReason(boot_reason_value));
} }
g_detected_boot_reason = true; g_detected_boot_reason = true;

View file

@ -66,7 +66,7 @@ namespace ams::boot {
/* Globals. */ /* Globals. */
bool g_is_display_intialized = false; bool g_is_display_intialized = false;
u32 *g_frame_buffer = nullptr; u32 *g_frame_buffer = nullptr;
bool g_is_mariko = false; spl::SocType g_soc_type = spl::SocType_Erista;
u32 g_lcd_vendor = 0; u32 g_lcd_vendor = 0;
Handle g_dc_das_hnd = INVALID_HANDLE; Handle g_dc_das_hnd = INVALID_HANDLE;
u8 g_frame_buffer_storage[DeviceAddressSpaceAlignSize + FrameBufferSize]; u8 g_frame_buffer_storage[DeviceAddressSpaceAlignSize + FrameBufferSize];
@ -95,10 +95,9 @@ namespace ams::boot {
} }
inline void DoSocDependentRegisterWrites(uintptr_t base_address, const RegisterWrite *reg_writes_erista, size_t num_writes_erista, const RegisterWrite *reg_writes_mariko, size_t num_writes_mariko) { inline void DoSocDependentRegisterWrites(uintptr_t base_address, const RegisterWrite *reg_writes_erista, size_t num_writes_erista, const RegisterWrite *reg_writes_mariko, size_t num_writes_mariko) {
if (g_is_mariko) { switch (g_soc_type) {
DoRegisterWrites(base_address, reg_writes_mariko, num_writes_mariko); case spl::SocType_Erista: DoRegisterWrites(base_address, reg_writes_erista, num_writes_erista); break;
} else { case spl::SocType_Mariko: DoRegisterWrites(base_address, reg_writes_mariko, num_writes_mariko); break;
DoRegisterWrites(base_address, reg_writes_erista, num_writes_erista);
} }
} }
@ -188,7 +187,7 @@ namespace ams::boot {
void InitializeDisplay() { void InitializeDisplay() {
/* Setup globals. */ /* Setup globals. */
InitializeRegisterBaseAddresses(); InitializeRegisterBaseAddresses();
g_is_mariko = spl::IsMariko(); g_soc_type = spl::GetSocType();
InitializeFrameBuffer(); InitializeFrameBuffer();
/* Turn on DSI/voltage rail. */ /* Turn on DSI/voltage rail. */
@ -199,7 +198,7 @@ namespace ams::boot {
i2c::driver::OpenSession(&i2c_session, I2cDevice_Max77620Pmic); i2c::driver::OpenSession(&i2c_session, I2cDevice_Max77620Pmic);
if (g_is_mariko) { if (g_soc_type == spl::SocType_Mariko) {
WriteI2cRegister(i2c_session, 0x18, 0x3A); WriteI2cRegister(i2c_session, 0x18, 0x3A);
WriteI2cRegister(i2c_session, 0x1F, 0x71); WriteI2cRegister(i2c_session, 0x1F, 0x71);
} }
@ -242,7 +241,7 @@ namespace ams::boot {
/* Configure display interface and display. */ /* Configure display interface and display. */
reg::Write(g_mipi_cal_regs + 0x060, 0); reg::Write(g_mipi_cal_regs + 0x060, 0);
if (g_is_mariko) { if (g_soc_type == spl::SocType_Mariko) {
reg::Write(g_mipi_cal_regs + 0x058, 0); reg::Write(g_mipi_cal_regs + 0x058, 0);
reg::Write(g_apb_misc_regs + 0xAC0, 0); reg::Write(g_apb_misc_regs + 0xAC0, 0);
} }
@ -367,7 +366,7 @@ namespace ams::boot {
DO_SOC_DEPENDENT_REGISTER_WRITES(g_dsi_regs, DisplayConfigDsi01Init11); DO_SOC_DEPENDENT_REGISTER_WRITES(g_dsi_regs, DisplayConfigDsi01Init11);
DO_SOC_DEPENDENT_REGISTER_WRITES(g_mipi_cal_regs, DisplayConfigMipiCal03); DO_SOC_DEPENDENT_REGISTER_WRITES(g_mipi_cal_regs, DisplayConfigMipiCal03);
DO_REGISTER_WRITES(g_mipi_cal_regs, DisplayConfigMipiCal04); DO_REGISTER_WRITES(g_mipi_cal_regs, DisplayConfigMipiCal04);
if (g_is_mariko) { if (g_soc_type == spl::SocType_Mariko) {
/* On Mariko the above configurations are executed twice, for some reason. */ /* On Mariko the above configurations are executed twice, for some reason. */
DO_SOC_DEPENDENT_REGISTER_WRITES(g_mipi_cal_regs, DisplayConfigMipiCal02); DO_SOC_DEPENDENT_REGISTER_WRITES(g_mipi_cal_regs, DisplayConfigMipiCal02);
DO_SOC_DEPENDENT_REGISTER_WRITES(g_dsi_regs, DisplayConfigDsi01Init11); DO_SOC_DEPENDENT_REGISTER_WRITES(g_dsi_regs, DisplayConfigDsi01Init11);

Some files were not shown because too many files have changed in this diff Show more