mesosphere: Implement SVC table auto-generation

This commit is contained in:
Michael Scire 2020-01-17 22:02:45 -08:00
parent 6ecf04c3b7
commit 6ee305464a
17 changed files with 2614 additions and 4 deletions

View file

@ -36,3 +36,6 @@
/* Core functionality. */ /* Core functionality. */
#include "mesosphere/kern_select_interrupts.hpp" #include "mesosphere/kern_select_interrupts.hpp"
#include "mesosphere/kern_select_k_system_control.hpp" #include "mesosphere/kern_select_k_system_control.hpp"
/* Supervisor Calls. */
#include "mesosphere/kern_svc.hpp"

View file

@ -0,0 +1,19 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "svc/kern_svc_k_user_pointer.hpp"
#include "svc/kern_svc_prototypes.hpp"
#include "svc/kern_svc_tables.hpp"

View file

@ -0,0 +1,32 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::kern::svc {
/* TODO: Actually implement this type. */
template<typename T>
struct KUserPointer : impl::KUserPointerTag {
public:
static_assert(std::is_pointer<T>::value);
static constexpr bool IsInput = std::is_const<typename std::remove_pointer<T>::type>::value;
private:
T pointer;
};
}

View file

@ -0,0 +1,36 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include "kern_svc_k_user_pointer.hpp"
namespace ams::kern::svc {
#define AMS_KERN_SVC_DECLARE_PROTOTYPE_64(ID, RETURN_TYPE, NAME, ...) \
RETURN_TYPE NAME##64(__VA_ARGS__);
#define AMS_KERN_SVC_DECLARE_PROTOTYPE_64_FROM_32(ID, RETURN_TYPE, NAME, ...) \
RETURN_TYPE NAME##64From32(__VA_ARGS__);
AMS_SVC_FOREACH_KERN_DEFINITION(AMS_KERN_SVC_DECLARE_PROTOTYPE_64, lp64)
AMS_SVC_FOREACH_KERN_DEFINITION(AMS_KERN_SVC_DECLARE_PROTOTYPE_64_FROM_32, ilp32)
/* TODO: Support _32 ABI */
#undef AMS_KERN_SVC_DECLARE_PROTOTYPE_64
#undef AMS_KERN_SVC_DECLARE_PROTOTYPE_64_FROM_32
}

View file

@ -0,0 +1,29 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
namespace ams::kern::svc {
static constexpr size_t NumSupervisorCalls = 0x80;
using SvcTableEntry = void (*)();
/* TODO: 32-bit ABI */
extern const std::array<SvcTableEntry, NumSupervisorCalls> SvcTable64From32;
extern const std::array<SvcTableEntry, NumSupervisorCalls> SvcTable64;
}

View file

@ -0,0 +1,67 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
#include <vapours/svc/svc_codegen.hpp>
namespace ams::kern::svc {
namespace {
#define DECLARE_SVC_STRUCT(ID, RETURN_TYPE, NAME, ...) \
class NAME { \
private: \
using Impl = ::ams::svc::codegen::KernelSvcWrapper<::ams::kern::svc::NAME##64, ::ams::kern::svc::NAME##64From32>; \
public: \
static NOINLINE void Call64() { return Impl::Call64(); } \
static NOINLINE void Call64From32() { return Impl::Call64From32(); } \
};
/* Set omit-frame-pointer to prevent GCC from emitting MOV X29, SP instructions. */
#pragma GCC push_options
#pragma GCC optimize ("omit-frame-pointer")
AMS_SVC_FOREACH_KERN_DEFINITION(DECLARE_SVC_STRUCT, _)
#pragma GCC pop_options
}
/* TODO: 32-bit ABI */
const std::array<SvcTableEntry, NumSupervisorCalls> SvcTable64From32 = [] {
std::array<SvcTableEntry, NumSupervisorCalls> table = {};
#define AMS_KERN_SVC_SET_TABLE_ENTRY(ID, RETURN_TYPE, NAME, ...) \
table[ID] = NAME::Call64From32;
AMS_SVC_FOREACH_KERN_DEFINITION(AMS_KERN_SVC_SET_TABLE_ENTRY, _)
#undef AMS_KERN_SVC_SET_TABLE_ENTRY
return table;
}();
const std::array<SvcTableEntry, NumSupervisorCalls> SvcTable64 = [] {
std::array<SvcTableEntry, NumSupervisorCalls> table = {};
#define AMS_KERN_SVC_SET_TABLE_ENTRY(ID, RETURN_TYPE, NAME, ...) \
table[ID] = NAME::Call64;
AMS_SVC_FOREACH_KERN_DEFINITION(AMS_KERN_SVC_SET_TABLE_ENTRY, _)
#undef AMS_KERN_SVC_SET_TABLE_ENTRY
return table;
}();
}

View file

@ -0,0 +1,276 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "svc_codegen_impl_common.hpp"
namespace ams::svc::codegen::impl {
#define SVC_CODEGEN_FOR_I_FROM_0_TO_64(HANDLER, ...) \
HANDLER( 0, ## __VA_ARGS__); HANDLER( 1, ## __VA_ARGS__); HANDLER( 2, ## __VA_ARGS__); HANDLER( 3, ## __VA_ARGS__); \
HANDLER( 4, ## __VA_ARGS__); HANDLER( 5, ## __VA_ARGS__); HANDLER( 6, ## __VA_ARGS__); HANDLER( 7, ## __VA_ARGS__); \
HANDLER( 8, ## __VA_ARGS__); HANDLER( 9, ## __VA_ARGS__); HANDLER(10, ## __VA_ARGS__); HANDLER(11, ## __VA_ARGS__); \
HANDLER(12, ## __VA_ARGS__); HANDLER(13, ## __VA_ARGS__); HANDLER(14, ## __VA_ARGS__); HANDLER(15, ## __VA_ARGS__); \
HANDLER(16, ## __VA_ARGS__); HANDLER(17, ## __VA_ARGS__); HANDLER(18, ## __VA_ARGS__); HANDLER(19, ## __VA_ARGS__); \
HANDLER(20, ## __VA_ARGS__); HANDLER(21, ## __VA_ARGS__); HANDLER(22, ## __VA_ARGS__); HANDLER(23, ## __VA_ARGS__); \
HANDLER(24, ## __VA_ARGS__); HANDLER(25, ## __VA_ARGS__); HANDLER(26, ## __VA_ARGS__); HANDLER(27, ## __VA_ARGS__); \
HANDLER(28, ## __VA_ARGS__); HANDLER(29, ## __VA_ARGS__); HANDLER(30, ## __VA_ARGS__); HANDLER(31, ## __VA_ARGS__); \
HANDLER(32, ## __VA_ARGS__); HANDLER(33, ## __VA_ARGS__); HANDLER(34, ## __VA_ARGS__); HANDLER(35, ## __VA_ARGS__); \
HANDLER(36, ## __VA_ARGS__); HANDLER(37, ## __VA_ARGS__); HANDLER(38, ## __VA_ARGS__); HANDLER(39, ## __VA_ARGS__); \
HANDLER(40, ## __VA_ARGS__); HANDLER(41, ## __VA_ARGS__); HANDLER(42, ## __VA_ARGS__); HANDLER(43, ## __VA_ARGS__); \
HANDLER(44, ## __VA_ARGS__); HANDLER(45, ## __VA_ARGS__); HANDLER(46, ## __VA_ARGS__); HANDLER(47, ## __VA_ARGS__); \
HANDLER(48, ## __VA_ARGS__); HANDLER(49, ## __VA_ARGS__); HANDLER(50, ## __VA_ARGS__); HANDLER(51, ## __VA_ARGS__); \
HANDLER(52, ## __VA_ARGS__); HANDLER(53, ## __VA_ARGS__); HANDLER(54, ## __VA_ARGS__); HANDLER(55, ## __VA_ARGS__); \
HANDLER(56, ## __VA_ARGS__); HANDLER(57, ## __VA_ARGS__); HANDLER(58, ## __VA_ARGS__); HANDLER(59, ## __VA_ARGS__); \
HANDLER(60, ## __VA_ARGS__); HANDLER(61, ## __VA_ARGS__); HANDLER(62, ## __VA_ARGS__); HANDLER(63, ## __VA_ARGS__);
class Aarch64CodeGenerator {
private:
struct RegisterPair {
size_t First;
size_t Second;
};
template<size_t ...Registers>
struct RegisterPairHelper;
template<size_t First, size_t Second, size_t ...Rest>
struct RegisterPairHelper<First, Second, Rest...> {
static constexpr size_t PairCount = 1 + RegisterPairHelper<Rest...>::PairCount;
static constexpr std::array<RegisterPair, PairCount> Pairs = [] {
std::array<RegisterPair, PairCount> pairs = {};
pairs[0] = RegisterPair{First, Second};
if constexpr (RegisterPairHelper<Rest...>::PairCount) {
for (size_t i = 0; i < RegisterPairHelper<Rest...>::PairCount; i++) {
pairs[1+i] = RegisterPairHelper<Rest...>::Pairs[i];
}
}
return pairs;
}();
};
template<size_t First, size_t Second>
struct RegisterPairHelper<First, Second> {
static constexpr size_t PairCount = 1;
static constexpr std::array<RegisterPair, PairCount> Pairs = { RegisterPair{First, Second} };
};
template<size_t First>
struct RegisterPairHelper<First> {
static constexpr size_t PairCount = 0;
static constexpr std::array<RegisterPair, 0> Pairs = {};
};
template<size_t Reg>
static ALWAYS_INLINE void ClearRegister() {
__asm__ __volatile__("mov x%c[r], xzr" :: [r]"i"(Reg) : "memory");
}
template<size_t Reg>
static ALWAYS_INLINE void SaveRegister() {
__asm__ __volatile__("str x%c[r], [sp, -16]!" :: [r]"i"(Reg) : "memory");
}
template<size_t Reg>
static ALWAYS_INLINE void RestoreRegister() {
__asm__ __volatile__("ldr x%c[r], [sp], 16" :: [r]"i"(Reg) : "memory");
}
template<size_t Reg0, size_t Reg1>
static ALWAYS_INLINE void SaveRegisterPair() {
__asm__ __volatile__("stp x%c[r0], x%c[r1], [sp, -16]!" :: [r0]"i"(Reg0), [r1]"i"(Reg1) : "memory");
}
template<size_t Reg0, size_t Reg1>
static ALWAYS_INLINE void RestoreRegisterPair() {
__asm__ __volatile__("ldp x%c[r0], x%c[r1], [sp], 16" :: [r0]"i"(Reg0), [r1]"i"(Reg1) : "memory");
}
template<size_t First, size_t... Rest>
static ALWAYS_INLINE void SaveRegistersImpl() {
#define SVC_CODEGEN_HANDLER(n) \
do { if constexpr ((63 - n) < Pairs.size()) { SaveRegisterPair<Pairs[(63 - n)].First, Pairs[(63 - n)].Second>(); } } while (0)
if constexpr (sizeof...(Rest) % 2 == 1) {
/* Even number of registers. */
constexpr auto Pairs = RegisterPairHelper<First, Rest...>::Pairs;
static_assert(Pairs.size() <= 8);
SVC_CODEGEN_FOR_I_FROM_0_TO_64(SVC_CODEGEN_HANDLER)
} else if constexpr (sizeof...(Rest) > 0) {
/* Odd number of registers. */
constexpr auto Pairs = RegisterPairHelper<Rest...>::Pairs;
static_assert(Pairs.size() <= 8);
SVC_CODEGEN_FOR_I_FROM_0_TO_64(SVC_CODEGEN_HANDLER)
SaveRegister<First>();
} else {
/* Only one register. */
SaveRegister<First>();
}
#undef SVC_CODEGEN_HANDLER
}
template<size_t First, size_t... Rest>
static ALWAYS_INLINE void RestoreRegistersImpl() {
#define SVC_CODEGEN_HANDLER(n) \
do { if constexpr (n < Pairs.size()) { RestoreRegisterPair<Pairs[n].First, Pairs[n].Second>(); } } while (0)
if constexpr (sizeof...(Rest) % 2 == 1) {
/* Even number of registers. */
constexpr auto Pairs = RegisterPairHelper<First, Rest...>::Pairs;
static_assert(Pairs.size() <= 8);
SVC_CODEGEN_FOR_I_FROM_0_TO_64(SVC_CODEGEN_HANDLER)
} else if constexpr (sizeof...(Rest) > 0) {
/* Odd number of registers. */
RestoreRegister<First>();
constexpr auto Pairs = RegisterPairHelper<Rest...>::Pairs;
static_assert(Pairs.size() <= 8);
SVC_CODEGEN_FOR_I_FROM_0_TO_64(SVC_CODEGEN_HANDLER)
} else {
/* Only one register. */
RestoreRegister<First>();
}
#undef SVC_CODEGEN_HANDLER
}
public:
template<size_t... Registers>
static ALWAYS_INLINE void SaveRegisters() {
if constexpr (sizeof...(Registers) > 0) {
SaveRegistersImpl<Registers...>();
}
}
template<size_t... Registers>
static ALWAYS_INLINE void RestoreRegisters() {
if constexpr (sizeof...(Registers) > 0) {
RestoreRegistersImpl<Registers...>();
}
}
template<size_t... Registers>
static ALWAYS_INLINE void ClearRegisters() {
static_assert(sizeof...(Registers) <= 8);
(ClearRegister<Registers>(), ...);
}
template<size_t Size>
static ALWAYS_INLINE void AllocateStackSpace() {
if constexpr (Size > 0) {
__asm__ __volatile__("sub sp, sp, %c[size]" :: [size]"i"(util::AlignUp(Size, 16)) : "memory");
}
}
template<size_t Size>
static ALWAYS_INLINE void FreeStackSpace() {
if constexpr (Size > 0) {
__asm__ __volatile__("add sp, sp, %c[size]" :: [size]"i"(util::AlignUp(Size, 16)) : "memory");
}
}
template<size_t Dst, size_t Src>
static ALWAYS_INLINE void MoveRegister() {
__asm__ __volatile__("mov x%c[dst], x%c[src]" :: [dst]"i"(Dst), [src]"i"(Src) : "memory");
}
template<size_t Reg, size_t Offset, size_t Size>
static ALWAYS_INLINE void LoadFromStack() {
if constexpr (Size == 4) {
__asm__ __volatile__("ldr w%c[r], [sp, %c[offset]]" :: [r]"i"(Reg), [offset]"i"(Offset) : "memory");
} else if constexpr (Size == 8) {
__asm__ __volatile__("ldr x%c[r], [sp, %c[offset]]" :: [r]"i"(Reg), [offset]"i"(Offset) : "memory");
} else {
static_assert(Size != Size);
}
}
template<size_t Reg0, size_t Reg1, size_t Offset, size_t Size>
static ALWAYS_INLINE void LoadPairFromStack() {
if constexpr (Size == 4) {
__asm__ __volatile__("ldp w%c[r0], w%c[r1], [sp, %c[offset]]" :: [r0]"i"(Reg0), [r1]"i"(Reg1), [offset]"i"(Offset) : "memory");
} else if constexpr (Size == 8) {
__asm__ __volatile__("ldp x%c[r0], x%c[r1], [sp, %c[offset]]" :: [r0]"i"(Reg0), [r1]"i"(Reg1), [offset]"i"(Offset) : "memory");
} else {
static_assert(Size != Size);
}
}
template<size_t Reg, size_t Offset, size_t Size>
static ALWAYS_INLINE void StoreToStack() {
if constexpr (Size == 4) {
__asm__ __volatile__("str w%c[r], [sp, %c[offset]]" :: [r]"i"(Reg), [offset]"i"(Offset) : "memory");
} else if constexpr (Size == 8) {
__asm__ __volatile__("str x%c[r], [sp, %c[offset]]" :: [r]"i"(Reg), [offset]"i"(Offset) : "memory");
} else {
static_assert(Size != Size);
}
}
template<size_t Reg0, size_t Reg1, size_t Offset, size_t Size>
static ALWAYS_INLINE void StorePairToStack() {
if constexpr (Size == 4) {
__asm__ __volatile__("stp w%c[r0], w%c[r1], [sp, %c[offset]]" :: [r0]"i"(Reg0), [r1]"i"(Reg1), [offset]"i"(Offset) : "memory");
} else if constexpr (Size == 8) {
__asm__ __volatile__("stp x%c[r0], x%c[r1], [sp, %c[offset]]" :: [r0]"i"(Reg0), [r1]"i"(Reg1), [offset]"i"(Offset) : "memory");
} else {
static_assert(Size != Size);
}
}
template<size_t Dst, size_t Low, size_t High>
static ALWAYS_INLINE void Pack() {
__asm__ __volatile__("orr x%c[dst], x%c[low], x%c[high], lsl #32" :: [dst]"i"(Dst), [low]"i"(Low), [high]"i"(High) : "memory");
}
template<size_t Low, size_t High, size_t Src>
static ALWAYS_INLINE void Unpack() {
if constexpr (Src != Low) {
MoveRegister<Src, Low>();
}
__asm__ __volatile__("lsr x%c[high], x%c[src], #32" :: [high]"i"(High), [src]"i"(Src) : "memory");
}
template<size_t Dst, size_t Offset>
static ALWAYS_INLINE void LoadStackAddress() {
if constexpr (Offset > 0) {
__asm__ __volatile__("add x%c[dst], sp, %c[offset]" :: [dst]"i"(Dst), [offset]"i"(Offset) : "memory");
} else if constexpr (Offset == 0) {
__asm__ __volatile__("mov x%c[dst], sp" :: [dst]"i"(Dst) : "memory");
}
}
};
class Aarch32CodeGenerator {
/* TODO */
};
template<typename CodeGenerator, typename MetaCodeHolder>
static ALWAYS_INLINE void GenerateCodeForMetaCode(MetaCodeHolder) {
constexpr auto MetaCode = UNWRAP_TEMPLATE_CONSTANT(MetaCodeHolder);
constexpr size_t NumOperations = MetaCode.GetNumOperations();
static_assert(NumOperations <= 64);
#define SVC_CODEGEN_HANDLER(n) do { if constexpr (n < NumOperations) { constexpr auto Operation = MetaCode.GetOperation(n); GenerateCodeForOperation<CodeGenerator>(WRAP_TEMPLATE_CONSTANT(Operation)); } } while (0)
SVC_CODEGEN_FOR_I_FROM_0_TO_64(SVC_CODEGEN_HANDLER)
#undef SVC_CODEGEN_HANDLER
}
#undef SVC_CODEGEN_FOR_I_FROM_0_TO_64
}

View file

@ -0,0 +1,193 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
namespace ams::svc::codegen::impl {
template<typename T>
constexpr inline bool IsIntegral = std::is_integral<T>::value;
template<>
constexpr inline bool IsIntegral<::ams::svc::Address> = true;
template<>
constexpr inline bool IsIntegral<::ams::svc::Size> = true;
template<typename T>
constexpr inline bool IsKUserPointer = std::is_base_of<ams::kern::svc::impl::KUserPointerTag, T>::value;
template<typename T>
constexpr inline bool IsIntegralOrUserPointer = IsIntegral<T> || IsUserPointer<T> || IsKUserPointer<T>;
template<size_t... Is1, size_t... Is2>
constexpr std::index_sequence<Is1..., Is2...> IndexSequenceCat(std::index_sequence<Is1...>, std::index_sequence<Is2...>) {
return std::index_sequence<Is1..., Is2...>{};
}
template<size_t... Is>
constexpr inline std::array<size_t, sizeof...(Is)> ConvertToArray(std::index_sequence<Is...>) {
return std::array<size_t, sizeof...(Is)>{ Is... };
}
template<auto Function>
class FunctionTraits {
private:
template<typename R, typename... A>
static R GetReturnTypeImpl(R(*)(A...));
template<typename R, typename... A>
static std::tuple<A...> GetArgsImpl(R(*)(A...));
public:
using ReturnType = decltype(GetReturnTypeImpl(Function));
using ArgsType = decltype(GetArgsImpl(Function));
};
enum class CodeGenerationKind {
SvcInvocationToKernelProcedure,
PrepareForKernelProcedureToSvcInvocation,
KernelProcedureToSvcInvocation,
Invalid,
};
enum class ArgumentType {
In,
Out,
InUserPointer,
OutUserPointer,
Invalid,
};
template<typename T>
constexpr inline ArgumentType GetArgumentType = [] {
static_assert(!std::is_reference<T>::value, "SVC ABI: Reference types not allowed.");
static_assert(sizeof(T) <= sizeof(uint64_t), "SVC ABI: Type too large");
if constexpr (std::is_pointer<T>::value) {
static_assert(!std::is_const<typename std::remove_pointer<T>::type>::value, "SVC ABI: Output (T*) must not be const");
return ArgumentType::Out;
} else if constexpr (IsUserPointer<T> || IsKUserPointer<T>) {
if constexpr (T::IsInput) {
return ArgumentType::InUserPointer;
} else {
return ArgumentType::OutUserPointer;
}
} else {
return ArgumentType::In;
}
}();
template<size_t RS, size_t RC, size_t ARC, size_t PC>
struct AbiType {
static constexpr size_t RegisterSize = RS;
static constexpr size_t RegisterCount = RC;
static constexpr size_t ArgumentRegisterCount = ARC;
static constexpr size_t PointerSize = PC;
template<typename T>
static constexpr size_t GetSize() {
if constexpr (std::is_same<T, ::ams::svc::Address>::value || std::is_same<T, ::ams::svc::Size>::value || IsUserPointer<T> || IsKUserPointer<T>) {
return PointerSize;
} else if constexpr(std::is_pointer<T>::value) {
/* Out parameter. */
return GetSize<typename std::remove_pointer<T>::type>();
} else if constexpr (std::is_same<T, void>::value) {
return 0;
} else {
return sizeof(T);
}
}
template<typename T>
static constexpr inline size_t Size = GetSize<T>();
};
using Aarch64Lp64Abi = AbiType<8, 8, 8, 8>;
using Aarch64Ilp32Abi = AbiType<8, 8, 8, 4>;
using Aarch32Ilp32Abi = AbiType<4, 4, 4, 4>;
using Aarch64SvcInvokeAbi = AbiType<8, 8, 8, 8>;
using Aarch32SvcInvokeAbi = AbiType<4, 8, 4, 4>;
struct Abi {
size_t register_size;
size_t register_count;
size_t pointer_size;
template<typename AbiType>
static constexpr Abi Convert() { return { AbiType::RegisterSize, AbiType::RegisterCount, AbiType::PointerSize }; }
};
template<typename AbiType, typename ArgType>
constexpr inline bool IsPassedByPointer = [] {
if (GetArgumentType<ArgType> != ArgumentType::In) {
return true;
}
return (!IsIntegral<ArgType> && AbiType::template Size<ArgType> > AbiType::RegisterSize);
}();
template<size_t N>
class RegisterAllocator {
private:
std::array<bool, N> map;
public:
constexpr explicit RegisterAllocator() : map() { /* ... */ }
constexpr bool IsAllocated(size_t i) const { return this->map[i]; }
constexpr bool IsFree(size_t i) const { return !this->IsAllocated(i); }
constexpr void Allocate(size_t i) {
if (this->IsAllocated(i)) {
std::abort();
}
this->map[i] = true;
}
constexpr bool TryAllocate(size_t i) {
if (this->IsAllocated(i)) {
return false;
}
this->map[i] = true;
return true;
}
constexpr size_t AllocateFirstFree() {
for (size_t i = 0; i < N; i++) {
if (!this->IsAllocated(i)) {
this->map[i] = true;
return i;
}
}
std::abort();
}
constexpr void Free(size_t i) {
if (!this->IsAllocated(i)) {
std::abort();
}
this->map[i] = false;
}
constexpr size_t GetRegisterCount() const {
return N;
}
};
}

View file

@ -0,0 +1,540 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "svc_codegen_impl_common.hpp"
#include "svc_codegen_impl_parameter.hpp"
#include "svc_codegen_impl_layout.hpp"
#include "svc_codegen_impl_meta_code.hpp"
#include "svc_codegen_impl_layout_conversion.hpp"
#include "svc_codegen_impl_code_generator.hpp"
namespace ams::svc::codegen::impl {
template<typename, typename, typename, typename, typename>
class KernelSvcWrapperHelperImpl;
template<typename _SvcAbiType, typename _UserAbiType, typename _KernelAbiType, typename ReturnType, typename... ArgumentTypes>
class KernelSvcWrapperHelperImpl<_SvcAbiType, _UserAbiType, _KernelAbiType, ReturnType, std::tuple<ArgumentTypes...>> {
private:
static constexpr bool TryToPerformCoalescingOptimizations = true;
template<MetaCode::OperationKind PairKind, MetaCode::OperationKind SingleKind, size_t InvalidRegisterId, size_t MaxStackIndex>
static constexpr void CoalesceOperations(MetaCodeGenerator &out_mcg, const std::array<size_t, MaxStackIndex> stack_modified, size_t stack_top) {
enum class State { WaitingForRegister, ParsingRegister, ParsedRegister, EmittingCode };
State cur_state = State::WaitingForRegister;
size_t num_regs = 0;
size_t registers[2] = { InvalidRegisterId, InvalidRegisterId };
size_t widths[2] = {};
size_t index = 0;
size_t store_base = 0;
while (index < stack_top) {
if (cur_state == State::WaitingForRegister) {
while (stack_modified[index] == InvalidRegisterId && index < stack_top) {
index++;
}
cur_state = State::ParsingRegister;
} else if (cur_state == State::ParsingRegister) {
const size_t start_index = index;
if (num_regs == 0) {
store_base = start_index;
}
const size_t reg = stack_modified[index];
registers[num_regs] = reg;
while (index < stack_top && index < start_index + KernelAbiType::RegisterSize && stack_modified[index] == reg) {
widths[num_regs]++;
index++;
}
num_regs++;
cur_state = State::ParsedRegister;
} else if (cur_state == State::ParsedRegister) {
if (num_regs == 2 || stack_modified[index] == InvalidRegisterId) {
cur_state = State::EmittingCode;
} else {
cur_state = State::ParsingRegister;
}
} else if (cur_state == State::EmittingCode) {
/* Emit an operation! */
MetaCode::Operation st_op = {};
if (num_regs == 2) {
if (registers[0] == registers[1]) {
std::abort();
}
if (widths[0] == widths[1]) {
st_op.kind = PairKind;
st_op.num_parameters = 4;
st_op.parameters[0] = registers[0];
st_op.parameters[1] = registers[1];
st_op.parameters[2] = store_base;
st_op.parameters[3] = widths[0];
} else {
std::abort();
}
} else if (num_regs == 1) {
st_op.kind = SingleKind;
st_op.num_parameters = 3;
st_op.parameters[0] = registers[0];
st_op.parameters[1] = store_base;
st_op.parameters[2] = widths[0];
} else {
std::abort();
}
out_mcg.AddOperationDirectly(st_op);
/* Go back to beginning of parse. */
for (size_t i = 0; i < num_regs; i++) {
registers[i] = InvalidRegisterId;
widths[i] = 0;
}
num_regs = 0;
cur_state = State::WaitingForRegister;
} else {
std::abort();
}
}
if (cur_state == State::ParsedRegister) {
/* Emit an operation! */
if (num_regs == 2 && widths[0] == widths[1]) {
MetaCode::Operation st_op = {};
st_op.kind = PairKind;
st_op.num_parameters = 4;
st_op.parameters[0] = registers[0];
st_op.parameters[1] = registers[1];
st_op.parameters[2] = store_base;
st_op.parameters[3] = widths[0];
out_mcg.AddOperationDirectly(st_op);
} else {
for (size_t i = 0; i < num_regs; i++) {
MetaCode::Operation st_op = {};
st_op.kind = SingleKind;
st_op.num_parameters = 3;
st_op.parameters[0] = registers[i];
st_op.parameters[1] = store_base;
st_op.parameters[2] = widths[i];
store_base += widths[i];
out_mcg.AddOperationDirectly(st_op);
}
}
}
}
/* Basic optimization of store coalescing. */
template<typename Conversion, typename... OperationTypes, size_t N>
static constexpr bool TryPrepareForKernelProcedureToSvcInvocationCoalescing(std::tuple<OperationTypes...>, MetaCodeGenerator &out_mcg, RegisterAllocator<N> &out_allocator) {
/* For debugging, allow ourselves to disable these optimizations. */
if constexpr (!TryToPerformCoalescingOptimizations) {
return false;
}
/* Generate expected code. */
MetaCodeGenerator mcg;
RegisterAllocator<N> allocator = out_allocator;
(Conversion::template GenerateCode<OperationTypes, CodeGenerationKind::PrepareForKernelProcedureToSvcInvocation>(mcg, allocator), ...);
MetaCode mc = mcg.GetMetaCode();
/* This is a naive optimization pass. */
/* We want to reorder code of the form: */
/* - Store to Stack sequence 0... */
/* - Load Stack Address 0 */
/* - Store to Stack 1... */
/* - Load Stack Address 1 */
/* Into the form: */
/* - Store to stack Sequence 0 + 1... */
/* - Load Stack Address 0 + 1... */
/* But only if they are semantically equivalent. */
/* We'll do a simple, naive pass to check if any registers are stored to stack that are modified. */
/* This shouldn't happen in any cases we care about, so we can probably get away with it. */
/* TODO: Eventually this should be e.g. operation.ModifiesRegister() / operation.CanReorderBefore() */
/* However, this will be more work, and if it's not necessary it can be put off until it is. */
constexpr size_t MaxStackIndex = 0x100;
constexpr size_t InvalidRegisterId = N;
bool register_modified[N] = {};
std::array<size_t, N> stack_address_loaded = {};
for (size_t i = 0; i < N; i++) { stack_address_loaded[i] = MaxStackIndex; }
std::array<size_t, MaxStackIndex> stack_modified = {};
for (size_t i = 0; i < MaxStackIndex; i++) { stack_modified[i] = InvalidRegisterId; }
size_t stack_top = 0;
for (size_t i = 0; i < mc.GetNumOperations(); i++) {
const auto mco = mc.GetOperation(i);
if (mco.kind == MetaCode::OperationKind::StoreToStack) {
if (register_modified[mco.parameters[0]]) {
return false;
}
const size_t offset = mco.parameters[1];
const size_t width = mco.parameters[2] == 0 ? KernelAbiType::RegisterSize : mco.parameters[2];
for (size_t j = 0; j < width; j++) {
const size_t index = offset + j;
if (index >= MaxStackIndex) {
std::abort();
}
if (stack_modified[index] != InvalidRegisterId) {
return false;
}
stack_modified[index] = mco.parameters[0];
stack_top = std::max(index + 1, stack_top);
}
} else if (mco.kind == MetaCode::OperationKind::LoadStackAddress) {
if (stack_address_loaded[mco.parameters[0]] != MaxStackIndex) {
return false;
}
if (register_modified[mco.parameters[0]]) {
return false;
}
if (mco.parameters[1] >= MaxStackIndex) {
std::abort();
}
stack_address_loaded[mco.parameters[0]] = mco.parameters[1];
register_modified[mco.parameters[0]] = true;
} else {
/* TODO: Better operation reasoning process. */
return false;
}
}
/* Looks like we can reorder! */
/* Okay, let's do this the naive way, too. */
constexpr auto PairKind = MetaCode::OperationKind::StorePairToStack;
constexpr auto SingleKind = MetaCode::OperationKind::StoreToStack;
CoalesceOperations<PairKind, SingleKind, InvalidRegisterId>(out_mcg, stack_modified, stack_top);
for (size_t i = 0; i < N; i++) {
if (stack_address_loaded[i] != MaxStackIndex) {
MetaCode::Operation load_op = {};
load_op.kind = MetaCode::OperationKind::LoadStackAddress;
load_op.num_parameters = 2;
load_op.parameters[0] = i;
load_op.parameters[1] = stack_address_loaded[i];
out_mcg.AddOperationDirectly(load_op);
}
}
/* Ensure the out allocator state is correct. */
out_allocator = allocator;
return true;
}
/* Basic optimization of load coalescing. */
template<typename Conversion, typename... OperationTypes, size_t N>
static constexpr bool TryKernelProcedureToSvcInvocationCoalescing(std::tuple<OperationTypes...>, MetaCodeGenerator &out_mcg, RegisterAllocator<N> &out_allocator) {
/* For debugging, allow ourselves to disable these optimizations. */
if constexpr (!TryToPerformCoalescingOptimizations) {
return false;
}
/* Generate expected code. */
MetaCodeGenerator mcg;
RegisterAllocator<N> allocator = out_allocator;
(Conversion::template GenerateCode<OperationTypes, CodeGenerationKind::KernelProcedureToSvcInvocation>(mcg, allocator), ...);
MetaCode mc = mcg.GetMetaCode();
/* This is a naive optimization pass. */
/* We want to coalesce all sequential stack loads, if possible. */
/* But only if they are semantically equivalent. */
/* We'll do a simple, naive pass to check if any registers are used after being loaded from stack that. */
/* This shouldn't happen in any cases we care about, so we can probably get away with it. */
/* TODO: Eventually this should be e.g. operation.ModifiesRegister() / operation.CanReorderBefore() */
/* However, this will be more work, and if it's not necessary it can be put off until it is. */
constexpr size_t MaxStackIndex = 0x100;
constexpr size_t InvalidRegisterId = N;
bool register_modified[N] = {};
std::array<size_t, N> stack_offset_loaded = {};
for (size_t i = 0; i < N; i++) { stack_offset_loaded[i] = MaxStackIndex; }
std::array<size_t, MaxStackIndex> stack_modified = {};
for (size_t i = 0; i < MaxStackIndex; i++) { stack_modified[i] = InvalidRegisterId; }
size_t stack_top = 0;
for (size_t i = 0; i < mc.GetNumOperations(); i++) {
const auto mco = mc.GetOperation(i);
if (mco.kind == MetaCode::OperationKind::Unpack) {
if (register_modified[mco.parameters[0]] || register_modified[mco.parameters[1]] || register_modified[mco.parameters[2]]) {
return false;
}
register_modified[mco.parameters[0]] = true;
register_modified[mco.parameters[1]] = true;
} else if (mco.kind == MetaCode::OperationKind::LoadFromStack) {
if (stack_offset_loaded[mco.parameters[0]] != MaxStackIndex) {
return false;
}
if (register_modified[mco.parameters[0]] != false) {
return false;
}
if (mco.parameters[1] >= MaxStackIndex) {
std::abort();
}
stack_offset_loaded[mco.parameters[0]] = mco.parameters[1];
register_modified[mco.parameters[0]] = true;
const size_t offset = mco.parameters[1];
const size_t width = mco.parameters[2] == 0 ? KernelAbiType::RegisterSize : mco.parameters[2];
for (size_t j = 0; j < width; j++) {
const size_t index = offset + j;
if (index >= MaxStackIndex) {
std::abort();
}
if (stack_modified[index] != InvalidRegisterId) {
return false;
}
stack_modified[index] = mco.parameters[0];
stack_top = std::max(index + 1, stack_top);
}
} else {
/* TODO: Better operation reasoning process. */
return false;
}
}
/* Any operations that don't load from stack, we can just re-add. */
for (size_t i = 0; i < mc.GetNumOperations(); i++) {
const auto mco = mc.GetOperation(i);
if (mco.kind != MetaCode::OperationKind::LoadFromStack) {
out_mcg.AddOperationDirectly(mco);
}
}
constexpr auto PairKind = MetaCode::OperationKind::LoadPairFromStack;
constexpr auto SingleKind = MetaCode::OperationKind::LoadFromStack;
CoalesceOperations<PairKind, SingleKind, InvalidRegisterId>(out_mcg, stack_modified, stack_top);
/* Ensure the out allocator state is correct. */
out_allocator = allocator;
return true;
}
template<typename... T>
struct TypeIndexFilter {
template<typename UseArrayHolder, typename HeadType, typename... TailType, size_t HeadIndex, size_t... TailIndex>
static constexpr auto GetFilteredTupleImpl(UseArrayHolder, std::tuple<HeadType, TailType...>, std::index_sequence<HeadIndex, TailIndex...>) {
constexpr auto UseArray = UNWRAP_TEMPLATE_CONSTANT(UseArrayHolder);
static_assert(sizeof...(TailType) == sizeof...(TailIndex));
static_assert(HeadIndex <= UseArray.size());
if constexpr (sizeof...(TailType) == 0) {
if constexpr (!UseArray[HeadIndex]) {
return std::tuple<HeadType>{};
} else {
return std::tuple<>{};
}
} else {
auto tail_tuple = GetFilteredTupleImpl(UseArrayHolder{}, std::tuple<TailType...>{}, std::index_sequence<TailIndex...>{});
if constexpr (!UseArray[HeadIndex]) {
return std::tuple_cat(std::tuple<HeadType>{}, tail_tuple);
} else {
return std::tuple_cat(std::tuple<>{}, tail_tuple);
}
}
}
template<typename UseArrayHolder>
static constexpr auto GetFilteredTuple(UseArrayHolder) {
return GetFilteredTupleImpl(UseArrayHolder{}, std::tuple<T...>{}, std::make_index_sequence<sizeof...(T)>());
}
};
template<typename AllocatorHolder, typename FirstOperation, typename...OtherOperations>
static constexpr auto GetModifiedOperations(AllocatorHolder, std::tuple<FirstOperation, OtherOperations...> ops) {
constexpr size_t ModifyRegister = [] {
auto allocator = UNWRAP_TEMPLATE_CONSTANT(AllocatorHolder);
return allocator.AllocateFirstFree();
}();
using ModifiedFirstOperation = typename FirstOperation::template ModifiedType<ModifyRegister>;
using NewMoveOperation = typename LayoutConversionBase::template OperationMove<FirstOperation::RegisterSize, FirstOperation::PassedSize, FirstOperation::ProcedureIndex, ModifyRegister>;
return std::tuple<ModifiedFirstOperation, OtherOperations..., NewMoveOperation>{};
}
template<typename Conversion, typename AllocatorHolder, typename FirstOperation, typename... OtherOperations>
static constexpr auto GenerateBeforeOperations(MetaCodeGenerator &mcg, AllocatorHolder, std::tuple<FirstOperation, OtherOperations...> ops) -> RegisterAllocator<UNWRAP_TEMPLATE_CONSTANT(AllocatorHolder).GetRegisterCount()> {
constexpr size_t NumOperations = 1 + sizeof...(OtherOperations);
using OperationsTuple = decltype(ops);
using FilterHelper = TypeIndexFilter<FirstOperation, OtherOperations...>;
constexpr auto ProcessOperation = []<typename Operation>(MetaCodeGenerator &pr_mcg, auto &allocator, Operation) {
if (Conversion::template CanGenerateCode<Operation, CodeGenerationKind::SvcInvocationToKernelProcedure>(allocator)) {
Conversion::template GenerateCode<Operation, CodeGenerationKind::SvcInvocationToKernelProcedure>(pr_mcg, allocator);
return true;
}
return false;
};
constexpr auto ProcessResults = [ProcessOperation]<typename... Operations>(std::tuple<Operations...>) {
auto allocator = UNWRAP_TEMPLATE_CONSTANT(AllocatorHolder);
MetaCodeGenerator pr_mcg;
auto use_array = std::array<bool, NumOperations>{ ProcessOperation(pr_mcg, allocator, Operations{})... };
return std::make_tuple(use_array, allocator, pr_mcg);
}(OperationsTuple{});
constexpr auto CanGenerate = std::get<0>(ProcessResults);
constexpr auto AfterAllocator = std::get<1>(ProcessResults);
constexpr auto GeneratedCode = std::get<2>(ProcessResults).GetMetaCode();
for (size_t i = 0; i < GeneratedCode.GetNumOperations(); i++) {
mcg.AddOperationDirectly(GeneratedCode.GetOperation(i));
}
constexpr auto FilteredOperations = FilterHelper::template GetFilteredTuple(WRAP_TEMPLATE_CONSTANT(CanGenerate));
static_assert(std::tuple_size<decltype(FilteredOperations)>::value <= NumOperations);
if constexpr (std::tuple_size<decltype(FilteredOperations)>::value > 0) {
if constexpr (std::tuple_size<decltype(FilteredOperations)>::value != NumOperations) {
return GenerateBeforeOperations<Conversion>(mcg, WRAP_TEMPLATE_CONSTANT(AfterAllocator), FilteredOperations);
} else {
/* No progress was made, so we need to make a change. */
constexpr auto ModifiedOperations = GetModifiedOperations(WRAP_TEMPLATE_CONSTANT(AfterAllocator), FilteredOperations);
return GenerateBeforeOperations<Conversion>(mcg, WRAP_TEMPLATE_CONSTANT(AfterAllocator), ModifiedOperations);
}
} else {
return AfterAllocator;
}
}
static constexpr MetaCode GenerateOriginalBeforeMetaCode() {
MetaCodeGenerator mcg;
RegisterAllocator<KernelAbiType::RegisterCount> allocator;
static_assert(SvcAbiType::RegisterCount == KernelAbiType::RegisterCount);
/* Reserve registers used by the input layout. */
constexpr auto InitialAllocator = [] {
RegisterAllocator<KernelAbiType::RegisterCount> initial_allocator;
for (size_t i = 0; i < SvcAbiType::RegisterCount; i++) {
if (Conversion::LayoutForSvc.GetInputLayout().UsesRegister(i)) {
initial_allocator.Allocate(i);
}
}
return initial_allocator;
}();
/* Save every register that needs to be preserved to the stack. */
if constexpr (Conversion::NumPreserveRegisters > 0) {
[&mcg]<size_t... Is>(std::index_sequence<Is...>) {
mcg.template SaveRegisters<Is...>();
}(typename Conversion::PreserveRegisters{});
}
/* Allocate space on the stack for parameters that need it. */
if constexpr (UsedStackSpace > 0) {
mcg.template AllocateStackSpace<UsedStackSpace>();
}
/* Generate code for before operations. */
if constexpr (Conversion::NumBeforeOperations > 0) {
allocator = GenerateBeforeOperations<Conversion>(mcg, WRAP_TEMPLATE_CONSTANT(InitialAllocator), typename Conversion::BeforeOperations{});
} else {
allocator = InitialAllocator;
}
/* Generate code for after operations. */
if constexpr (Conversion::NumAfterOperations > 0) {
if (!TryPrepareForKernelProcedureToSvcInvocationCoalescing<Conversion>(typename Conversion::AfterOperations{}, mcg, allocator)) {
/* We're not eligible for the straightforward optimization. */
[&mcg, &allocator]<size_t... Is>(std::index_sequence<Is...>) {
(Conversion::template GenerateCode<typename std::tuple_element<Is, typename Conversion::AfterOperations>::type, CodeGenerationKind::PrepareForKernelProcedureToSvcInvocation>(mcg, allocator), ...);
}(std::make_index_sequence<Conversion::NumAfterOperations>());
}
}
return mcg.GetMetaCode();
}
public:
using SvcAbiType = _SvcAbiType;
using UserAbiType = _UserAbiType;
using KernelAbiType = _KernelAbiType;
using Conversion = LayoutConversion<SvcAbiType, UserAbiType, KernelAbiType, ReturnType, ArgumentTypes...>;
static constexpr size_t UsedStackSpace = Conversion::NonAbiUsedStackIndices * KernelAbiType::RegisterSize;
static constexpr MetaCode OriginalBeforeMetaCode = [] {
return GenerateOriginalBeforeMetaCode();
}();
static constexpr MetaCode OriginalAfterMetaCode = [] {
MetaCodeGenerator mcg;
RegisterAllocator<KernelAbiType::RegisterCount> allocator;
static_assert(SvcAbiType::RegisterCount == KernelAbiType::RegisterCount);
/* Generate code for after operations. */
if constexpr (Conversion::NumAfterOperations > 0) {
if (!TryKernelProcedureToSvcInvocationCoalescing<Conversion>(typename Conversion::AfterOperations{}, mcg, allocator)) {
[&mcg, &allocator]<size_t... Is>(std::index_sequence<Is...>) {
(Conversion::template GenerateCode<typename std::tuple_element<Is, typename Conversion::AfterOperations>::type, CodeGenerationKind::KernelProcedureToSvcInvocation>(mcg, allocator), ...);
}(std::make_index_sequence<Conversion::NumAfterOperations>());
}
}
/* Allocate space on the stack for parameters that need it. */
if constexpr (UsedStackSpace > 0) {
mcg.template FreeStackSpace<UsedStackSpace>();
}
if constexpr (Conversion::NumClearRegisters > 0) {
[&mcg]<size_t... Is>(std::index_sequence<Is...>) {
mcg.template ClearRegisters<Is...>();
}(typename Conversion::ClearRegisters{});
}
/* Restore registers we previously saved to the stack. */
if constexpr (Conversion::NumPreserveRegisters > 0) {
[&mcg]<size_t... Is>(std::index_sequence<Is...>) {
mcg.template RestoreRegisters<Is...>();
}(typename Conversion::PreserveRegisters{});
}
return mcg.GetMetaCode();
}();
/* TODO: Implement meta code optimization via separate layer. */
/* Right now some basic optimizations are just implemented by the above generators. */
static constexpr MetaCode OptimizedBeforeMetaCode = OriginalBeforeMetaCode;
static constexpr MetaCode OptimizedAfterMetaCode = OriginalAfterMetaCode;
};
template<typename _SvcAbiType, typename _UserAbiType, typename _KernelAbiType, auto Function>
class KernelSvcWrapperHelper {
private:
using Traits = FunctionTraits<Function>;
public:
using Impl = KernelSvcWrapperHelperImpl<_SvcAbiType, _UserAbiType, _KernelAbiType, typename Traits::ReturnType, typename Traits::ArgsType>;
static constexpr bool IsAarch64Kernel = std::is_same<_KernelAbiType, Aarch64Lp64Abi>::value;
static constexpr bool IsAarch32Kernel = std::is_same<_KernelAbiType, Aarch32Ilp32Abi>::value;
static_assert(IsAarch64Kernel || IsAarch32Kernel);
using CodeGenerator = typename std::conditional<IsAarch64Kernel, Aarch64CodeGenerator, Aarch32CodeGenerator>::type;
static constexpr auto BeforeMetaCode = Impl::OptimizedBeforeMetaCode;
static constexpr auto AfterMetaCode = Impl::OptimizedAfterMetaCode;
/* Set omit-frame-pointer to prevent GCC from emitting MOV X29, SP instructions. */
#pragma GCC push_options
#pragma GCC optimize ("omit-frame-pointer")
static ALWAYS_INLINE void WrapSvcFunction() {
/* Generate appropriate assembly. */
GenerateCodeForMetaCode<CodeGenerator>(WRAP_TEMPLATE_CONSTANT(BeforeMetaCode));
ON_SCOPE_EXIT { GenerateCodeForMetaCode<CodeGenerator>(WRAP_TEMPLATE_CONSTANT(AfterMetaCode)); };
return reinterpret_cast<void (*)()>(Function)();
}
#pragma GCC pop_options
};
}

View file

@ -0,0 +1,354 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "svc_codegen_impl_common.hpp"
#include "svc_codegen_impl_parameter.hpp"
namespace ams::svc::codegen::impl {
class ParameterLayout {
public:
static constexpr size_t MaxParameters = 8;
private:
static constexpr size_t InvalidIndex = std::numeric_limits<size_t>::max();
private:
/* ABI parameters. */
Abi abi;
/* Parameter storage. */
size_t num_parameters;
Parameter parameters[MaxParameters];
public:
constexpr explicit ParameterLayout(Abi a)
: abi(a), num_parameters(0), parameters()
{ /* ... */ }
constexpr void AddSingle(Parameter::Identifier id, ArgumentType type, size_t ts, size_t ps, bool p, Storage s, size_t idx) {
for (size_t i = 0; i < this->num_parameters; i++) {
if (this->parameters[i].Is(id)) {
this->parameters[i].AddLocation(Location(s, idx));
return;
}
}
this->parameters[this->num_parameters++] = Parameter(id, type, ts, ps, p, Location(s, idx));
}
constexpr size_t Add(Parameter::Identifier id, ArgumentType type, size_t ts, size_t ps, bool p, Storage s, size_t i) {
size_t required_registers = 0;
while (required_registers * this->abi.register_size < ps) {
this->AddSingle(id, type, ts, ps, p, s, i++);
required_registers++;
}
return required_registers;
}
constexpr bool UsesLocation(Location l) const {
for (size_t i = 0; i < this->num_parameters; i++) {
if (this->parameters[i].UsesLocation(l)) {
return true;
}
}
return false;
}
constexpr bool UsesRegister(size_t i) const {
return this->UsesLocation(Location(Storage::Register, i));
}
constexpr bool IsRegisterFree(size_t i) const {
return !(this->UsesRegister(i));
}
constexpr size_t GetNumParameters() const {
return this->num_parameters;
}
constexpr Parameter GetParameter(size_t i) const {
return this->parameters[i];
}
constexpr bool HasParameter(Parameter::Identifier id) const {
for (size_t i = 0; i < this->num_parameters; i++) {
if (this->parameters[i].Is(id)) {
return true;
}
}
return false;
}
constexpr Parameter GetParameter(Parameter::Identifier id) const {
for (size_t i = 0; i < this->num_parameters; i++) {
if (this->parameters[i].Is(id)) {
return this->parameters[i];
}
}
std::abort();
}
};
class ProcedureLayout {
private:
Abi abi;
ParameterLayout input;
ParameterLayout output;
private:
template<typename AbiType, typename ArgType>
constexpr void ProcessArgument(size_t i, size_t &NGRN, size_t &NSAA) {
/* We currently don't implement support for floating point types. */
static_assert(!std::is_floating_point<ArgType>::value);
static_assert(!std::is_same<ArgType, void>::value);
constexpr size_t ArgumentTypeSize = AbiType::template Size<ArgType>;
constexpr bool PassedByPointer = IsPassedByPointer<AbiType, ArgType>;
constexpr size_t ArgumentPassSize = PassedByPointer ? AbiType::PointerSize : ArgumentTypeSize;
/* TODO: Is there ever a case where this is not the correct alignment? */
constexpr size_t ArgumentAlignment = ArgumentPassSize;
/* Ensure NGRN is aligned. */
if constexpr (ArgumentAlignment > AbiType::RegisterSize) {
NGRN += (NGRN & 1);
}
/* TODO: We don't support splitting arguments between registers and stack, but AAPCS32 does. */
/* Is this a problem? Nintendo seems to not ever do this. */
auto id = Parameter::Identifier("FunctionParameter", i);
/* Allocate integral types specially per aapcs. */
constexpr ArgumentType Type = GetArgumentType<ArgType>;
const size_t registers_available = AbiType::RegisterCount - NGRN;
if constexpr (!PassedByPointer && IsIntegralOrUserPointer<ArgType> && ArgumentTypeSize > AbiType::RegisterSize) {
if (registers_available >= 2) {
this->input.Add(id, Type, ArgumentTypeSize, ArgumentPassSize, PassedByPointer, Storage::Register, NGRN);
NGRN += 2;
} else {
/* Argument went on stack, so stop allocating arguments in registers. */
NGRN = AbiType::RegisterCount;
NSAA += (NSAA & 1);
this->input.Add(id, Type, ArgumentTypeSize, ArgumentPassSize, PassedByPointer, Storage::Stack, NSAA);
NSAA += 2;
}
} else {
if (ArgumentPassSize <= AbiType::RegisterSize * registers_available) {
NGRN += this->input.Add(id, Type, ArgumentTypeSize, ArgumentPassSize, PassedByPointer, Storage::Register, NGRN);
} else {
/* Argument went on stack, so stop allocating arguments in registers. */
NGRN = AbiType::RegisterCount;
/* TODO: Stack pointer alignment is only ensured for aapcs64. */
/* What should we do here? */
NSAA += this->input.Add(id, Type, ArgumentTypeSize, ArgumentPassSize, PassedByPointer, Storage::Stack, NSAA);
}
}
}
public:
constexpr explicit ProcedureLayout(Abi a) : abi(a), input(a), output(a) { /* ... */ }
template<typename AbiType, typename ReturnType, typename... ArgumentTypes>
static constexpr ProcedureLayout Create() {
ProcedureLayout layout(Abi::Convert<AbiType>());
/* 1. The Next General-purpose Register Number (NGRN) is set to zero. */
[[maybe_unused]] size_t NGRN = 0;
/* 2. The next stacked argument address (NSAA) is set to the current stack-pointer value (SP). */
[[maybe_unused]] size_t NSAA = 0; /* Should be considered an offset from stack pointer. */
/* 3. Handle the return type. */
/* TODO: It's unclear how to handle the non-integral and too-large case. */
if constexpr (!std::is_same<ReturnType, void>::value) {
constexpr size_t ReturnTypeSize = AbiType::template Size<ReturnType>;
layout.output.Add(Parameter::Identifier("ReturnType"), ArgumentType::Invalid, ReturnTypeSize, ReturnTypeSize, false, Storage::Register, 0);
static_assert(IsIntegral<ReturnType> || ReturnTypeSize <= AbiType::RegisterSize);
}
/* Process all arguments, in order. */
size_t i = 0;
(layout.ProcessArgument<AbiType, ArgumentTypes>(i++, NGRN, NSAA), ...);
return layout;
}
constexpr ParameterLayout GetInputLayout() const {
return this->input;
}
constexpr ParameterLayout GetOutputLayout() const {
return this->output;
}
constexpr Parameter GetParameter(Parameter::Identifier id) const {
if (this->input.HasParameter(id)) {
return this->input.GetParameter(id);
} else {
return this->output.GetParameter(id);
}
}
};
class SvcInvocationLayout {
private:
Abi abi;
ParameterLayout input;
ParameterLayout output;
private:
template<typename F>
constexpr void ForEachInputArgument(ParameterLayout param_layout, F f) {
/* We want to iterate over the parameters in sorted order. */
std::array<size_t, ParameterLayout::MaxParameters> map = {};
const size_t num_parameters = param_layout.GetNumParameters();
for (size_t i = 0; i < num_parameters; i++) {
map[i] = i;
}
for (size_t i = 1; i < num_parameters; i++) {
for (size_t j = i; j > 0 && param_layout.GetParameter(map[j-1]).GetLocation(0) > param_layout.GetParameter(map[j]).GetLocation(0); j--) {
/* std::swap is not constexpr until c++20 :( */
/* TODO: std::swap(map[j], map[j-1]); */
const size_t tmp = map[j];
map[j] = map[j-1];
map[j-1] = tmp;
}
}
for (size_t i = 0; i < param_layout.GetNumParameters(); i++) {
const auto Parameter = param_layout.GetParameter(map[i]);
if (Parameter.GetArgumentType() == ArgumentType::In && !Parameter.IsPassedByPointer()) {
f(Parameter);
}
}
for (size_t i = 0; i < param_layout.GetNumParameters(); i++) {
const auto Parameter = param_layout.GetParameter(map[i]);
if (Parameter.GetArgumentType() == ArgumentType::InUserPointer) {
f(Parameter);
}
}
for (size_t i = 0; i < param_layout.GetNumParameters(); i++) {
const auto Parameter = param_layout.GetParameter(map[i]);
if (Parameter.GetArgumentType() == ArgumentType::OutUserPointer) {
f(Parameter);
}
}
}
template<typename F>
constexpr void ForEachInputPointerArgument(ParameterLayout param_layout, F f) {
for (size_t i = 0; i < param_layout.GetNumParameters(); i++) {
const auto Parameter = param_layout.GetParameter(i);
if (Parameter.GetArgumentType() == ArgumentType::In && Parameter.IsPassedByPointer()) {
f(Parameter);
}
}
}
template<typename F>
constexpr void ForEachOutputArgument(ParameterLayout param_layout, F f) {
for (size_t i = 0; i < param_layout.GetNumParameters(); i++) {
const auto Parameter = param_layout.GetParameter(i);
if (Parameter.GetArgumentType() == ArgumentType::Out) {
f(Parameter);
}
}
}
template<size_t N>
static constexpr void AddRegisterParameter(ParameterLayout &dst_layout, RegisterAllocator<N> &reg_allocator, Parameter param) {
for (size_t i = 0; i < param.GetNumLocations(); i++) {
const auto location = param.GetLocation(i);
if (location.GetStorage() == Storage::Register) {
reg_allocator.Allocate(location.GetIndex());
dst_layout.AddSingle(param.GetIdentifier(), param.GetArgumentType(), param.GetTypeSize(), param.GetPassedSize(), param.IsPassedByPointer(), Storage::Register, location.GetIndex());
}
}
}
template<size_t N>
static constexpr void AddStackParameter(ParameterLayout &dst_layout, RegisterAllocator<N> &reg_allocator, Parameter param) {
for (size_t i = 0; i < param.GetNumLocations(); i++) {
const auto location = param.GetLocation(i);
if (location.GetStorage() == Storage::Stack) {
const size_t free_reg = reg_allocator.AllocateFirstFree();
dst_layout.AddSingle(param.GetIdentifier(), param.GetArgumentType(), param.GetTypeSize(), param.GetPassedSize(), param.IsPassedByPointer(), Storage::Register, free_reg);
}
}
}
template<typename AbiType, size_t N>
static constexpr void AddIndirectParameter(ParameterLayout &dst_layout, RegisterAllocator<N> &reg_allocator, Parameter param) {
const size_t type_size = param.GetTypeSize();
for (size_t sz = 0; sz < type_size; sz += AbiType::RegisterSize) {
const size_t free_reg = reg_allocator.AllocateFirstFree();
dst_layout.AddSingle(param.GetIdentifier(), param.GetArgumentType(), type_size, type_size, false, Storage::Register, free_reg);
}
}
public:
constexpr explicit SvcInvocationLayout(Abi a) : abi(a), input(a), output(a) { /* ... */ }
template<typename AbiType>
static constexpr SvcInvocationLayout Create(ProcedureLayout procedure_layout) {
SvcInvocationLayout layout(Abi::Convert<AbiType>());
RegisterAllocator<AbiType::RegisterCount> input_register_allocator, output_register_allocator;
/* Input first wants to map in register -> register */
layout.ForEachInputArgument(procedure_layout.GetInputLayout(), [&](Parameter parameter) {
AddRegisterParameter(layout.input, input_register_allocator, parameter);
});
/* And then input wants to map in stack -> stack */
layout.ForEachInputArgument(procedure_layout.GetInputLayout(), [&](Parameter parameter) {
AddStackParameter(layout.input, input_register_allocator, parameter);
});
/* And then input wants to map in indirects -> register */
layout.ForEachInputPointerArgument(procedure_layout.GetInputLayout(), [&](Parameter parameter) {
AddIndirectParameter<AbiType>(layout.input, input_register_allocator, parameter);
});
/* Handle the return type. */
if (procedure_layout.GetOutputLayout().GetNumParameters() > 0) {
if (procedure_layout.GetOutputLayout().GetNumParameters() != 1) {
std::abort();
}
const auto return_param = procedure_layout.GetOutputLayout().GetParameter(0);
if (return_param.GetIdentifier() != Parameter::Identifier("ReturnType")) {
std::abort();
}
AddRegisterParameter(layout.output, output_register_allocator, return_param);
}
/* Handle other outputs. */
layout.ForEachOutputArgument(procedure_layout.GetInputLayout(), [&](Parameter parameter) {
AddIndirectParameter<AbiType>(layout.output, output_register_allocator, parameter);
});
return layout;
}
constexpr ParameterLayout GetInputLayout() const {
return this->input;
}
constexpr ParameterLayout GetOutputLayout() const {
return this->output;
}
};
}

View file

@ -0,0 +1,491 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "svc_codegen_impl_common.hpp"
#include "svc_codegen_impl_parameter.hpp"
#include "svc_codegen_impl_layout.hpp"
#include "svc_codegen_impl_meta_code.hpp"
namespace ams::svc::codegen::impl {
class LayoutConversionBase {
public:
enum class OperationKind {
Move,
LoadAndStore,
PackAndUnpack,
Scatter,
Invalid,
};
class OperationMoveImpl;
class OperationLoadAndStoreImpl;
class OperationPackAndUnpackImpl;
class OperationScatterImpl;
class OperationBase{};
template<OperationKind _Kind, size_t RS, size_t PS, size_t SO, size_t PIdx, size_t... SIdx>
class Operation : public OperationBase {
public:
static constexpr OperationKind Kind = _Kind;
static constexpr size_t RegisterSize = RS;
static constexpr size_t PassedSize = PS;
static constexpr size_t StackOffset = SO;
static constexpr size_t ProcedureIndex = PIdx;
static constexpr size_t NumSvcIndices = sizeof...(SIdx);
static constexpr std::array<size_t, sizeof...(SIdx)> SvcIndices = { SIdx... };
static constexpr std::index_sequence<SIdx...> SvcIndexSequence = {};
template<size_t I>
static constexpr size_t SvcIndex = SvcIndices[I];
template<typename F>
static void ForEachSvcIndex(F f) {
(f(SIdx), ...);
}
using ImplType = typename std::conditional<Kind == OperationKind::Move, OperationMoveImpl,
typename std::conditional<Kind == OperationKind::LoadAndStore, OperationLoadAndStoreImpl,
typename std::conditional<Kind == OperationKind::PackAndUnpack, OperationPackAndUnpackImpl,
typename std::conditional<Kind == OperationKind::Scatter, OperationScatterImpl,
void>::type>::type>::type>::type;
template<size_t NPIdx>
using ModifiedType = Operation<Kind, RS, PS, SO, NPIdx, SIdx...>;
};
template<size_t RS, size_t PS, size_t PIdx, size_t SIdx>
using OperationMove = Operation<OperationKind::Move, RS, PS, 0, PIdx, SIdx>;
template<size_t RS, size_t PS, size_t PIdx, size_t SIdx>
using OperationLoadAndStore = Operation<OperationKind::LoadAndStore, RS, PS, 0, PIdx, SIdx>;
template<size_t RS, size_t PS, size_t PIdx, size_t SIdx0, size_t SIdx1>
using OperationPackAndUnpack = Operation<OperationKind::PackAndUnpack, RS, PS, 0, PIdx, SIdx0, SIdx1>;
template<size_t RS, size_t PS, size_t SO, size_t PIdx, size_t... SIdx>
using OperationScatter = Operation<OperationKind::Scatter, RS, PS, SO, PIdx, SIdx...>;
class OperationMoveImpl {
public:
template<typename Operation, size_t N>
static constexpr bool CanGenerateCodeForSvcInvocationToKernelProcedure(RegisterAllocator<N> allocator) {
static_assert(Operation::Kind == OperationKind::Move);
allocator.Free(Operation::template SvcIndex<0>);
return allocator.TryAllocate(Operation::ProcedureIndex);
}
template<typename Operation, size_t N>
static constexpr void GenerateCodeForSvcInvocationToKernelProcedure(MetaCodeGenerator &mcg, RegisterAllocator<N> &allocator) {
static_assert(Operation::Kind == OperationKind::Move);
allocator.Free(Operation::template SvcIndex<0>);
allocator.Allocate(Operation::ProcedureIndex);
mcg.template MoveRegister<Operation::ProcedureIndex, Operation::template SvcIndex<0>>();
}
};
class OperationLoadAndStoreImpl {
public:
template<typename Operation, size_t N>
static constexpr bool CanGenerateCodeForSvcInvocationToKernelProcedure(RegisterAllocator<N> allocator) {
static_assert(Operation::Kind == OperationKind::LoadAndStore);
allocator.Free(Operation::template SvcIndex<0>);
return true;
}
template<typename Operation, size_t N>
static constexpr void GenerateCodeForSvcInvocationToKernelProcedure(MetaCodeGenerator &mcg, RegisterAllocator<N> &allocator) {
static_assert(Operation::Kind == OperationKind::LoadAndStore);
allocator.Free(Operation::template SvcIndex<0>);
constexpr size_t StackOffset = Operation::ProcedureIndex * Operation::RegisterSize;
mcg.template StoreToStack<Operation::template SvcIndex<0>, StackOffset>();
}
};
class OperationPackAndUnpackImpl {
public:
template<typename Operation, size_t N>
static constexpr bool CanGenerateCodeForSvcInvocationToKernelProcedure(RegisterAllocator<N> allocator) {
static_assert(Operation::Kind == OperationKind::PackAndUnpack);
allocator.Free(Operation::template SvcIndex<0>);
allocator.Free(Operation::template SvcIndex<1>);
return allocator.TryAllocate(Operation::ProcedureIndex);
}
template<typename Operation, size_t N>
static constexpr void GenerateCodeForSvcInvocationToKernelProcedure(MetaCodeGenerator &mcg, RegisterAllocator<N> &allocator) {
static_assert(Operation::Kind == OperationKind::PackAndUnpack);
allocator.Free(Operation::template SvcIndex<0>);
allocator.Free(Operation::template SvcIndex<1>);
allocator.Allocate(Operation::ProcedureIndex);
mcg.template Pack<Operation::ProcedureIndex, Operation::template SvcIndex<0>, Operation::template SvcIndex<1>>();
}
template<typename Operation>
static constexpr void GenerateCodeForPrepareForKernelProcedureToSvcInvocation(MetaCodeGenerator &mcg) {
static_assert(Operation::Kind == OperationKind::PackAndUnpack);
/* ... */
}
template<typename Operation>
static constexpr void GenerateCodeForKernelProcedureToSvcInvocation(MetaCodeGenerator &mcg) {
static_assert(Operation::Kind == OperationKind::PackAndUnpack);
mcg.template Unpack<Operation::template SvcIndex<0>, Operation::template SvcIndex<1>, Operation::ProcedureIndex>();
}
};
class OperationScatterImpl {
public:
template<typename Operation, size_t N>
static constexpr bool CanGenerateCodeForSvcInvocationToKernelProcedure(RegisterAllocator<N> allocator) {
static_assert(Operation::Kind == OperationKind::Scatter);
[&allocator]<size_t... SvcIndex>(std::index_sequence<SvcIndex...>) {
(allocator.Free(SvcIndex), ...);
}(Operation::SvcIndexSequence);
return allocator.TryAllocate(Operation::ProcedureIndex);
}
template<typename Operation, size_t N>
static constexpr void GenerateCodeForSvcInvocationToKernelProcedure(MetaCodeGenerator &mcg, RegisterAllocator<N> &allocator) {
static_assert(Operation::Kind == OperationKind::Scatter);
[&allocator]<size_t... SvcIndex>(std::index_sequence<SvcIndex...>) {
(allocator.Free(SvcIndex), ...);
}(Operation::SvcIndexSequence);
allocator.Allocate(Operation::ProcedureIndex);
[&mcg]<size_t... Is>(std::index_sequence<Is...>) {
(mcg.template StoreToStack<Operation::template SvcIndex<Is>, Operation::StackOffset + Operation::RegisterSize * (Is), Operation::RegisterSize>(), ...);
}(std::make_index_sequence<Operation::NumSvcIndices>());
mcg.template LoadStackAddress<Operation::ProcedureIndex, Operation::StackOffset>();
}
template<typename Operation>
static constexpr void GenerateCodeForPrepareForKernelProcedureToSvcInvocation(MetaCodeGenerator &mcg) {
static_assert(Operation::Kind == OperationKind::Scatter);
[&mcg]<size_t... Is>(std::index_sequence<Is...>) {
(mcg.template StoreToStack<Operation::template SvcIndex<Is>, Operation::StackOffset + Operation::RegisterSize * (Is), Operation::RegisterSize>(), ...);
}(std::make_index_sequence<Operation::NumSvcIndices>());
mcg.template LoadStackAddress<Operation::ProcedureIndex, Operation::StackOffset>();
}
template<typename Operation>
static constexpr void GenerateCodeForKernelProcedureToSvcInvocation(MetaCodeGenerator &mcg) {
static_assert(Operation::Kind == OperationKind::Scatter);
[&mcg]<size_t... Is>(std::index_sequence<Is...>) {
(mcg.template LoadFromStack<Operation::template SvcIndex<Is>, Operation::StackOffset + Operation::RegisterSize * (Is), Operation::RegisterSize>(), ...);
}(std::make_index_sequence<Operation::NumSvcIndices>());
}
};
};
template<typename _SvcAbiType, typename _UserAbiType, typename _KernelAbiType, typename ReturnType, typename... ArgumentTypes>
class LayoutConversion {
public:
using SvcAbiType = _SvcAbiType;
using UserAbiType = _UserAbiType;
using KernelAbiType = _KernelAbiType;
static constexpr auto LayoutForUser = ProcedureLayout::Create<UserAbiType, ReturnType, ArgumentTypes...>();
static constexpr auto LayoutForSvc = SvcInvocationLayout::Create<SvcAbiType>(LayoutForUser);
static constexpr auto LayoutForKernel = ProcedureLayout::Create<KernelAbiType, ReturnType, ArgumentTypes...>();
private:
template<bool Input, size_t ParameterIndex = 0, size_t Used = 0>
static constexpr size_t DetermineUsedStackIndices() {
[[maybe_unused]] constexpr auto Procedure = LayoutForKernel;
[[maybe_unused]] constexpr ParameterLayout Svc = Input ? LayoutForSvc.GetInputLayout() : LayoutForSvc.GetOutputLayout();
if constexpr (ParameterIndex >= Svc.GetNumParameters()) {
/* Base case: we're done. */
return Used;
} else {
/* We're processing more parameters. */
constexpr Parameter SvcParam = Svc.GetParameter(ParameterIndex);
constexpr Parameter ProcedureParam = Procedure.GetParameter(SvcParam.GetIdentifier());
if constexpr (SvcParam.IsPassedByPointer() == ProcedureParam.IsPassedByPointer()) {
/* We're not scattering, so stack won't be used. */
return DetermineUsedStackIndices<Input, ParameterIndex + 1, Used>();
} else {
/* We're scattering, and so we're using stack. */
static_assert(ProcedureParam.GetNumLocations() == 1);
constexpr size_t IndicesPerRegister = KernelAbiType::RegisterSize / SvcAbiType::RegisterSize;
static_assert(IndicesPerRegister > 0);
constexpr size_t RequiredCount = util::AlignUp(SvcParam.GetNumLocations(), IndicesPerRegister) / IndicesPerRegister;
return DetermineUsedStackIndices<Input, ParameterIndex + 1, Used + RequiredCount>();
}
}
}
static constexpr size_t AbiUsedStackIndices = [] {
constexpr auto KernLayout = LayoutForKernel.GetInputLayout();
size_t used = 0;
for (size_t i = 0; i < KernLayout.GetNumParameters(); i++) {
const auto Param = KernLayout.GetParameter(i);
for (size_t j = 0; j < Param.GetNumLocations(); j++) {
const auto Loc = Param.GetLocation(j);
if (Loc.GetStorage() == Storage::Stack) {
used = std::max(used, Loc.GetIndex() + 1);
}
}
}
return used;
}();
static constexpr size_t BeforeUsedStackIndices = DetermineUsedStackIndices<true>();
static constexpr size_t AfterUsedStackIndices = DetermineUsedStackIndices<false>();
template<bool Input, size_t ParameterIndex, size_t LocationIndex>
static constexpr auto ZipMoveOperations() {
constexpr auto Procedure = LayoutForKernel;
constexpr ParameterLayout Svc = Input ? LayoutForSvc.GetInputLayout() : LayoutForSvc.GetOutputLayout();
static_assert(ParameterIndex < Svc.GetNumParameters());
constexpr Parameter SvcParam = Svc.GetParameter(ParameterIndex);
constexpr Parameter ProcedureParam = Procedure.GetParameter(SvcParam.GetIdentifier());
static_assert(SvcParam.IsPassedByPointer() == ProcedureParam.IsPassedByPointer());
static_assert(SvcParam.GetNumLocations() == ProcedureParam.GetNumLocations());
if constexpr (LocationIndex >= SvcParam.GetNumLocations()) {
/* Base case: we're done. */
return std::tuple<>{};
} else {
constexpr Location SvcLoc = SvcParam.GetLocation(LocationIndex);
constexpr Location ProcedureLoc = ProcedureParam.GetLocation(LocationIndex);
if constexpr (SvcLoc == ProcedureLoc) {
/* No need to emit an operation if we're not changing where we are. */
return ZipMoveOperations<Input, ParameterIndex, LocationIndex + 1>();
} else {
/* Svc location needs to be in a register. */
static_assert(SvcLoc.GetStorage() == Storage::Register);
constexpr size_t Size = KernelAbiType::RegisterSize;
if constexpr (ProcedureLoc.GetStorage() == Storage::Register) {
using OperationType = LayoutConversionBase::OperationMove<Size, Size, ProcedureLoc.GetIndex(), SvcLoc.GetIndex()>;
constexpr auto cur_op = std::make_tuple(OperationType{});
return std::tuple_cat(cur_op, ZipMoveOperations<Input, ParameterIndex, LocationIndex + 1>());
} else {
using OperationType = LayoutConversionBase::OperationLoadAndStore<Size, Size, ProcedureLoc.GetIndex(), SvcLoc.GetIndex()>;
constexpr auto cur_op = std::make_tuple(OperationType{});
return std::tuple_cat(cur_op, ZipMoveOperations<Input, ParameterIndex, LocationIndex + 1>());
}
}
}
}
template<bool Input, size_t ParameterIndex, size_t StackIndex>
static constexpr auto DetermineConversionOperations() {
[[maybe_unused]] constexpr auto Procedure = LayoutForKernel;
[[maybe_unused]] constexpr ParameterLayout Svc = Input ? LayoutForSvc.GetInputLayout() : LayoutForSvc.GetOutputLayout();
[[maybe_unused]] constexpr std::array<size_t, Svc.GetNumParameters()> ParameterMap = []<typename SvcHolder>(SvcHolder){
/* We want to iterate over the parameters in sorted order. */
constexpr ParameterLayout CapturedSvc = UNWRAP_TEMPLATE_CONSTANT(SvcHolder);
std::array<size_t, CapturedSvc.GetNumParameters()> map{};
const size_t num_parameters = CapturedSvc.GetNumParameters();
for (size_t i = 0; i < num_parameters; i++) {
map[i] = i;
}
for (size_t i = 1; i < num_parameters; i++) {
for (size_t j = i; j > 0 && CapturedSvc.GetParameter(map[j-1]).GetLocation(0) > CapturedSvc.GetParameter(map[j]).GetLocation(0); j--) {
/* std::swap is not constexpr until c++20 :( */
/* TODO: std::swap(map[j], map[j-1]); */
const size_t tmp = map[j];
map[j] = map[j-1];
map[j-1] = tmp;
}
}
return map;
}(WRAP_TEMPLATE_CONSTANT(Svc));
if constexpr (ParameterIndex >= Svc.GetNumParameters()) {
/* Base case: we're done. */
if constexpr (Input) {
static_assert(StackIndex == BeforeUsedStackIndices + AbiUsedStackIndices);
} else {
static_assert(StackIndex == AfterUsedStackIndices + BeforeUsedStackIndices + AbiUsedStackIndices);
}
return std::tuple<>{};
} else {
/* We're processing more parameters. */
constexpr Parameter SvcParam = Svc.GetParameter(ParameterMap[ParameterIndex]);
constexpr Parameter ProcedureParam = Procedure.GetParameter(SvcParam.GetIdentifier());
if constexpr (SvcParam.IsPassedByPointer() == ProcedureParam.IsPassedByPointer()) {
if constexpr (SvcParam.GetNumLocations() == ProcedureParam.GetNumLocations()) {
/* Normal moves and loads/stores. */
return std::tuple_cat(ZipMoveOperations<Input, ParameterMap[ParameterIndex], 0>(), DetermineConversionOperations<Input, ParameterIndex + 1, StackIndex>());
} else {
/* We're packing. */
/* Make sure we're handling the 2 -> 1 case. */
static_assert(SvcParam.GetNumLocations() == 2);
static_assert(ProcedureParam.GetNumLocations() == 1);
constexpr Location ProcedureLoc = ProcedureParam.GetLocation(0);
constexpr Location SvcLoc0 = SvcParam.GetLocation(0);
constexpr Location SvcLoc1 = SvcParam.GetLocation(1);
static_assert(ProcedureLoc.GetStorage() == Storage::Register);
static_assert(SvcLoc0.GetStorage() == Storage::Register);
static_assert(SvcLoc1.GetStorage() == Storage::Register);
constexpr size_t Size = KernelAbiType::RegisterSize;
using OperationType = LayoutConversionBase::OperationPackAndUnpack<Size, Size, ProcedureLoc.GetIndex(), SvcLoc0.GetIndex(), SvcLoc1.GetIndex()>;
constexpr auto cur_op = std::make_tuple(OperationType{});
return std::tuple_cat(cur_op, DetermineConversionOperations<Input, ParameterIndex + 1, StackIndex>());
}
} else {
/* One operation, since we're scattering. */
static_assert(ProcedureParam.GetNumLocations() == 1);
constexpr Location ProcedureLoc = ProcedureParam.GetLocation(0);
constexpr size_t IndicesPerRegister = KernelAbiType::RegisterSize / SvcAbiType::RegisterSize;
static_assert(IndicesPerRegister > 0);
constexpr size_t RequiredCount = util::AlignUp(SvcParam.GetNumLocations(), IndicesPerRegister) / IndicesPerRegister;
if constexpr (ProcedureLoc.GetStorage() == Storage::Register) {
/* Scattering. In register during kernel call. */
constexpr size_t RegisterSize = SvcAbiType::RegisterSize;
constexpr size_t PassedSize = ProcedureParam.GetTypeSize();
/* TODO: C++20 templated lambdas. For now, use GCC extension syntax. */
constexpr auto SvcIndexSequence = []<typename SvcParamWrapper, size_t... Is>(SvcParamWrapper, std::index_sequence<Is...>) {
constexpr Parameter CapturedSvcParam = UNWRAP_TEMPLATE_CONSTANT(SvcParamWrapper);
return std::index_sequence<CapturedSvcParam.GetLocation(Is).GetIndex()...>{};
}(WRAP_TEMPLATE_CONSTANT(SvcParam), std::make_index_sequence<SvcParam.GetNumLocations()>());
constexpr auto OperationValue = []<typename ProcedureLocWrapper, size_t... Is>(ProcedureLocWrapper, std::index_sequence<Is...>) {
constexpr Location CapturedProcedureLoc = UNWRAP_TEMPLATE_CONSTANT(ProcedureLocWrapper);
return LayoutConversionBase::OperationScatter<RegisterSize, PassedSize, StackIndex * KernelAbiType::RegisterSize, CapturedProcedureLoc.GetIndex(), Is...>{};
}(WRAP_TEMPLATE_CONSTANT(ProcedureLoc), SvcIndexSequence);
constexpr auto cur_op = std::make_tuple(OperationValue);
return std::tuple_cat(cur_op, DetermineConversionOperations<Input, ParameterIndex + 1, StackIndex + RequiredCount>());
} else {
/* TODO: How should on-stack-during-kernel-call be handled? */
static_assert(ProcedureLoc.GetStorage() == Storage::Register);
}
}
}
}
static constexpr size_t PreserveRegisterStartIndex = SvcAbiType::ArgumentRegisterCount;
static constexpr size_t PreserveRegisterEndIndex = std::min(KernelAbiType::ArgumentRegisterCount, SvcAbiType::RegisterCount);
static constexpr size_t ClearRegisterStartIndex = 0;
static constexpr size_t ClearRegisterEndIndex = std::min(KernelAbiType::ArgumentRegisterCount, SvcAbiType::RegisterCount);
template<size_t Index>
static constexpr bool ShouldPreserveRegister = (PreserveRegisterStartIndex <= Index && Index < PreserveRegisterEndIndex) &&
LayoutForSvc.GetInputLayout().IsRegisterFree(Index) && LayoutForSvc.GetOutputLayout().IsRegisterFree(Index);
template<size_t Index>
static constexpr bool ShouldClearRegister = (ClearRegisterStartIndex <= Index && Index < ClearRegisterEndIndex) &&
LayoutForSvc.GetOutputLayout().IsRegisterFree(Index) && !ShouldPreserveRegister<Index>;
template<size_t Index = PreserveRegisterStartIndex>
static constexpr auto DeterminePreserveRegisters() {
static_assert(PreserveRegisterStartIndex <= Index && Index <= PreserveRegisterEndIndex);
if constexpr (Index >= PreserveRegisterEndIndex) {
/* Base case: we're done. */
return std::index_sequence<>{};
} else {
if constexpr (ShouldPreserveRegister<Index>) {
/* Preserve this register. */
return IndexSequenceCat(std::index_sequence<Index>{}, DeterminePreserveRegisters<Index + 1>());
} else {
/* We don't need to preserve register, so we can skip onwards. */
return IndexSequenceCat(std::index_sequence<>{}, DeterminePreserveRegisters<Index + 1>());
}
}
}
template<size_t Index = ClearRegisterStartIndex>
static constexpr auto DetermineClearRegisters() {
static_assert(ClearRegisterStartIndex <= Index && Index <= ClearRegisterEndIndex);
if constexpr (Index >= ClearRegisterEndIndex) {
/* Base case: we're done. */
return std::index_sequence<>{};
} else {
if constexpr (ShouldClearRegister<Index>) {
/* Clear this register. */
return IndexSequenceCat(std::index_sequence<Index>{}, DetermineClearRegisters<Index + 1>());
} else {
/* We don't need to preserve register, so we can skip onwards. */
return IndexSequenceCat(std::index_sequence<>{}, DetermineClearRegisters<Index + 1>());
}
}
}
public:
static constexpr size_t NonAbiUsedStackIndices = AfterUsedStackIndices + BeforeUsedStackIndices;
using BeforeOperations = decltype(DetermineConversionOperations<true, 0, AbiUsedStackIndices>());
using AfterOperations = decltype(DetermineConversionOperations<false, 0, AbiUsedStackIndices + BeforeUsedStackIndices>());
static constexpr size_t NumBeforeOperations = std::tuple_size<BeforeOperations>::value;
static constexpr size_t NumAfterOperations = std::tuple_size<AfterOperations>::value;
using PreserveRegisters = decltype(DeterminePreserveRegisters());
using ClearRegisters = decltype(DetermineClearRegisters());
static constexpr size_t NumPreserveRegisters = PreserveRegisters::size();
static constexpr size_t NumClearRegisters = ClearRegisters::size();
static constexpr auto PreserveRegistersArray = ConvertToArray(PreserveRegisters{});
static constexpr auto ClearRegistersArray = ConvertToArray(ClearRegisters{});
public:
template<typename Operation, CodeGenerationKind CodeGenKind, size_t N>
static constexpr bool CanGenerateCode(RegisterAllocator<N> allocator) {
if constexpr (CodeGenKind == CodeGenerationKind::SvcInvocationToKernelProcedure) {
return Operation::ImplType::template CanGenerateCodeForSvcInvocationToKernelProcedure<Operation>(allocator);
} else {
static_assert(CodeGenKind != CodeGenKind, "Invalid CodeGenerationKind");
}
}
template<typename Operation, CodeGenerationKind CodeGenKind, size_t N>
static constexpr void GenerateCode(MetaCodeGenerator &mcg, RegisterAllocator<N> &allocator) {
if constexpr (CodeGenKind == CodeGenerationKind::SvcInvocationToKernelProcedure) {
Operation::ImplType::template GenerateCodeForSvcInvocationToKernelProcedure<Operation>(mcg, allocator);
} else if constexpr (CodeGenKind == CodeGenerationKind::PrepareForKernelProcedureToSvcInvocation) {
Operation::ImplType::template GenerateCodeForPrepareForKernelProcedureToSvcInvocation<Operation>(mcg);
} else if constexpr (CodeGenKind == CodeGenerationKind::KernelProcedureToSvcInvocation) {
Operation::ImplType::template GenerateCodeForKernelProcedureToSvcInvocation<Operation>(mcg);
} else {
static_assert(CodeGenKind != CodeGenKind, "Invalid CodeGenerationKind");
}
}
};
}

View file

@ -0,0 +1,236 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "svc_codegen_impl_common.hpp"
namespace ams::svc::codegen::impl {
class MetaCode {
public:
static constexpr size_t MaxOperations = 0x40;
enum class OperationKind {
SaveRegisters,
RestoreRegisters,
ClearRegisters,
AllocateStackSpace,
FreeStackSpace,
MoveRegister,
LoadFromStack,
LoadPairFromStack,
StoreToStack,
StorePairToStack,
Pack,
Unpack,
LoadStackAddress,
};
static constexpr const char *GetOperationKindName(OperationKind k) {
#define META_CODE_OPERATION_KIND_ENUM_CASE(s) case OperationKind::s: return #s
switch (k) {
META_CODE_OPERATION_KIND_ENUM_CASE(SaveRegisters);
META_CODE_OPERATION_KIND_ENUM_CASE(RestoreRegisters);
META_CODE_OPERATION_KIND_ENUM_CASE(ClearRegisters);
META_CODE_OPERATION_KIND_ENUM_CASE(AllocateStackSpace);
META_CODE_OPERATION_KIND_ENUM_CASE(FreeStackSpace);
META_CODE_OPERATION_KIND_ENUM_CASE(MoveRegister);
META_CODE_OPERATION_KIND_ENUM_CASE(LoadFromStack);
META_CODE_OPERATION_KIND_ENUM_CASE(LoadPairFromStack);
META_CODE_OPERATION_KIND_ENUM_CASE(StoreToStack);
META_CODE_OPERATION_KIND_ENUM_CASE(StorePairToStack);
META_CODE_OPERATION_KIND_ENUM_CASE(Pack);
META_CODE_OPERATION_KIND_ENUM_CASE(Unpack);
META_CODE_OPERATION_KIND_ENUM_CASE(LoadStackAddress);
default:
std::abort();
}
#undef META_CODE_OPERATION_KIND_ENUM_CASE
}
struct Operation {
OperationKind kind;
size_t num_parameters;
size_t parameters[16];
};
template<OperationKind Kind, size_t... Is>
static constexpr inline Operation MakeOperation() {
Operation op = {};
static_assert(sizeof...(Is) <= sizeof(op.parameters) / sizeof(op.parameters[0]));
op.kind = Kind;
op.num_parameters = sizeof...(Is);
size_t i = 0;
((op.parameters[i++] = Is), ...);
return op;
}
private:
size_t num_operations;
std::array<Operation, MaxOperations> operations;
public:
constexpr explicit MetaCode() : num_operations(0), operations() { /* ... */ }
constexpr size_t GetNumOperations() const {
return this->num_operations;
}
constexpr Operation GetOperation(size_t i) const {
return this->operations[i];
}
constexpr void AddOperation(Operation op) {
this->operations[this->num_operations++] = op;
}
};
template<typename _OperationHolder>
static constexpr auto GetOperationParameterSequence() {
constexpr auto _Operation = UNWRAP_TEMPLATE_CONSTANT(_OperationHolder);
constexpr size_t NumParameters = _Operation.num_parameters;
return []<typename OperationHolder, size_t... Is>(OperationHolder, std::index_sequence<Is...>) {
constexpr auto Operation = UNWRAP_TEMPLATE_CONSTANT(OperationHolder);
return std::index_sequence<Operation.parameters[Is]...>{};
}(_OperationHolder{}, std::make_index_sequence<NumParameters>());
}
template<typename CodeGenerator, MetaCode::OperationKind Kind, size_t... Parameters>
static ALWAYS_INLINE void GenerateCodeForOperationImpl(std::index_sequence<Parameters...>) {
#define META_CODE_OPERATION_KIND_GENERATE_CODE(KIND) else if constexpr (Kind == MetaCode::OperationKind::KIND) { CodeGenerator::template KIND<Parameters...>(); }
if constexpr (false) { /* ... */ }
META_CODE_OPERATION_KIND_GENERATE_CODE(SaveRegisters)
META_CODE_OPERATION_KIND_GENERATE_CODE(RestoreRegisters)
META_CODE_OPERATION_KIND_GENERATE_CODE(ClearRegisters)
META_CODE_OPERATION_KIND_GENERATE_CODE(AllocateStackSpace)
META_CODE_OPERATION_KIND_GENERATE_CODE(FreeStackSpace)
META_CODE_OPERATION_KIND_GENERATE_CODE(MoveRegister)
META_CODE_OPERATION_KIND_GENERATE_CODE(LoadFromStack)
META_CODE_OPERATION_KIND_GENERATE_CODE(LoadPairFromStack)
META_CODE_OPERATION_KIND_GENERATE_CODE(StoreToStack)
META_CODE_OPERATION_KIND_GENERATE_CODE(StorePairToStack)
META_CODE_OPERATION_KIND_GENERATE_CODE(Pack)
META_CODE_OPERATION_KIND_GENERATE_CODE(Unpack)
META_CODE_OPERATION_KIND_GENERATE_CODE(LoadStackAddress)
else { static_assert(Kind != Kind, "Unknown MetaOperationKind"); }
#undef META_CODE_OPERATION_KIND_GENERATE_CODE
}
template<typename CodeGenerator, typename OperationHolder>
static ALWAYS_INLINE void GenerateCodeForOperation(OperationHolder) {
constexpr auto Operation = UNWRAP_TEMPLATE_CONSTANT(OperationHolder);
GenerateCodeForOperationImpl<CodeGenerator, Operation.kind>(GetOperationParameterSequence<OperationHolder>());
}
class MetaCodeGenerator {
private:
using OperationKind = typename MetaCode::OperationKind;
private:
MetaCode meta_code;
public:
constexpr explicit MetaCodeGenerator() : meta_code() { /* ... */ }
constexpr MetaCode GetMetaCode() const {
return this->meta_code;
}
constexpr void AddOperationDirectly(MetaCode::Operation op) {
this->meta_code.AddOperation(op);
}
template<size_t... Registers>
constexpr void SaveRegisters() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::SaveRegisters, Registers...>();
this->meta_code.AddOperation(op);
}
template<size_t... Registers>
constexpr void RestoreRegisters() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::RestoreRegisters, Registers...>();
this->meta_code.AddOperation(op);
}
template<size_t... Registers>
constexpr void ClearRegisters() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::ClearRegisters, Registers...>();
this->meta_code.AddOperation(op);
}
template<size_t Size>
constexpr void AllocateStackSpace() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::AllocateStackSpace, Size>();
this->meta_code.AddOperation(op);
}
template<size_t Size>
constexpr void FreeStackSpace() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::FreeStackSpace, Size>();
this->meta_code.AddOperation(op);
}
template<size_t Dst, size_t Src>
constexpr void MoveRegister() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::MoveRegister, Dst, Src>();
this->meta_code.AddOperation(op);
}
template<size_t Reg, size_t Offset, size_t Size = 0>
constexpr void LoadFromStack() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::LoadFromStack, Reg, Offset, Size>();
this->meta_code.AddOperation(op);
}
template<size_t Reg0, size_t Reg1, size_t Offset, size_t Size>
constexpr void LoadPairFromStack() {
static_assert(Offset % Size == 0);
constexpr auto op = MetaCode::MakeOperation<OperationKind::LoadPairFromStack, Reg0, Reg1, Offset, Size>();
this->meta_code.AddOperation(op);
}
template<size_t Reg, size_t Offset, size_t Size = 0>
constexpr void StoreToStack() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::StoreToStack, Reg, Offset, Size>();
this->meta_code.AddOperation(op);
}
template<size_t Reg0, size_t Reg1, size_t Offset, size_t Size>
constexpr void StorePairToStack() {
static_assert(Offset % Size == 0);
constexpr auto op = MetaCode::MakeOperation<OperationKind::StorePairToStack, Reg0, Reg1, Offset, Size>();
this->meta_code.AddOperation(op);
}
template<size_t Dst, size_t Low, size_t High>
constexpr void Pack() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::Pack, Dst, Low, High>();
this->meta_code.AddOperation(op);
}
template<size_t Low, size_t High, size_t Src>
constexpr void Unpack() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::Unpack, Low, High, Src>();
this->meta_code.AddOperation(op);
}
template<size_t Dst, size_t Offset>
constexpr void LoadStackAddress() {
constexpr auto op = MetaCode::MakeOperation<OperationKind::LoadStackAddress, Dst, Offset>();
this->meta_code.AddOperation(op);
}
};
}

View file

@ -0,0 +1,192 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "svc_codegen_impl_common.hpp"
namespace ams::svc::codegen::impl {
enum class Storage {
Register,
Stack,
Invalid,
};
class Location {
private:
static constexpr size_t InvalidIndex = std::numeric_limits<size_t>::max();
private:
Storage storage;
size_t index;
public:
constexpr explicit Location() : storage(Storage::Invalid), index(InvalidIndex) { /* ... */ }
constexpr explicit Location(Storage s, size_t i) : storage(s), index(i) { /* ... */ }
constexpr size_t GetIndex() const { return this->index; }
constexpr Storage GetStorage() const { return this->storage; }
constexpr bool IsValid() const {
return this->index != InvalidIndex && this->storage != Storage::Invalid;
}
constexpr bool operator==(const Location &rhs) const {
return this->index == rhs.index && this->storage == rhs.storage;
}
constexpr bool operator<(const Location &rhs) const {
if (this->storage < rhs.storage) {
return true;
} else if (this->storage > rhs.storage) {
return false;
} else {
return this->index < rhs.index;
}
}
constexpr bool operator>(const Location &rhs) const {
if (this->storage > rhs.storage) {
return true;
} else if (this->storage < rhs.storage) {
return false;
} else {
return this->index > rhs.index;
}
}
constexpr bool operator!=(const Location &rhs) const {
return !(*this == rhs);
}
};
class Parameter {
public:
static constexpr size_t MaxLocations = 8;
static constexpr size_t IdentifierLengthMax = 0x40;
class Identifier {
private:
char name[IdentifierLengthMax];
size_t index;
public:
constexpr explicit Identifier() : name(), index() { /* ... */ }
constexpr explicit Identifier(const char *nm, size_t idx = 0) : name(), index(idx) {
for (size_t i = 0; i < IdentifierLengthMax && nm[i]; i++) {
this->name[i] = nm[i];
}
}
constexpr bool operator==(const Identifier &rhs) const {
for (size_t i = 0; i < IdentifierLengthMax; i++) {
if (this->name[i] != rhs.name[i]) {
return false;
}
}
return this->index == rhs.index;
}
constexpr bool operator!=(const Identifier &rhs) const {
return !(*this == rhs);
}
};
private:
Identifier identifier;
ArgumentType type;
size_t type_size;
size_t passed_size;
bool passed_by_pointer;
size_t num_locations;
Location locations[MaxLocations];
public:
constexpr explicit Parameter()
: identifier(), type(ArgumentType::Invalid), type_size(0), passed_size(0), passed_by_pointer(0), num_locations(0), locations()
{ /* ... */ }
constexpr explicit Parameter(Identifier id, ArgumentType t, size_t ts, size_t ps, bool p, Location l)
: identifier(id), type(t), type_size(ts), passed_size(ps), passed_by_pointer(p), num_locations(1), locations()
{
this->locations[0] = l;
}
constexpr Identifier GetIdentifier() const {
return this->identifier;
}
constexpr bool Is(Identifier rhs) const {
return this->identifier == rhs;
}
constexpr ArgumentType GetArgumentType() const {
return this->type;
}
constexpr size_t GetTypeSize() const {
return this->type_size;
}
constexpr size_t GetPassedSize() const {
return this->passed_size;
}
constexpr bool IsPassedByPointer() const {
return this->passed_by_pointer;
}
constexpr size_t GetNumLocations() const {
return this->num_locations;
}
constexpr Location GetLocation(size_t i) const {
return this->locations[i];
}
constexpr void AddLocation(Location l) {
this->locations[this->num_locations++] = l;
}
constexpr bool UsesLocation(Location l) const {
for (size_t i = 0; i < this->num_locations; i++) {
if (this->locations[i] == l) {
return true;
}
}
return false;
}
constexpr bool operator==(const Parameter &rhs) const {
if (!(this->identifier == rhs.identifier &&
this->type == rhs.type &&
this->type_size == rhs.type_size &&
this->passed_size == rhs.passed_size &&
this->passed_by_pointer == rhs.passed_by_pointer &&
this->num_locations == rhs.num_locations))
{
return false;
}
for (size_t i = 0; i < this->num_locations; i++) {
if (!(this->locations[i] == rhs.locations[i])) {
return false;
}
}
return true;
}
constexpr bool operator!=(const Parameter &rhs) const {
return !(*this == rhs);
}
};
}

View file

@ -0,0 +1,51 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "svc_codegen_impl_kernel_svc_wrapper.hpp"
namespace ams::svc::codegen {
#if defined(ATMOSPHERE_ARCH_ARM64) || defined(ATMOSPHERE_ARCH_ARM)
template<auto Function64, auto Function64From32>
class KernelSvcWrapper {
private:
/* TODO: using Aarch32 = */
using Aarch64 = impl::KernelSvcWrapperHelper<impl::Aarch64SvcInvokeAbi, impl::Aarch64Lp64Abi, impl::Aarch64Lp64Abi, Function64>;
using Aarch64From32 = impl::KernelSvcWrapperHelper<impl::Aarch32SvcInvokeAbi, impl::Aarch32Ilp32Abi, impl::Aarch64Lp64Abi, Function64From32>;
public:
/* Set omit-frame-pointer to prevent GCC from emitting MOV X29, SP instructions. */
#pragma GCC push_options
#pragma GCC optimize ("omit-frame-pointer")
static ALWAYS_INLINE void Call64() {
Aarch64::WrapSvcFunction();
}
static ALWAYS_INLINE void Call64From32() {
Aarch64From32::WrapSvcFunction();
}
#pragma GCC pop_options
};
#else
#error "Unknown architecture for Kernel SVC Code Generation"
#endif
}

View file

@ -0,0 +1,23 @@
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
/* NOTE: This header must not be included by svc.hpp. */
#include "svc_common.hpp"
#include "svc_types.hpp"
#include "svc_definitions.hpp"
#include "codegen/svc_codegen_kernel_svc_wrapper.hpp"

View file

@ -20,13 +20,13 @@
#define AMS_SVC_KERN_INPUT_HANDLER(TYPE, NAME) TYPE NAME #define AMS_SVC_KERN_INPUT_HANDLER(TYPE, NAME) TYPE NAME
#define AMS_SVC_KERN_OUTPUT_HANDLER(TYPE, NAME) TYPE *NAME #define AMS_SVC_KERN_OUTPUT_HANDLER(TYPE, NAME) TYPE *NAME
#define AMS_SVC_KERN_INPTR_HANDLER(TYPE, NAME) ::ams::kern::KUserPointer<const TYPE *> NAME #define AMS_SVC_KERN_INPTR_HANDLER(TYPE, NAME) ::ams::kern::svc::KUserPointer<const TYPE *> NAME
#define AMS_SVC_KERN_OUTPTR_HANDLER(TYPE, NAME) ::ams::kern::KUserPointer<TYPE *> NAME #define AMS_SVC_KERN_OUTPTR_HANDLER(TYPE, NAME) ::ams::kern::svc::KUserPointer<TYPE *> NAME
#define AMS_SVC_USER_INPUT_HANDLER(TYPE, NAME) TYPE NAME #define AMS_SVC_USER_INPUT_HANDLER(TYPE, NAME) TYPE NAME
#define AMS_SVC_USER_OUTPUT_HANDLER(TYPE, NAME) TYPE *NAME #define AMS_SVC_USER_OUTPUT_HANDLER(TYPE, NAME) TYPE *NAME
#define AMS_SVC_USER_INPTR_HANDLER(TYPE, NAME) const TYPE *NAME #define AMS_SVC_USER_INPTR_HANDLER(TYPE, NAME) ::ams::svc::UserPointer<const TYPE *> NAME
#define AMS_SVC_USER_OUTPTR_HANDLER(TYPE, NAME) TYPE *NAME #define AMS_SVC_USER_OUTPTR_HANDLER(TYPE, NAME) ::ams::svc::UserPointer<TYPE *> NAME
#define AMS_SVC_FOREACH_DEFINITION_IMPL(HANDLER, NAMESPACE, INPUT, OUTPUT, INPTR, OUTPTR) \ #define AMS_SVC_FOREACH_DEFINITION_IMPL(HANDLER, NAMESPACE, INPUT, OUTPUT, INPTR, OUTPTR) \
HANDLER(0x01, Result, SetHeapSize, OUTPUT(::ams::svc::Address, out_address), INPUT(::ams::svc::Size, size)) \ HANDLER(0x01, Result, SetHeapSize, OUTPUT(::ams::svc::Address, out_address), INPUT(::ams::svc::Size, size)) \
@ -181,5 +181,49 @@ namespace ams::svc {
} }
/* NOTE: Change this to 1 to test the SVC definitions for user-pointer validity. */
#if 0
namespace ams::svc::test {
namespace impl {
template<typename... Ts>
struct Validator {
private:
std::array<bool, sizeof...(Ts)> valid;
public:
constexpr Validator(Ts... args) : valid{static_cast<bool>(args)...} { /* ... */ }
constexpr bool IsValid() const {
for (size_t i = 0; i < sizeof...(Ts); i++) {
if (!this->valid[i]) {
return false;
}
}
return true;
}
};
}
#define AMS_SVC_TEST_EMPTY_HANDLER(TYPE, NAME) true
#define AMS_SVC_TEST_INPTR_HANDLER(TYPE, NAME) (sizeof(::ams::svc::UserPointer<const TYPE *>) == sizeof(uintptr_t) && std::is_trivially_destructible<::ams::svc::UserPointer<const TYPE *>>::value)
#define AMS_SVC_TEST_OUTPTR_HANDLER(TYPE, NAME) (sizeof(::ams::svc::UserPointer<TYPE *>) == sizeof(uintptr_t) && std::is_trivially_destructible<::ams::svc::UserPointer<TYPE *>>::value)
#define AMS_SVC_TEST_VERIFY_USER_POINTERS(ID, RETURN_TYPE, NAME, ...) \
static_assert(impl::Validator(__VA_ARGS__).IsValid(), "Invalid User Pointer in svc::" #NAME);
AMS_SVC_FOREACH_DEFINITION_IMPL(AMS_SVC_TEST_VERIFY_USER_POINTERS, lp64, AMS_SVC_TEST_EMPTY_HANDLER, AMS_SVC_TEST_EMPTY_HANDLER, AMS_SVC_TEST_INPTR_HANDLER, AMS_SVC_TEST_OUTPTR_HANDLER);
AMS_SVC_FOREACH_DEFINITION_IMPL(AMS_SVC_TEST_VERIFY_USER_POINTERS, ilp32, AMS_SVC_TEST_EMPTY_HANDLER, AMS_SVC_TEST_EMPTY_HANDLER, AMS_SVC_TEST_INPTR_HANDLER, AMS_SVC_TEST_OUTPTR_HANDLER);
#undef AMS_SVC_TEST_VERIFY_USER_POINTERS
#undef AMS_SVC_TEST_INPTR_HANDLER
#undef AMS_SVC_TEST_OUTPTR_HANDLER
#undef AMS_SVC_TEST_EMPTY_HANDLER
}
#endif #endif
#endif /* ATMOSPHERE_IS_STRATOSPHERE */

View file

@ -17,6 +17,12 @@
#pragma once #pragma once
#include "svc_common.hpp" #include "svc_common.hpp"
namespace ams::kern::svc::impl {
struct KUserPointerTag{};
}
namespace ams::svc { namespace ams::svc {
/* Utility classes required to encode information into the type system for SVC veneers. */ /* Utility classes required to encode information into the type system for SVC veneers. */
@ -40,6 +46,24 @@ namespace ams::svc {
static_assert(sizeof(Address) == sizeof(uintptr_t)); static_assert(sizeof(Address) == sizeof(uintptr_t));
static_assert(std::is_trivially_destructible<Address>::value); static_assert(std::is_trivially_destructible<Address>::value);
namespace impl {
struct UserPointerTag{};
}
template<typename T>
struct UserPointer : impl::UserPointerTag {
public:
static_assert(std::is_pointer<T>::value);
static constexpr bool IsInput = std::is_const<typename std::remove_pointer<T>::type>::value;
private:
T pointer;
};
template<typename T>
static constexpr inline bool IsUserPointer = std::is_base_of<impl::UserPointerTag, T>::value;
using PhysicalAddress = u64; using PhysicalAddress = u64;
/* Memory types. */ /* Memory types. */