Merge pull request #134 from desowin/sdmmc-stage2

Fix race conditions and misconfiguration in sdmmc
This commit is contained in:
hexkyz 2018-06-10 16:19:20 +01:00 committed by GitHub
commit 80be253c1e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 82 additions and 48 deletions

View file

@ -910,32 +910,38 @@ static int sdmmc_set_up_clocking_parameters(struct mmc *mmc, enum sdmmc_bus_volt
{ {
// Clear the I/O conditioning constants. // Clear the I/O conditioning constants.
mmc->regs->vendor_clock_cntrl &= ~(MMC_CLOCK_TRIM_MASK | MMC_CLOCK_TAP_MASK); mmc->regs->vendor_clock_cntrl &= ~(MMC_CLOCK_TRIM_MASK | MMC_CLOCK_TAP_MASK);
mmc->regs->auto_cal_config &= ~MMC_AUTOCAL_PDPU_CONFIG_MASK;
// Per the TRM, set the PADPIPE clock enable. // Per the TRM, set the PADPIPE clock enable.
mmc->regs->vendor_clock_cntrl |= MMC_CLOCK_PADPIPE_CLKEN_OVERRIDE; mmc->regs->vendor_clock_cntrl |= MMC_CLOCK_PADPIPE_CLKEN_OVERRIDE;
switch (operating_voltage) {
case MMC_VOLTAGE_1V8:
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC4_1V8;
break;
case MMC_VOLTAGE_3V3:
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC1_3V3;
break;
default:
printk("ERROR: currently no controllers support voltage %d", mmc->operating_voltage);
return EINVAL;
}
// Set up the I/O conditioning constants used to ensure we have a reliable clock. // Set up the I/O conditioning constants used to ensure we have a reliable clock.
// Constants above and procedure below from the TRM. // Constants above and procedure below from the TRM.
switch (mmc->controller) { switch (mmc->controller) {
case SWITCH_EMMC: case SWITCH_EMMC:
if (operating_voltage != MMC_VOLTAGE_1V8) {
mmc_print(mmc, "ERROR: eMMC can only run at 1V8, but mmc struct claims voltage %d", operating_voltage);
return EINVAL;
}
mmc->regs->auto_cal_config &= ~MMC_AUTOCAL_PDPU_CONFIG_MASK;
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC4_1V8;
mmc->regs->vendor_clock_cntrl |= (MMC_CLOCK_TRIM_SDMMC4 | MMC_CLOCK_TAP_SDMMC4); mmc->regs->vendor_clock_cntrl |= (MMC_CLOCK_TRIM_SDMMC4 | MMC_CLOCK_TAP_SDMMC4);
break; break;
case SWITCH_MICROSD: case SWITCH_MICROSD:
switch (operating_voltage) {
case MMC_VOLTAGE_1V8:
mmc->regs->auto_cal_config &= ~MMC_AUTOCAL_PDPU_CONFIG_MASK;
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC1_1V8;
break;
case MMC_VOLTAGE_3V3:
mmc->regs->auto_cal_config &= ~MMC_AUTOCAL_PDPU_CONFIG_MASK;
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC1_3V3;
break;
default:
mmc_print(mmc, "ERROR: microsd does not support voltage %d", operating_voltage);
return EINVAL;
}
mmc->regs->vendor_clock_cntrl |= (MMC_CLOCK_TRIM_SDMMC1 | MMC_CLOCK_TAP_SDMMC1); mmc->regs->vendor_clock_cntrl |= (MMC_CLOCK_TRIM_SDMMC1 | MMC_CLOCK_TAP_SDMMC1);
break; break;
@ -1756,6 +1762,7 @@ static int sdmmc_wait_for_event(struct mmc *mmc,
uint32_t fault_conditions, fault_handler_t fault_handler) uint32_t fault_conditions, fault_handler_t fault_handler)
{ {
uint32_t timebase = get_time(); uint32_t timebase = get_time();
uint32_t intstatus;
int rc; int rc;
// Wait until we either wind up ready, or until we've timed out. // Wait until we either wind up ready, or until we've timed out.
@ -1763,7 +1770,13 @@ static int sdmmc_wait_for_event(struct mmc *mmc,
if (get_time_since(timebase) > mmc->timeout) if (get_time_since(timebase) > mmc->timeout)
return ETIMEDOUT; return ETIMEDOUT;
if (mmc->regs->int_status & fault_conditions) { // Read intstatus into temporary variable to make sure that the
// priorities are: fault conditions, target irq, errors
// This makes sure that if fault conditions and target irq
// comes nearly at the same time that the fault handler will
// always be called
intstatus = mmc->regs->int_status;
if (intstatus & fault_conditions) {
// If we don't have a handler, fault. // If we don't have a handler, fault.
if (!fault_handler) { if (!fault_handler) {
@ -1779,22 +1792,23 @@ static int sdmmc_wait_for_event(struct mmc *mmc,
} }
// Finally, EOI the relevant interrupt. // Finally, EOI the relevant interrupt.
mmc->regs->int_status |= fault_conditions; mmc->regs->int_status = fault_conditions;
intstatus &= ~(fault_conditions);
// Reset the timebase, so it applies to the next // Reset the timebase, so it applies to the next
// DMA interval. // DMA interval.
timebase = get_time(); timebase = get_time();
} }
if (mmc->regs->int_status & target_irq) if (intstatus & target_irq)
return 0; return 0;
if (state_conditions && !(mmc->regs->present_state & state_conditions)) if (state_conditions && !(mmc->regs->present_state & state_conditions))
return 0; return 0;
// If an error occurs, return it. // If an error occurs, return it.
if (mmc->regs->int_status & MMC_STATUS_ERROR_MASK) if (intstatus & MMC_STATUS_ERROR_MASK)
return (mmc->regs->int_status & MMC_STATUS_ERROR_MASK); return (intstatus & MMC_STATUS_ERROR_MASK);
} }
} }
@ -2042,7 +2056,7 @@ static void sdmmc_enable_interrupts(struct mmc *mmc, bool enabled)
MMC_STATUS_DMA_INTERRUPT | MMC_STATUS_ERROR_MASK; MMC_STATUS_DMA_INTERRUPT | MMC_STATUS_ERROR_MASK;
// Clear any pending interrupts. // Clear any pending interrupts.
mmc->regs->int_status |= all_interrupts; mmc->regs->int_status = all_interrupts;
// And enable or disable the pseudo-interrupts. // And enable or disable the pseudo-interrupts.
if (enabled) { if (enabled) {
@ -2160,6 +2174,8 @@ static int sdmmc_send_command(struct mmc *mmc, enum sdmmc_command command,
} }
} }
sdmmc_run_autocal(mmc, true);
// If we have data to send, prepare it. // If we have data to send, prepare it.
sdmmc_prepare_command_data(mmc, blocks_to_transfer, is_write, auto_terminate, mmc->use_dma, argument); sdmmc_prepare_command_data(mmc, blocks_to_transfer, is_write, auto_terminate, mmc->use_dma, argument);
@ -2168,12 +2184,12 @@ static int sdmmc_send_command(struct mmc *mmc, enum sdmmc_command command,
if (blocks_to_transfer && is_write && mmc->use_dma && data_buffer) if (blocks_to_transfer && is_write && mmc->use_dma && data_buffer)
memcpy(sdmmc_bounce_buffer, (void *)mmc->active_data_buffer, total_data_to_xfer); memcpy(sdmmc_bounce_buffer, (void *)mmc->active_data_buffer, total_data_to_xfer);
// Configure the controller to send the command.
sdmmc_prepare_command_registers(mmc, blocks_to_transfer, command, response_type, checks);
// Ensure we get the status response we want. // Ensure we get the status response we want.
sdmmc_enable_interrupts(mmc, true); sdmmc_enable_interrupts(mmc, true);
// Configure the controller to send the command.
sdmmc_prepare_command_registers(mmc, blocks_to_transfer, command, response_type, checks);
// Wait for the command to be completed. // Wait for the command to be completed.
rc = sdmmc_wait_for_command_completion(mmc); rc = sdmmc_wait_for_command_completion(mmc);
if (rc) { if (rc) {

View file

@ -650,8 +650,10 @@ int sdmmc_set_loglevel(int loglevel)
static void mmc_vprint(struct mmc *mmc, char *fmt, int required_loglevel, va_list list) static void mmc_vprint(struct mmc *mmc, char *fmt, int required_loglevel, va_list list)
{ {
// Allow debug prints to be silenced by a negative loglevel. // Allow debug prints to be silenced by a negative loglevel.
if (sdmmc_loglevel < required_loglevel) //TODO: respect the log level, most likely there are still some timing problems
return; //which make it not working when the logging is supressed
//if (sdmmc_loglevel < required_loglevel)
// return;
printk("%s: ", mmc->name); printk("%s: ", mmc->name);
vprintk(fmt, list); vprintk(fmt, list);
@ -910,32 +912,38 @@ static int sdmmc_set_up_clocking_parameters(struct mmc *mmc, enum sdmmc_bus_volt
{ {
// Clear the I/O conditioning constants. // Clear the I/O conditioning constants.
mmc->regs->vendor_clock_cntrl &= ~(MMC_CLOCK_TRIM_MASK | MMC_CLOCK_TAP_MASK); mmc->regs->vendor_clock_cntrl &= ~(MMC_CLOCK_TRIM_MASK | MMC_CLOCK_TAP_MASK);
mmc->regs->auto_cal_config &= ~MMC_AUTOCAL_PDPU_CONFIG_MASK;
// Per the TRM, set the PADPIPE clock enable. // Per the TRM, set the PADPIPE clock enable.
mmc->regs->vendor_clock_cntrl |= MMC_CLOCK_PADPIPE_CLKEN_OVERRIDE; mmc->regs->vendor_clock_cntrl |= MMC_CLOCK_PADPIPE_CLKEN_OVERRIDE;
switch (operating_voltage) {
case MMC_VOLTAGE_1V8:
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC4_1V8;
break;
case MMC_VOLTAGE_3V3:
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC1_3V3;
break;
default:
printk("ERROR: currently no controllers support voltage %d", mmc->operating_voltage);
return EINVAL;
}
// Set up the I/O conditioning constants used to ensure we have a reliable clock. // Set up the I/O conditioning constants used to ensure we have a reliable clock.
// Constants above and procedure below from the TRM. // Constants above and procedure below from the TRM.
switch (mmc->controller) { switch (mmc->controller) {
case SWITCH_EMMC: case SWITCH_EMMC:
if (operating_voltage != MMC_VOLTAGE_1V8) {
mmc_print(mmc, "ERROR: eMMC can only run at 1V8, but mmc struct claims voltage %d", operating_voltage);
return EINVAL;
}
mmc->regs->auto_cal_config &= ~MMC_AUTOCAL_PDPU_CONFIG_MASK;
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC4_1V8;
mmc->regs->vendor_clock_cntrl |= (MMC_CLOCK_TRIM_SDMMC4 | MMC_CLOCK_TAP_SDMMC4); mmc->regs->vendor_clock_cntrl |= (MMC_CLOCK_TRIM_SDMMC4 | MMC_CLOCK_TAP_SDMMC4);
break; break;
case SWITCH_MICROSD: case SWITCH_MICROSD:
switch (operating_voltage) {
case MMC_VOLTAGE_1V8:
mmc->regs->auto_cal_config &= ~MMC_AUTOCAL_PDPU_CONFIG_MASK;
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC1_1V8;
break;
case MMC_VOLTAGE_3V3:
mmc->regs->auto_cal_config &= ~MMC_AUTOCAL_PDPU_CONFIG_MASK;
mmc->regs->auto_cal_config |= MMC_AUTOCAL_PDPU_SDMMC1_3V3;
break;
default:
mmc_print(mmc, "ERROR: microsd does not support voltage %d", operating_voltage);
return EINVAL;
}
mmc->regs->vendor_clock_cntrl |= (MMC_CLOCK_TRIM_SDMMC1 | MMC_CLOCK_TAP_SDMMC1); mmc->regs->vendor_clock_cntrl |= (MMC_CLOCK_TRIM_SDMMC1 | MMC_CLOCK_TAP_SDMMC1);
break; break;
@ -1756,6 +1764,7 @@ static int sdmmc_wait_for_event(struct mmc *mmc,
uint32_t fault_conditions, fault_handler_t fault_handler) uint32_t fault_conditions, fault_handler_t fault_handler)
{ {
uint32_t timebase = get_time(); uint32_t timebase = get_time();
uint32_t intstatus;
int rc; int rc;
// Wait until we either wind up ready, or until we've timed out. // Wait until we either wind up ready, or until we've timed out.
@ -1763,7 +1772,13 @@ static int sdmmc_wait_for_event(struct mmc *mmc,
if (get_time_since(timebase) > mmc->timeout) if (get_time_since(timebase) > mmc->timeout)
return ETIMEDOUT; return ETIMEDOUT;
if (mmc->regs->int_status & fault_conditions) { // Read intstatus into temporary variable to make sure that the
// priorities are: fault conditions, target irq, errors
// This makes sure that if fault conditions and target irq
// comes nearly at the same time that the fault handler will
// always be called
intstatus = mmc->regs->int_status;
if (intstatus & fault_conditions) {
// If we don't have a handler, fault. // If we don't have a handler, fault.
if (!fault_handler) { if (!fault_handler) {
@ -1779,22 +1794,23 @@ static int sdmmc_wait_for_event(struct mmc *mmc,
} }
// Finally, EOI the relevant interrupt. // Finally, EOI the relevant interrupt.
mmc->regs->int_status |= fault_conditions; mmc->regs->int_status = fault_conditions;
intstatus &= ~(fault_conditions);
// Reset the timebase, so it applies to the next // Reset the timebase, so it applies to the next
// DMA interval. // DMA interval.
timebase = get_time(); timebase = get_time();
} }
if (mmc->regs->int_status & target_irq) if (intstatus & target_irq)
return 0; return 0;
if (state_conditions && !(mmc->regs->present_state & state_conditions)) if (state_conditions && !(mmc->regs->present_state & state_conditions))
return 0; return 0;
// If an error occurs, return it. // If an error occurs, return it.
if (mmc->regs->int_status & MMC_STATUS_ERROR_MASK) if (intstatus & MMC_STATUS_ERROR_MASK)
return (mmc->regs->int_status & MMC_STATUS_ERROR_MASK); return (intstatus & MMC_STATUS_ERROR_MASK);
} }
} }
@ -2042,7 +2058,7 @@ static void sdmmc_enable_interrupts(struct mmc *mmc, bool enabled)
MMC_STATUS_DMA_INTERRUPT | MMC_STATUS_ERROR_MASK; MMC_STATUS_DMA_INTERRUPT | MMC_STATUS_ERROR_MASK;
// Clear any pending interrupts. // Clear any pending interrupts.
mmc->regs->int_status |= all_interrupts; mmc->regs->int_status = all_interrupts;
// And enable or disable the pseudo-interrupts. // And enable or disable the pseudo-interrupts.
if (enabled) { if (enabled) {
@ -2160,6 +2176,8 @@ static int sdmmc_send_command(struct mmc *mmc, enum sdmmc_command command,
} }
} }
sdmmc_run_autocal(mmc, true);
// If we have data to send, prepare it. // If we have data to send, prepare it.
sdmmc_prepare_command_data(mmc, blocks_to_transfer, is_write, auto_terminate, mmc->use_dma, argument); sdmmc_prepare_command_data(mmc, blocks_to_transfer, is_write, auto_terminate, mmc->use_dma, argument);
@ -2168,12 +2186,12 @@ static int sdmmc_send_command(struct mmc *mmc, enum sdmmc_command command,
if (blocks_to_transfer && is_write && mmc->use_dma && data_buffer) if (blocks_to_transfer && is_write && mmc->use_dma && data_buffer)
memcpy(sdmmc_bounce_buffer, (void *)mmc->active_data_buffer, total_data_to_xfer); memcpy(sdmmc_bounce_buffer, (void *)mmc->active_data_buffer, total_data_to_xfer);
// Configure the controller to send the command.
sdmmc_prepare_command_registers(mmc, blocks_to_transfer, command, response_type, checks);
// Ensure we get the status response we want. // Ensure we get the status response we want.
sdmmc_enable_interrupts(mmc, true); sdmmc_enable_interrupts(mmc, true);
// Configure the controller to send the command.
sdmmc_prepare_command_registers(mmc, blocks_to_transfer, command, response_type, checks);
// Wait for the command to be completed. // Wait for the command to be completed.
rc = sdmmc_wait_for_command_completion(mmc); rc = sdmmc_wait_for_command_completion(mmc);
if (rc) { if (rc) {