exo/vapours: refactor member variables to m_ over this->

This commit is contained in:
Michael Scire 2021-10-09 15:40:06 -07:00
parent 5a38311ebf
commit 67a45c97ef
55 changed files with 846 additions and 847 deletions

View file

@ -22,14 +22,14 @@ namespace ams::secmon::loader {
class Lz4Uncompressor { class Lz4Uncompressor {
private: private:
const u8 *src; const u8 *m_src;
size_t src_size; size_t m_src_size;
size_t src_offset; size_t m_src_offset;
u8 *dst; u8 *m_dst;
size_t dst_size; size_t m_dst_size;
size_t dst_offset; size_t m_dst_offset;
public: public:
Lz4Uncompressor(void *dst, size_t dst_size, const void *src, size_t src_size) : src(static_cast<const u8 *>(src)), src_size(src_size), src_offset(0), dst(static_cast<u8 *>(dst)), dst_size(dst_size), dst_offset(0) { Lz4Uncompressor(void *dst, size_t dst_size, const void *src, size_t src_size) : m_src(static_cast<const u8 *>(src)), m_src_size(src_size), m_src_offset(0), m_dst(static_cast<u8 *>(dst)), m_dst_size(dst_size), m_dst_offset(0) {
/* ... */ /* ... */
} }
@ -42,7 +42,7 @@ namespace ams::secmon::loader {
this->Copy(this->GetCopySize(control >> 4)); this->Copy(this->GetCopySize(control >> 4));
/* If we've exceeded size, we're done. */ /* If we've exceeded size, we're done. */
if (this->src_offset >= this->src_size) { if (m_src_offset >= m_src_size) {
break; break;
} }
@ -55,21 +55,21 @@ namespace ams::secmon::loader {
const size_t wide_copy_size = this->GetCopySize(control & 0xF); const size_t wide_copy_size = this->GetCopySize(control & 0xF);
/* Copy bytes. */ /* Copy bytes. */
const size_t end_offset = this->dst_offset + wide_copy_size + 4; const size_t end_offset = m_dst_offset + wide_copy_size + 4;
for (size_t cur_offset = this->dst_offset; cur_offset < end_offset; this->dst_offset = (++cur_offset)) { for (size_t cur_offset = m_dst_offset; cur_offset < end_offset; m_dst_offset = (++cur_offset)) {
AMS_ABORT_UNLESS(wide_offset <= cur_offset); AMS_ABORT_UNLESS(wide_offset <= cur_offset);
this->dst[cur_offset] = this->dst[cur_offset - wide_offset]; m_dst[cur_offset] = m_dst[cur_offset - wide_offset];
} }
} }
} }
private: private:
u8 ReadByte() { u8 ReadByte() {
return this->src[this->src_offset++]; return m_src[m_src_offset++];
} }
bool CanRead() const { bool CanRead() const {
return this->src_offset < this->src_size; return m_src_offset < m_src_size;
} }
size_t GetCopySize(u8 control) { size_t GetCopySize(u8 control) {
@ -87,9 +87,9 @@ namespace ams::secmon::loader {
} }
void Copy(size_t size) { void Copy(size_t size) {
__builtin_memcpy(this->dst + this->dst_offset, this->src + this->src_offset, size); __builtin_memcpy(m_dst + m_dst_offset, m_src + m_src_offset, size);
this->dst_offset += size; m_dst_offset += size;
this->src_offset += size; m_src_offset += size;
} }
}; };

View file

@ -76,10 +76,10 @@ namespace ams::secmon::fatal {
Bit_Readable = 31, Bit_Readable = 31,
}; };
private: private:
u32 value; u32 m_value;
protected: protected:
constexpr ALWAYS_INLINE u32 SelectBit(Bit n) const { constexpr ALWAYS_INLINE u32 SelectBit(Bit n) const {
return (this->value & (1u << n)); return (m_value & (1u << n));
} }
constexpr ALWAYS_INLINE bool GetBit(Bit n) const { constexpr ALWAYS_INLINE bool GetBit(Bit n) const {
@ -97,7 +97,7 @@ namespace ams::secmon::fatal {
ALWAYS_INLINE void SetValue(u32 v) { ALWAYS_INLINE void SetValue(u32 v) {
/* Prevent re-ordering around entry modifications. */ /* Prevent re-ordering around entry modifications. */
__asm__ __volatile__("" ::: "memory"); __asm__ __volatile__("" ::: "memory");
this->value = v; m_value = v;
__asm__ __volatile__("" ::: "memory"); __asm__ __volatile__("" ::: "memory");
} }
public: public:
@ -112,7 +112,7 @@ namespace ams::secmon::fatal {
constexpr ALWAYS_INLINE u32 GetAttributes() const { return this->SelectBit(Bit_NonSecure) | this->SelectBit(Bit_Writeable) | this->SelectBit(Bit_Readable); } constexpr ALWAYS_INLINE u32 GetAttributes() const { return this->SelectBit(Bit_NonSecure) | this->SelectBit(Bit_Writeable) | this->SelectBit(Bit_Readable); }
constexpr ALWAYS_INLINE dd::PhysicalAddress GetPhysicalAddress() const { return (static_cast<u64>(this->value) << DevicePageBits) & PhysicalAddressMask; } constexpr ALWAYS_INLINE dd::PhysicalAddress GetPhysicalAddress() const { return (static_cast<u64>(m_value) << DevicePageBits) & PhysicalAddressMask; }
ALWAYS_INLINE void Invalidate() { this->SetValue(0); } ALWAYS_INLINE void Invalidate() { this->SetValue(0); }
}; };

View file

@ -28,7 +28,7 @@ namespace ams::fs {
}; };
struct ReadOption { struct ReadOption {
u32 value; u32 _value;
static const ReadOption None; static const ReadOption None;
}; };
@ -36,7 +36,7 @@ namespace ams::fs {
inline constexpr const ReadOption ReadOption::None = {0}; inline constexpr const ReadOption ReadOption::None = {0};
inline constexpr bool operator==(const ReadOption &lhs, const ReadOption &rhs) { inline constexpr bool operator==(const ReadOption &lhs, const ReadOption &rhs) {
return lhs.value == rhs.value; return lhs._value == rhs._value;
} }
inline constexpr bool operator!=(const ReadOption &lhs, const ReadOption &rhs) { inline constexpr bool operator!=(const ReadOption &lhs, const ReadOption &rhs) {
@ -46,10 +46,10 @@ namespace ams::fs {
static_assert(util::is_pod<ReadOption>::value && sizeof(ReadOption) == sizeof(u32)); static_assert(util::is_pod<ReadOption>::value && sizeof(ReadOption) == sizeof(u32));
struct WriteOption { struct WriteOption {
u32 value; u32 _value;
constexpr inline bool HasFlushFlag() const { constexpr inline bool HasFlushFlag() const {
return this->value & 1; return _value & 1;
} }
static const WriteOption None; static const WriteOption None;
@ -60,7 +60,7 @@ namespace ams::fs {
inline constexpr const WriteOption WriteOption::Flush = {1}; inline constexpr const WriteOption WriteOption::Flush = {1};
inline constexpr bool operator==(const WriteOption &lhs, const WriteOption &rhs) { inline constexpr bool operator==(const WriteOption &lhs, const WriteOption &rhs) {
return lhs.value == rhs.value; return lhs._value == rhs._value;
} }
inline constexpr bool operator!=(const WriteOption &lhs, const WriteOption &rhs) { inline constexpr bool operator!=(const WriteOption &lhs, const WriteOption &rhs) {

View file

@ -23,16 +23,16 @@ namespace ams::secmon {
void *PageMapperImpl::GetPointerTo(uintptr_t phys, size_t size) const { void *PageMapperImpl::GetPointerTo(uintptr_t phys, size_t size) const {
/* Ensure we stay within the page. */ /* Ensure we stay within the page. */
if (util::AlignDown(phys, 4_KB) != this->physical_address) { if (util::AlignDown(phys, 4_KB) != m_physical_address) {
return nullptr; return nullptr;
} }
if (size != 0) { if (size != 0) {
if (util::AlignDown(phys + size - 1, 4_KB) != this->physical_address) { if (util::AlignDown(phys + size - 1, 4_KB) != m_physical_address) {
return nullptr; return nullptr;
} }
} }
return reinterpret_cast<void *>(phys + (this->virtual_address - this->physical_address)); return reinterpret_cast<void *>(phys + (m_virtual_address - m_physical_address));
} }
bool PageMapperImpl::CopyToMapping(uintptr_t dst_phys, const void *src, size_t size) const { bool PageMapperImpl::CopyToMapping(uintptr_t dst_phys, const void *src, size_t size) const {

View file

@ -22,10 +22,10 @@ namespace ams::secmon {
class PageMapperImpl { class PageMapperImpl {
private: private:
uintptr_t physical_address; uintptr_t m_physical_address;
uintptr_t virtual_address; uintptr_t m_virtual_address;
public: public:
constexpr PageMapperImpl(uintptr_t phys) : physical_address(util::AlignDown(phys, 4_KB)), virtual_address() { /* ... */ } constexpr PageMapperImpl(uintptr_t phys) : m_physical_address(util::AlignDown(phys, 4_KB)), m_virtual_address() { /* ... */ }
void *GetPointerTo(uintptr_t phys, size_t size) const; void *GetPointerTo(uintptr_t phys, size_t size) const;
@ -37,14 +37,14 @@ namespace ams::secmon {
template<auto F> template<auto F>
bool MapImpl() { bool MapImpl() {
this->virtual_address = F(this->physical_address); m_virtual_address = F(m_physical_address);
return this->virtual_address != 0; return m_virtual_address != 0;
} }
template<auto F> template<auto F>
void UnmapImpl() { void UnmapImpl() {
F(); F();
this->virtual_address = 0; m_virtual_address = 0;
} }
}; };

View file

@ -55,31 +55,31 @@ namespace ams::secmon::smc {
class PrepareEsDeviceUniqueKeyAsyncArguments { class PrepareEsDeviceUniqueKeyAsyncArguments {
private: private:
int generation; int m_generation;
EsCommonKeyType type; EsCommonKeyType m_type;
u8 label_digest[crypto::Sha256Generator::HashSize]; u8 m_label_digest[crypto::Sha256Generator::HashSize];
public: public:
void Set(int gen, EsCommonKeyType t, const u8 ld[crypto::Sha256Generator::HashSize]) { void Set(int gen, EsCommonKeyType t, const u8 ld[crypto::Sha256Generator::HashSize]) {
this->generation = gen; m_generation = gen;
this->type = t; m_type = t;
std::memcpy(this->label_digest, ld, sizeof(this->label_digest)); std::memcpy(m_label_digest, ld, sizeof(m_label_digest));
} }
int GetKeyGeneration() const { return this->generation; } int GetKeyGeneration() const { return m_generation; }
EsCommonKeyType GetCommonKeyType() const { return this->type; } EsCommonKeyType GetCommonKeyType() const { return m_type; }
void GetLabelDigest(u8 dst[crypto::Sha256Generator::HashSize]) const { std::memcpy(dst, this->label_digest, sizeof(this->label_digest)); } void GetLabelDigest(u8 dst[crypto::Sha256Generator::HashSize]) const { std::memcpy(dst, m_label_digest, sizeof(m_label_digest)); }
}; };
class ModularExponentiateByStorageKeyAsyncArguments { class ModularExponentiateByStorageKeyAsyncArguments {
private: private:
u8 msg[se::RsaSize]; u8 m_msg[se::RsaSize];
public: public:
void Set(const void *m, size_t m_size) { void Set(const void *m, size_t m_size) {
AMS_UNUSED(m_size); AMS_UNUSED(m_size);
std::memcpy(this->msg, m, sizeof(this->msg)); std::memcpy(m_msg, m, sizeof(m_msg));
} }
const u8 *GetMessage() const { return this->msg; } const u8 *GetMessage() const { return m_msg; }
}; };
constinit SmcResult g_exp_mod_result = SmcResult::Success; constinit SmcResult g_exp_mod_result = SmcResult::Success;

View file

@ -22,14 +22,14 @@ namespace ams::nxboot::loader {
class Lz4Uncompressor { class Lz4Uncompressor {
private: private:
const u8 *src; const u8 *m_src;
size_t src_size; size_t m_src_size;
size_t src_offset; size_t m_src_offset;
u8 *dst; u8 *m_dst;
size_t dst_size; size_t m_dst_size;
size_t dst_offset; size_t m_dst_offset;
public: public:
Lz4Uncompressor(void *dst, size_t dst_size, const void *src, size_t src_size) : src(static_cast<const u8 *>(src)), src_size(src_size), src_offset(0), dst(static_cast<u8 *>(dst)), dst_size(dst_size), dst_offset(0) { Lz4Uncompressor(void *dst, size_t dst_size, const void *src, size_t src_size) : m_src(static_cast<const u8 *>(src)), m_src_size(src_size), m_src_offset(0), m_dst(static_cast<u8 *>(dst)), m_dst_size(dst_size), m_dst_offset(0) {
/* ... */ /* ... */
} }
@ -42,7 +42,7 @@ namespace ams::nxboot::loader {
this->Copy(this->GetCopySize(control >> 4)); this->Copy(this->GetCopySize(control >> 4));
/* If we've exceeded size, we're done. */ /* If we've exceeded size, we're done. */
if (this->src_offset >= this->src_size) { if (m_src_offset >= m_src_size) {
break; break;
} }
@ -55,21 +55,21 @@ namespace ams::nxboot::loader {
const size_t wide_copy_size = this->GetCopySize(control & 0xF); const size_t wide_copy_size = this->GetCopySize(control & 0xF);
/* Copy bytes. */ /* Copy bytes. */
const size_t end_offset = this->dst_offset + wide_copy_size + 4; const size_t end_offset = m_dst_offset + wide_copy_size + 4;
for (size_t cur_offset = this->dst_offset; cur_offset < end_offset; this->dst_offset = (++cur_offset)) { for (size_t cur_offset = m_dst_offset; cur_offset < end_offset; m_dst_offset = (++cur_offset)) {
AMS_ABORT_UNLESS(wide_offset <= cur_offset); AMS_ABORT_UNLESS(wide_offset <= cur_offset);
this->dst[cur_offset] = this->dst[cur_offset - wide_offset]; m_dst[cur_offset] = m_dst[cur_offset - wide_offset];
} }
} }
} }
private: private:
u8 ReadByte() { u8 ReadByte() {
return this->src[this->src_offset++]; return m_src[m_src_offset++];
} }
bool CanRead() const { bool CanRead() const {
return this->src_offset < this->src_size; return m_src_offset < m_src_size;
} }
size_t GetCopySize(u8 control) { size_t GetCopySize(u8 control) {
@ -87,11 +87,9 @@ namespace ams::nxboot::loader {
} }
void Copy(size_t size) { void Copy(size_t size) {
for (size_t i = 0; i < size; ++i) { __builtin_memcpy(m_dst + m_dst_offset, m_src + m_src_offset, size);
this->dst[this->dst_offset + i] = this->src[this->src_offset + i]; m_dst_offset += size;
} m_src_offset += size;
this->dst_offset += size;
this->src_offset += size;
} }
}; };

View file

@ -28,7 +28,7 @@ namespace ams::fs {
}; };
struct ReadOption { struct ReadOption {
u32 value; u32 _value;
static const ReadOption None; static const ReadOption None;
}; };
@ -36,7 +36,7 @@ namespace ams::fs {
inline constexpr const ReadOption ReadOption::None = {0}; inline constexpr const ReadOption ReadOption::None = {0};
inline constexpr bool operator==(const ReadOption &lhs, const ReadOption &rhs) { inline constexpr bool operator==(const ReadOption &lhs, const ReadOption &rhs) {
return lhs.value == rhs.value; return lhs._value == rhs._value;
} }
inline constexpr bool operator!=(const ReadOption &lhs, const ReadOption &rhs) { inline constexpr bool operator!=(const ReadOption &lhs, const ReadOption &rhs) {
@ -46,10 +46,10 @@ namespace ams::fs {
static_assert(util::is_pod<ReadOption>::value && sizeof(ReadOption) == sizeof(u32)); static_assert(util::is_pod<ReadOption>::value && sizeof(ReadOption) == sizeof(u32));
struct WriteOption { struct WriteOption {
u32 value; u32 _value;
constexpr inline bool HasFlushFlag() const { constexpr inline bool HasFlushFlag() const {
return this->value & 1; return _value & 1;
} }
static const WriteOption None; static const WriteOption None;
@ -60,7 +60,7 @@ namespace ams::fs {
inline constexpr const WriteOption WriteOption::Flush = {1}; inline constexpr const WriteOption WriteOption::Flush = {1};
inline constexpr bool operator==(const WriteOption &lhs, const WriteOption &rhs) { inline constexpr bool operator==(const WriteOption &lhs, const WriteOption &rhs) {
return lhs.value == rhs.value; return lhs._value == rhs._value;
} }
inline constexpr bool operator!=(const WriteOption &lhs, const WriteOption &rhs) { inline constexpr bool operator!=(const WriteOption &lhs, const WriteOption &rhs) {

View file

@ -22,14 +22,14 @@ namespace ams::nxboot {
class Lz4Uncompressor { class Lz4Uncompressor {
private: private:
const u8 *src; const u8 *m_src;
size_t src_size; size_t m_src_size;
size_t src_offset; size_t m_src_offset;
u8 *dst; u8 *m_dst;
size_t dst_size; size_t m_dst_size;
size_t dst_offset; size_t m_dst_offset;
public: public:
Lz4Uncompressor(void *dst, size_t dst_size, const void *src, size_t src_size) : src(static_cast<const u8 *>(src)), src_size(src_size), src_offset(0), dst(static_cast<u8 *>(dst)), dst_size(dst_size), dst_offset(0) { Lz4Uncompressor(void *dst, size_t dst_size, const void *src, size_t src_size) : m_src(static_cast<const u8 *>(src)), m_src_size(src_size), m_src_offset(0), m_dst(static_cast<u8 *>(dst)), m_dst_size(dst_size), m_dst_offset(0) {
/* ... */ /* ... */
} }
@ -42,7 +42,7 @@ namespace ams::nxboot {
this->Copy(this->GetCopySize(control >> 4)); this->Copy(this->GetCopySize(control >> 4));
/* If we've exceeded size, we're done. */ /* If we've exceeded size, we're done. */
if (this->src_offset >= this->src_size) { if (m_src_offset >= m_src_size) {
break; break;
} }
@ -55,21 +55,21 @@ namespace ams::nxboot {
const size_t wide_copy_size = this->GetCopySize(control & 0xF); const size_t wide_copy_size = this->GetCopySize(control & 0xF);
/* Copy bytes. */ /* Copy bytes. */
const size_t end_offset = this->dst_offset + wide_copy_size + 4; const size_t end_offset = m_dst_offset + wide_copy_size + 4;
for (size_t cur_offset = this->dst_offset; cur_offset < end_offset; this->dst_offset = (++cur_offset)) { for (size_t cur_offset = m_dst_offset; cur_offset < end_offset; m_dst_offset = (++cur_offset)) {
AMS_ABORT_UNLESS(wide_offset <= cur_offset); AMS_ABORT_UNLESS(wide_offset <= cur_offset);
this->dst[cur_offset] = this->dst[cur_offset - wide_offset]; m_dst[cur_offset] = m_dst[cur_offset - wide_offset];
} }
} }
} }
private: private:
u8 ReadByte() { u8 ReadByte() {
return this->src[this->src_offset++]; return m_src[m_src_offset++];
} }
bool CanRead() const { bool CanRead() const {
return this->src_offset < this->src_size; return m_src_offset < m_src_size;
} }
size_t GetCopySize(u8 control) { size_t GetCopySize(u8 control) {
@ -87,9 +87,9 @@ namespace ams::nxboot {
} }
void Copy(size_t size) { void Copy(size_t size) {
__builtin_memcpy(this->dst + this->dst_offset, this->src + this->src_offset, size); __builtin_memcpy(m_dst + m_dst_offset, m_src + m_src_offset, size);
this->dst_offset += size; m_dst_offset += size;
this->src_offset += size; m_src_offset += size;
} }
}; };

View file

@ -22,52 +22,53 @@ namespace ams::secmon {
using Address = u64; using Address = u64;
struct MemoryRegion { struct MemoryRegion {
Address start_address; private:
Address end_address; Address m_start_address;
Address m_end_address;
constexpr MemoryRegion(Address address, size_t size) : start_address(address), end_address(address + size) { public:
if (end_address < start_address) { consteval MemoryRegion(Address address, size_t size) : m_start_address(address), m_end_address(address + size) {
__builtin_unreachable(); if (m_end_address < m_start_address) {
__builtin_unreachable();
}
} }
}
constexpr Address GetStartAddress() const { constexpr Address GetStartAddress() const {
return this->start_address; return m_start_address;
} }
constexpr Address GetAddress() const { constexpr Address GetAddress() const {
return this->GetStartAddress(); return this->GetStartAddress();
} }
constexpr Address GetEndAddress() const { constexpr Address GetEndAddress() const {
return this->end_address; return m_end_address;
} }
constexpr Address GetLastAddress() const { constexpr Address GetLastAddress() const {
return this->end_address - 1; return m_end_address - 1;
} }
constexpr size_t GetSize() const { constexpr size_t GetSize() const {
return this->end_address - this->start_address; return m_end_address - m_start_address;
} }
constexpr bool Contains(Address address, size_t size) const { constexpr bool Contains(Address address, size_t size) const {
return this->start_address <= address && (address + size - 1) <= this->GetLastAddress(); return m_start_address <= address && (address + size - 1) <= this->GetLastAddress();
} }
constexpr bool Contains(const MemoryRegion &rhs) const { constexpr bool Contains(const MemoryRegion &rhs) const {
return this->Contains(rhs.GetStartAddress(), rhs.GetSize()); return this->Contains(rhs.GetStartAddress(), rhs.GetSize());
} }
template<typename T = void> requires (std::is_same<T, void>::value || util::is_pod<T>::value) template<typename T = void> requires (std::is_same<T, void>::value || util::is_pod<T>::value)
ALWAYS_INLINE T *GetPointer() const { ALWAYS_INLINE T *GetPointer() const {
return reinterpret_cast<T *>(this->GetAddress()); return reinterpret_cast<T *>(this->GetAddress());
} }
template<typename T = void> requires (std::is_same<T, void>::value || util::is_pod<T>::value) template<typename T = void> requires (std::is_same<T, void>::value || util::is_pod<T>::value)
ALWAYS_INLINE T *GetEndPointer() const { ALWAYS_INLINE T *GetEndPointer() const {
return reinterpret_cast<T *>(this->GetEndAddress()); return reinterpret_cast<T *>(this->GetEndAddress());
} }
}; };
constexpr inline const MemoryRegion MemoryRegionVirtual = MemoryRegion(UINT64_C(0x1F0000000), 2_MB); constexpr inline const MemoryRegion MemoryRegionVirtual = MemoryRegion(UINT64_C(0x1F0000000), 2_MB);

View file

@ -37,7 +37,7 @@ namespace ams::crypto::impl {
AMS_UNUSED(key_size, is_encrypt); AMS_UNUSED(key_size, is_encrypt);
/* Set the security engine keyslot. */ /* Set the security engine keyslot. */
this->slot = *static_cast<const int *>(key); m_slot = *static_cast<const int *>(key);
} }
template<size_t KeySize> template<size_t KeySize>
@ -48,14 +48,14 @@ namespace ams::crypto::impl {
if constexpr (KeySize == 16) { if constexpr (KeySize == 16) {
/* Aes 128. */ /* Aes 128. */
se::EncryptAes128(dst, dst_size, this->slot, src, src_size); se::EncryptAes128(dst, dst_size, m_slot, src, src_size);
} else if constexpr (KeySize == 24) { } else if constexpr (KeySize == 24) {
/* Aes 192. */ /* Aes 192. */
/* TODO: se::EncryptAes192(dst, dst_size, this->slot, src, src_size); */ /* TODO: se::EncryptAes192(dst, dst_size, m_slot, src, src_size); */
AMS_UNUSED(dst, dst_size, src, src_size); AMS_UNUSED(dst, dst_size, src, src_size);
} else if constexpr (KeySize == 32) { } else if constexpr (KeySize == 32) {
/* Aes 256. */ /* Aes 256. */
/* TODO: se::EncryptAes256(dst, dst_size, this->slot, src, src_size); */ /* TODO: se::EncryptAes256(dst, dst_size, m_slot, src, src_size); */
AMS_UNUSED(dst, dst_size, src, src_size); AMS_UNUSED(dst, dst_size, src, src_size);
} else { } else {
/* Invalid key size. */ /* Invalid key size. */
@ -71,14 +71,14 @@ namespace ams::crypto::impl {
if constexpr (KeySize == 16) { if constexpr (KeySize == 16) {
/* Aes 128. */ /* Aes 128. */
se::DecryptAes128(dst, dst_size, this->slot, src, src_size); se::DecryptAes128(dst, dst_size, m_slot, src, src_size);
} else if constexpr (KeySize == 24) { } else if constexpr (KeySize == 24) {
/* Aes 192. */ /* Aes 192. */
/* TODO: se::DecryptAes192(dst, dst_size, this->slot, src, src_size); */ /* TODO: se::DecryptAes192(dst, dst_size, m_slot, src, src_size); */
AMS_UNUSED(dst, dst_size, src, src_size); AMS_UNUSED(dst, dst_size, src, src_size);
} else if constexpr (KeySize == 32) { } else if constexpr (KeySize == 32) {
/* Aes 256. */ /* Aes 256. */
/* TODO: se::DecryptAes256(dst, dst_size, this->slot, src, src_size); */ /* TODO: se::DecryptAes256(dst, dst_size, m_slot, src, src_size); */
AMS_UNUSED(dst, dst_size, src, src_size); AMS_UNUSED(dst, dst_size, src, src_size);
} else { } else {
/* Invalid key size. */ /* Invalid key size. */

View file

@ -38,8 +38,8 @@ namespace ams::crypto {
static constexpr size_t BlockSize = CtrImpl::BlockSize; static constexpr size_t BlockSize = CtrImpl::BlockSize;
static constexpr size_t IvSize = CtrImpl::BlockSize; static constexpr size_t IvSize = CtrImpl::BlockSize;
private: private:
AesImpl aes_impl; AesImpl m_aes_impl;
CtrImpl ctr_impl; CtrImpl m_ctr_impl;
public: public:
AesCtrCryptor() { /* ... */ } AesCtrCryptor() { /* ... */ }
@ -52,16 +52,16 @@ namespace ams::crypto {
AMS_ASSERT(iv_size == IvSize); AMS_ASSERT(iv_size == IvSize);
AMS_ASSERT(offset >= 0); AMS_ASSERT(offset >= 0);
this->aes_impl.Initialize(key, key_size); m_aes_impl.Initialize(key, key_size);
this->ctr_impl.Initialize(std::addressof(this->aes_impl), iv, iv_size, offset); m_ctr_impl.Initialize(std::addressof(m_aes_impl), iv, iv_size, offset);
} }
void SwitchMessage(const void *iv, size_t iv_size) { void SwitchMessage(const void *iv, size_t iv_size) {
return this->ctr_impl.SwitchMessage(iv, iv_size); return m_ctr_impl.SwitchMessage(iv, iv_size);
} }
size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) {
return this->ctr_impl.Update(dst, dst_size, src, src_size); return m_ctr_impl.Update(dst, dst_size, src, src_size);
} }
}; };

View file

@ -33,20 +33,20 @@ namespace ams::crypto {
static constexpr size_t BlockSize = Impl::BlockSize; static constexpr size_t BlockSize = Impl::BlockSize;
static constexpr size_t RoundKeySize = Impl::RoundKeySize; static constexpr size_t RoundKeySize = Impl::RoundKeySize;
private: private:
Impl impl; Impl m_impl;
public: public:
AesDecryptor() { /* ... */ } AesDecryptor() { /* ... */ }
void Initialize(const void *key, size_t key_size) { void Initialize(const void *key, size_t key_size) {
this->impl.Initialize(key, key_size, false); m_impl.Initialize(key, key_size, false);
} }
void DecryptBlock(void *dst, size_t dst_size, const void *src, size_t src_size) const { void DecryptBlock(void *dst, size_t dst_size, const void *src, size_t src_size) const {
return this->impl.DecryptBlock(dst, dst_size, src, src_size); return m_impl.DecryptBlock(dst, dst_size, src, src_size);
} }
const u8 *GetRoundKey() const { const u8 *GetRoundKey() const {
return this->impl.GetRoundKey(); return m_impl.GetRoundKey();
} }
}; };

View file

@ -33,20 +33,20 @@ namespace ams::crypto {
static constexpr size_t BlockSize = Impl::BlockSize; static constexpr size_t BlockSize = Impl::BlockSize;
static constexpr size_t RoundKeySize = Impl::RoundKeySize; static constexpr size_t RoundKeySize = Impl::RoundKeySize;
private: private:
Impl impl; Impl m_impl;
public: public:
AesEncryptor() { /* ... */ } AesEncryptor() { /* ... */ }
void Initialize(const void *key, size_t key_size) { void Initialize(const void *key, size_t key_size) {
this->impl.Initialize(key, key_size, true); m_impl.Initialize(key, key_size, true);
} }
void EncryptBlock(void *dst, size_t dst_size, const void *src, size_t src_size) const { void EncryptBlock(void *dst, size_t dst_size, const void *src, size_t src_size) const {
return this->impl.EncryptBlock(dst, dst_size, src, src_size); return m_impl.EncryptBlock(dst, dst_size, src, src_size);
} }
const u8 *GetRoundKey() const { const u8 *GetRoundKey() const {
return this->impl.GetRoundKey(); return m_impl.GetRoundKey();
} }
}; };

View file

@ -37,30 +37,30 @@ namespace ams::crypto {
static constexpr size_t BlockSize = AesImpl::BlockSize; static constexpr size_t BlockSize = AesImpl::BlockSize;
static constexpr size_t MacSize = AesImpl::BlockSize; static constexpr size_t MacSize = AesImpl::BlockSize;
private: private:
AesImpl aes_impl; AesImpl m_aes_impl;
GcmImpl gcm_impl; GcmImpl m_gcm_impl;
public: public:
AesGcmEncryptor() { /* ... */ } AesGcmEncryptor() { /* ... */ }
void Initialize(const void *key, size_t key_size, const void *iv, size_t iv_size) { void Initialize(const void *key, size_t key_size, const void *iv, size_t iv_size) {
this->aes_impl.Initialize(key, key_size); m_aes_impl.Initialize(key, key_size);
this->gcm_impl.Initialize(std::addressof(this->aes_impl), iv, iv_size); m_gcm_impl.Initialize(std::addressof(m_aes_impl), iv, iv_size);
} }
void Reset(const void *iv, size_t iv_size) { void Reset(const void *iv, size_t iv_size) {
this->gcm_impl.Reset(iv, iv_size); m_gcm_impl.Reset(iv, iv_size);
} }
size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) {
return this->gcm_impl.Update(dst, dst_size, src, src_size); return m_gcm_impl.Update(dst, dst_size, src, src_size);
} }
void UpdateAad(const void *aad, size_t aad_size) { void UpdateAad(const void *aad, size_t aad_size) {
return this->gcm_impl.UpdateAad(aad, aad_size); return m_gcm_impl.UpdateAad(aad, aad_size);
} }
void GetMac(void *dst, size_t dst_size) { void GetMac(void *dst, size_t dst_size) {
return this->gcm_impl.GetMac(dst, dst_size); return m_gcm_impl.GetMac(dst, dst_size);
} }
}; };

View file

@ -42,9 +42,9 @@ namespace ams::crypto {
static_assert(AesImpl1::KeySize == AesImpl2::KeySize); static_assert(AesImpl1::KeySize == AesImpl2::KeySize);
static_assert(AesImpl1::BlockSize == AesImpl2::BlockSize); static_assert(AesImpl1::BlockSize == AesImpl2::BlockSize);
private: private:
AesImpl1 aes_impl_1; AesImpl1 m_aes_impl_1;
AesImpl2 aes_impl_2; AesImpl2 m_aes_impl_2;
XtsImpl xts_impl; XtsImpl m_xts_impl;
public: public:
AesXtsCryptor() { /* ... */ } AesXtsCryptor() { /* ... */ }
@ -52,17 +52,17 @@ namespace ams::crypto {
AMS_ASSERT(key_size == KeySize); AMS_ASSERT(key_size == KeySize);
AMS_ASSERT(iv_size == IvSize); AMS_ASSERT(iv_size == IvSize);
this->aes_impl_1.Initialize(key1, key_size); m_aes_impl_1.Initialize(key1, key_size);
this->aes_impl_2.Initialize(key2, key_size); m_aes_impl_2.Initialize(key2, key_size);
this->xts_impl.Initialize(std::addressof(this->aes_impl_1), std::addressof(this->aes_impl_2), iv, iv_size); m_xts_impl.Initialize(std::addressof(m_aes_impl_1), std::addressof(m_aes_impl_2), iv, iv_size);
} }
size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) {
return this->xts_impl.Update(dst, dst_size, src, src_size); return m_xts_impl.Update(dst, dst_size, src, src_size);
} }
size_t Finalize(void *dst, size_t dst_size) { size_t Finalize(void *dst, size_t dst_size) {
return this->xts_impl.Finalize(dst, dst_size); return m_xts_impl.Finalize(dst, dst_size);
} }
}; };

View file

@ -35,24 +35,24 @@ namespace ams::crypto {
static constexpr size_t BlockSize = Impl::BlockSize; static constexpr size_t BlockSize = Impl::BlockSize;
static constexpr size_t IvSize = Impl::IvSize; static constexpr size_t IvSize = Impl::IvSize;
private: private:
Impl impl; Impl m_impl;
public: public:
CtrDecryptor() { /* ... */ } CtrDecryptor() { /* ... */ }
void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size) { void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size) {
this->impl.Initialize(cipher, iv, iv_size); m_impl.Initialize(cipher, iv, iv_size);
} }
void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size, s64 offset) { void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size, s64 offset) {
this->impl.Initialize(cipher, iv, iv_size, offset); m_impl.Initialize(cipher, iv, iv_size, offset);
} }
void SwitchMessage(const void *iv, size_t iv_size) { void SwitchMessage(const void *iv, size_t iv_size) {
this->impl.SwitchMessage(iv, iv_size); m_impl.SwitchMessage(iv, iv_size);
} }
size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) {
return this->impl.Update(dst, dst_size, src, src_size); return m_impl.Update(dst, dst_size, src, src_size);
} }
}; };

View file

@ -35,24 +35,24 @@ namespace ams::crypto {
static constexpr size_t BlockSize = Impl::BlockSize; static constexpr size_t BlockSize = Impl::BlockSize;
static constexpr size_t IvSize = Impl::IvSize; static constexpr size_t IvSize = Impl::IvSize;
private: private:
Impl impl; Impl m_impl;
public: public:
CtrEncryptor() { /* ... */ } CtrEncryptor() { /* ... */ }
void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size) { void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size) {
this->impl.Initialize(cipher, iv, iv_size); m_impl.Initialize(cipher, iv, iv_size);
} }
void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size, s64 offset) { void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size, s64 offset) {
this->impl.Initialize(cipher, iv, iv_size, offset); m_impl.Initialize(cipher, iv, iv_size, offset);
} }
void SwitchMessage(const void *iv, size_t iv_size) { void SwitchMessage(const void *iv, size_t iv_size) {
this->impl.SwitchMessage(iv, iv_size); m_impl.SwitchMessage(iv, iv_size);
} }
size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) {
return this->impl.Update(dst, dst_size, src, src_size); return m_impl.Update(dst, dst_size, src, src_size);
} }
}; };

View file

@ -35,29 +35,29 @@ namespace ams::crypto {
static constexpr size_t BlockSize = Impl::BlockSize; static constexpr size_t BlockSize = Impl::BlockSize;
static constexpr size_t MacSize = Impl::MacSize; static constexpr size_t MacSize = Impl::MacSize;
private: private:
Impl impl; Impl m_impl;
public: public:
GcmEncryptor() { /* ... */ } GcmEncryptor() { /* ... */ }
void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size) { void Initialize(const BlockCipher *cipher, const void *iv, size_t iv_size) {
this->impl.Initialize(cipher); m_impl.Initialize(cipher);
this->impl.Reset(iv, iv_size); m_impl.Reset(iv, iv_size);
} }
void Reset(const void *iv, size_t iv_size) { void Reset(const void *iv, size_t iv_size) {
this->impl.Reset(iv, iv_size); m_impl.Reset(iv, iv_size);
} }
size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) {
return this->impl.Update(dst, dst_size, src, src_size); return m_impl.Update(dst, dst_size, src, src_size);
} }
void UpdateAad(const void *aad, size_t aad_size) { void UpdateAad(const void *aad, size_t aad_size) {
return this->impl.UpdateAad(aad, aad_size); return m_impl.UpdateAad(aad, aad_size);
} }
void GetMac(void *dst, size_t dst_size) { void GetMac(void *dst, size_t dst_size) {
return this->impl.GetMac(dst, dst_size); return m_impl.GetMac(dst, dst_size);
} }
}; };

View file

@ -32,20 +32,20 @@ namespace ams::crypto {
static constexpr size_t HashSize = Impl::HashSize; static constexpr size_t HashSize = Impl::HashSize;
static constexpr size_t BlockSize = Impl::BlockSize; static constexpr size_t BlockSize = Impl::BlockSize;
private: private:
Impl impl; Impl m_impl;
public: public:
HmacGenerator() { /* ... */ } HmacGenerator() { /* ... */ }
void Initialize(const void *key, size_t key_size) { void Initialize(const void *key, size_t key_size) {
return this->impl.Initialize(key, key_size); return m_impl.Initialize(key, key_size);
} }
void Update(const void *data, size_t size) { void Update(const void *data, size_t size) {
return this->impl.Update(data, size); return m_impl.Update(data, size);
} }
void GetMac(void *dst, size_t dst_size) { void GetMac(void *dst, size_t dst_size) {
return this->impl.GetMac(dst, dst_size); return m_impl.GetMac(dst, dst_size);
} }
}; };
} }

View file

@ -29,17 +29,17 @@ namespace ams::crypto {
public: public:
static constexpr inline size_t RequiredWorkBufferSize = 0x10 * ModulusSize; static constexpr inline size_t RequiredWorkBufferSize = 0x10 * ModulusSize;
private: private:
impl::StaticBigNum<ModulusSize * BITSIZEOF(u8)> modulus; impl::StaticBigNum<ModulusSize * BITSIZEOF(u8)> m_modulus;
impl::StaticBigNum<ExponentSize * BITSIZEOF(u8)> exponent; impl::StaticBigNum<ExponentSize * BITSIZEOF(u8)> m_exponent;
public: public:
RsaCalculator() { /* ... */ } RsaCalculator() { /* ... */ }
~RsaCalculator() { this->exponent.ClearToZero(); } ~RsaCalculator() { m_exponent.ClearToZero(); }
bool Initialize(const void *mod, size_t mod_size, const void *exp, size_t exp_size) { bool Initialize(const void *mod, size_t mod_size, const void *exp, size_t exp_size) {
if (!this->modulus.Import(mod, mod_size) || this->modulus.IsZero()) { if (!m_modulus.Import(mod, mod_size) || m_modulus.IsZero()) {
return false; return false;
} }
if (!this->exponent.Import(exp, exp_size) || this->exponent.IsZero()) { if (!m_exponent.Import(exp, exp_size) || m_exponent.IsZero()) {
return false; return false;
} }
return true; return true;
@ -48,7 +48,7 @@ namespace ams::crypto {
bool ExpMod(void *dst, const void *src, size_t size, void *work_buf, size_t work_buf_size) { bool ExpMod(void *dst, const void *src, size_t size, void *work_buf, size_t work_buf_size) {
AMS_ASSERT(work_buf_size >= RequiredWorkBufferSize); AMS_ASSERT(work_buf_size >= RequiredWorkBufferSize);
return this->modulus.ExpMod(dst, src, size, this->exponent, static_cast<u32 *>(work_buf), work_buf_size); return m_modulus.ExpMod(dst, src, size, m_exponent, static_cast<u32 *>(work_buf), work_buf_size);
} }
bool ExpMod(void *dst, const void *src, size_t size) { bool ExpMod(void *dst, const void *src, size_t size) {

View file

@ -39,23 +39,23 @@ namespace ams::crypto {
Done, Done,
}; };
private: private:
RsaCalculator<ModulusSize, MaximumExponentSize> calculator; RsaCalculator<ModulusSize, MaximumExponentSize> m_calculator;
Hash hash; Hash m_hash;
bool set_label_digest; bool m_set_label_digest;
u8 label_digest[HashSize]; u8 m_label_digest[HashSize];
State state; State m_state;
public: public:
RsaOaepDecryptor() : set_label_digest(false), state(State::None) { std::memset(this->label_digest, 0, sizeof(this->label_digest)); } RsaOaepDecryptor() : m_set_label_digest(false), m_state(State::None) { std::memset(m_label_digest, 0, sizeof(m_label_digest)); }
~RsaOaepDecryptor() { ~RsaOaepDecryptor() {
ClearMemory(this->label_digest, sizeof(this->label_digest)); ClearMemory(m_label_digest, sizeof(m_label_digest));
} }
bool Initialize(const void *mod, size_t mod_size, const void *exp, size_t exp_size) { bool Initialize(const void *mod, size_t mod_size, const void *exp, size_t exp_size) {
this->hash.Initialize(); m_hash.Initialize();
this->set_label_digest = false; m_set_label_digest = false;
if (this->calculator.Initialize(mod, mod_size, exp, exp_size)) { if (m_calculator.Initialize(mod, mod_size, exp, exp_size)) {
this->state = State::Initialized; m_state = State::Initialized;
return true; return true;
} else { } else {
return false; return false;
@ -63,58 +63,58 @@ namespace ams::crypto {
} }
void UpdateLabel(const void *data, size_t size) { void UpdateLabel(const void *data, size_t size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
this->hash.Update(data, size); m_hash.Update(data, size);
} }
void SetLabelDigest(const void *digest, size_t digest_size) { void SetLabelDigest(const void *digest, size_t digest_size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
AMS_ABORT_UNLESS(digest_size == sizeof(this->label_digest)); AMS_ABORT_UNLESS(digest_size == sizeof(m_label_digest));
std::memcpy(this->label_digest, digest, digest_size); std::memcpy(m_label_digest, digest, digest_size);
this->set_label_digest = true; m_set_label_digest = true;
} }
size_t Decrypt(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t Decrypt(void *dst, size_t dst_size, const void *src, size_t src_size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
impl::RsaOaepImpl<Hash> impl; impl::RsaOaepImpl<Hash> impl;
u8 message[BlockSize]; u8 message[BlockSize];
ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); }; ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); };
if (!this->calculator.ExpMod(message, src, src_size)) { if (!m_calculator.ExpMod(message, src, src_size)) {
std::memset(dst, 0, dst_size); std::memset(dst, 0, dst_size);
return false; return false;
} }
if (!this->set_label_digest) { if (!m_set_label_digest) {
this->hash.GetHash(this->label_digest, sizeof(this->label_digest)); m_hash.GetHash(m_label_digest, sizeof(m_label_digest));
} }
ON_SCOPE_EXIT { this->state = State::Done; }; ON_SCOPE_EXIT { m_state = State::Done; };
return impl.Decode(dst, dst_size, this->label_digest, sizeof(this->label_digest), message, sizeof(message)); return impl.Decode(dst, dst_size, m_label_digest, sizeof(m_label_digest), message, sizeof(message));
} }
size_t Decrypt(void *dst, size_t dst_size, const void *src, size_t src_size, void *work_buf, size_t work_buf_size) { size_t Decrypt(void *dst, size_t dst_size, const void *src, size_t src_size, void *work_buf, size_t work_buf_size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
ON_SCOPE_EXIT { this->state = State::Done; }; ON_SCOPE_EXIT { m_state = State::Done; };
impl::RsaOaepImpl<Hash> impl; impl::RsaOaepImpl<Hash> impl;
u8 message[BlockSize]; u8 message[BlockSize];
ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); }; ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); };
if (!this->calculator.ExpMod(message, src, src_size, work_buf, work_buf_size)) { if (!m_calculator.ExpMod(message, src, src_size, work_buf, work_buf_size)) {
return false; return false;
} }
if (!this->set_label_digest) { if (!m_set_label_digest) {
this->hash.GetHash(this->label_digest, sizeof(this->label_digest)); m_hash.GetHash(m_label_digest, sizeof(m_label_digest));
this->set_label_digest = true; m_set_label_digest = true;
} }
return impl.Decode(dst, dst_size, this->label_digest, sizeof(this->label_digest), message, sizeof(message)); return impl.Decode(dst, dst_size, m_label_digest, sizeof(m_label_digest), message, sizeof(message));
} }
static size_t Decrypt(void *dst, size_t dst_size, const void *mod, size_t mod_size, const void *exp, size_t exp_size, const void *msg, size_t msg_size, const void *lab, size_t lab_size) { static size_t Decrypt(void *dst, size_t dst_size, const void *mod, size_t mod_size, const void *exp, size_t exp_size, const void *msg, size_t msg_size, const void *lab, size_t lab_size) {

View file

@ -39,23 +39,23 @@ namespace ams::crypto {
Done, Done,
}; };
private: private:
RsaCalculator<ModulusSize, MaximumExponentSize> calculator; RsaCalculator<ModulusSize, MaximumExponentSize> m_calculator;
Hash hash; Hash m_hash;
bool set_label_digest; bool m_set_label_digest;
u8 label_digest[HashSize]; u8 m_label_digest[HashSize];
State state; State m_state;
public: public:
RsaOaepEncryptor() : set_label_digest(false), state(State::None) { std::memset(this->label_digest, 0, sizeof(this->label_digest)); } RsaOaepEncryptor() : m_set_label_digest(false), m_state(State::None) { std::memset(m_label_digest, 0, sizeof(m_label_digest)); }
~RsaOaepEncryptor() { ~RsaOaepEncryptor() {
ClearMemory(this->label_digest, sizeof(this->label_digest)); ClearMemory(m_label_digest, sizeof(m_label_digest));
} }
bool Initialize(const void *mod, size_t mod_size, const void *exp, size_t exp_size) { bool Initialize(const void *mod, size_t mod_size, const void *exp, size_t exp_size) {
this->hash.Initialize(); m_hash.Initialize();
this->set_label_digest = false; m_set_label_digest = false;
if (this->calculator.Initialize(mod, mod_size, exp, exp_size)) { if (m_calculator.Initialize(mod, mod_size, exp, exp_size)) {
this->state = State::Initialized; m_state = State::Initialized;
return true; return true;
} else { } else {
return false; return false;
@ -63,54 +63,54 @@ namespace ams::crypto {
} }
void UpdateLabel(const void *data, size_t size) { void UpdateLabel(const void *data, size_t size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
this->hash.Update(data, size); m_hash.Update(data, size);
} }
void SetLabelDigest(const void *digest, size_t digest_size) { void SetLabelDigest(const void *digest, size_t digest_size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
AMS_ABORT_UNLESS(digest_size == sizeof(this->label_digest)); AMS_ABORT_UNLESS(digest_size == sizeof(m_label_digest));
std::memcpy(this->label_digest, digest, digest_size); std::memcpy(m_label_digest, digest, digest_size);
this->set_label_digest = true; m_set_label_digest = true;
} }
bool Encrypt(void *dst, size_t dst_size, const void *src, size_t src_size, const void *salt, size_t salt_size) { bool Encrypt(void *dst, size_t dst_size, const void *src, size_t src_size, const void *salt, size_t salt_size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
impl::RsaOaepImpl<Hash> impl; impl::RsaOaepImpl<Hash> impl;
if (!this->set_label_digest) { if (!m_set_label_digest) {
this->hash.GetHash(this->label_digest, sizeof(this->label_digest)); m_hash.GetHash(m_label_digest, sizeof(m_label_digest));
} }
impl.Encode(dst, dst_size, this->label_digest, sizeof(this->label_digest), src, src_size, salt, salt_size); impl.Encode(dst, dst_size, m_label_digest, sizeof(m_label_digest), src, src_size, salt, salt_size);
if (!this->calculator.ExpMod(dst, dst, dst_size)) { if (!m_calculator.ExpMod(dst, dst, dst_size)) {
std::memset(dst, 0, dst_size); std::memset(dst, 0, dst_size);
return false; return false;
} }
this->state = State::Done; m_state = State::Done;
return true; return true;
} }
bool Encrypt(void *dst, size_t dst_size, const void *src, size_t src_size, const void *salt, size_t salt_size, void *work, size_t work_size) { bool Encrypt(void *dst, size_t dst_size, const void *src, size_t src_size, const void *salt, size_t salt_size, void *work, size_t work_size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
impl::RsaOaepImpl<Hash> impl; impl::RsaOaepImpl<Hash> impl;
if (!this->set_label_digest) { if (!m_set_label_digest) {
this->hash.GetHash(this->label_digest, sizeof(this->label_digest)); m_hash.GetHash(m_label_digest, sizeof(m_label_digest));
} }
impl.Encode(dst, dst_size, this->label_digest, sizeof(this->label_digest), src, src_size, salt, salt_size); impl.Encode(dst, dst_size, m_label_digest, sizeof(m_label_digest), src, src_size, salt, salt_size);
if (!this->calculator.ExpMod(dst, dst, dst_size, work, work_size)) { if (!m_calculator.ExpMod(dst, dst, dst_size, work, work_size)) {
std::memset(dst, 0, dst_size); std::memset(dst, 0, dst_size);
return false; return false;
} }
this->state = State::Done; m_state = State::Done;
return true; return true;
} }

View file

@ -41,17 +41,17 @@ namespace ams::crypto {
Done, Done,
}; };
private: private:
RsaCalculator<ModulusSize, MaximumExponentSize> calculator; RsaCalculator<ModulusSize, MaximumExponentSize> m_calculator;
Hash hash; Hash m_hash;
State state; State m_state;
public: public:
RsaPssVerifier() : state(State::None) { /* ... */ } RsaPssVerifier() : m_state(State::None) { /* ... */ }
~RsaPssVerifier() { } ~RsaPssVerifier() { }
bool Initialize(const void *mod, size_t mod_size, const void *exp, size_t exp_size) { bool Initialize(const void *mod, size_t mod_size, const void *exp, size_t exp_size) {
this->hash.Initialize(); m_hash.Initialize();
if (this->calculator.Initialize(mod, mod_size, exp, exp_size)) { if (m_calculator.Initialize(mod, mod_size, exp, exp_size)) {
this->state = State::Initialized; m_state = State::Initialized;
return true; return true;
} else { } else {
return false; return false;
@ -59,62 +59,62 @@ namespace ams::crypto {
} }
void Update(const void *data, size_t size) { void Update(const void *data, size_t size) {
return this->hash.Update(data, size); return m_hash.Update(data, size);
} }
bool Verify(const void *signature, size_t size) { bool Verify(const void *signature, size_t size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
AMS_ASSERT(size == SignatureSize); AMS_ASSERT(size == SignatureSize);
AMS_UNUSED(size); AMS_UNUSED(size);
ON_SCOPE_EXIT { this->state = State::Done; }; ON_SCOPE_EXIT { m_state = State::Done; };
impl::RsaPssImpl<Hash> impl; impl::RsaPssImpl<Hash> impl;
u8 message[SignatureSize]; u8 message[SignatureSize];
ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); }; ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); };
if (!this->calculator.ExpMod(message, signature, SignatureSize)) { if (!m_calculator.ExpMod(message, signature, SignatureSize)) {
return false; return false;
} }
u8 calc_hash[Hash::HashSize]; u8 calc_hash[Hash::HashSize];
this->hash.GetHash(calc_hash, sizeof(calc_hash)); m_hash.GetHash(calc_hash, sizeof(calc_hash));
ON_SCOPE_EXIT { ClearMemory(calc_hash, sizeof(calc_hash)); }; ON_SCOPE_EXIT { ClearMemory(calc_hash, sizeof(calc_hash)); };
return impl.Verify(message, sizeof(message), calc_hash, sizeof(calc_hash)); return impl.Verify(message, sizeof(message), calc_hash, sizeof(calc_hash));
} }
bool Verify(const void *signature, size_t size, void *work_buf, size_t work_buf_size) { bool Verify(const void *signature, size_t size, void *work_buf, size_t work_buf_size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
AMS_ASSERT(size == SignatureSize); AMS_ASSERT(size == SignatureSize);
AMS_UNUSED(size); AMS_UNUSED(size);
ON_SCOPE_EXIT { this->state = State::Done; }; ON_SCOPE_EXIT { m_state = State::Done; };
impl::RsaPssImpl<Hash> impl; impl::RsaPssImpl<Hash> impl;
u8 message[SignatureSize]; u8 message[SignatureSize];
ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); }; ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); };
if (!this->calculator.ExpMod(message, signature, SignatureSize, work_buf, work_buf_size)) { if (!m_calculator.ExpMod(message, signature, SignatureSize, work_buf, work_buf_size)) {
return false; return false;
} }
u8 calc_hash[Hash::HashSize]; u8 calc_hash[Hash::HashSize];
this->hash.GetHash(calc_hash, sizeof(calc_hash)); m_hash.GetHash(calc_hash, sizeof(calc_hash));
ON_SCOPE_EXIT { ClearMemory(calc_hash, sizeof(calc_hash)); }; ON_SCOPE_EXIT { ClearMemory(calc_hash, sizeof(calc_hash)); };
return impl.Verify(message, sizeof(message), calc_hash, sizeof(calc_hash)); return impl.Verify(message, sizeof(message), calc_hash, sizeof(calc_hash));
} }
bool VerifyWithHash(const void *signature, size_t size, const void *hash, size_t hash_size) { bool VerifyWithHash(const void *signature, size_t size, const void *hash, size_t hash_size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
AMS_ASSERT(size == SignatureSize); AMS_ASSERT(size == SignatureSize);
AMS_UNUSED(size); AMS_UNUSED(size);
ON_SCOPE_EXIT { this->state = State::Done; }; ON_SCOPE_EXIT { m_state = State::Done; };
impl::RsaPssImpl<Hash> impl; impl::RsaPssImpl<Hash> impl;
u8 message[SignatureSize]; u8 message[SignatureSize];
ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); }; ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); };
if (!this->calculator.ExpMod(message, signature, SignatureSize)) { if (!m_calculator.ExpMod(message, signature, SignatureSize)) {
return false; return false;
} }
@ -122,16 +122,16 @@ namespace ams::crypto {
} }
bool VerifyWithHash(const void *signature, size_t size, const void *hash, size_t hash_size, void *work_buf, size_t work_buf_size) { bool VerifyWithHash(const void *signature, size_t size, const void *hash, size_t hash_size, void *work_buf, size_t work_buf_size) {
AMS_ASSERT(this->state == State::Initialized); AMS_ASSERT(m_state == State::Initialized);
AMS_ASSERT(size == SignatureSize); AMS_ASSERT(size == SignatureSize);
AMS_UNUSED(size); AMS_UNUSED(size);
ON_SCOPE_EXIT { this->state = State::Done; }; ON_SCOPE_EXIT { m_state = State::Done; };
impl::RsaPssImpl<Hash> impl; impl::RsaPssImpl<Hash> impl;
u8 message[SignatureSize]; u8 message[SignatureSize];
ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); }; ON_SCOPE_EXIT { ClearMemory(message, sizeof(message)); };
if (!this->calculator.ExpMod(message, signature, SignatureSize, work_buf, work_buf_size)) { if (!m_calculator.ExpMod(message, signature, SignatureSize, work_buf, work_buf_size)) {
return false; return false;
} }

View file

@ -41,20 +41,20 @@ namespace ams::crypto {
}; };
static constexpr size_t Asn1IdentifierSize = util::size(Asn1Identifier); static constexpr size_t Asn1IdentifierSize = util::size(Asn1Identifier);
private: private:
Impl impl; Impl m_impl;
public: public:
Sha1Generator() { /* ... */ } Sha1Generator() { /* ... */ }
void Initialize() { void Initialize() {
this->impl.Initialize(); m_impl.Initialize();
} }
void Update(const void *data, size_t size) { void Update(const void *data, size_t size) {
this->impl.Update(data, size); m_impl.Update(data, size);
} }
void GetHash(void *dst, size_t size) { void GetHash(void *dst, size_t size) {
this->impl.GetHash(dst, size); m_impl.GetHash(dst, size);
} }
}; };

View file

@ -46,36 +46,36 @@ namespace ams::crypto {
}; };
static constexpr size_t Asn1IdentifierSize = util::size(Asn1Identifier); static constexpr size_t Asn1IdentifierSize = util::size(Asn1Identifier);
private: private:
Impl impl; Impl m_impl;
public: public:
Sha256Generator() { /* ... */ } Sha256Generator() { /* ... */ }
void Initialize() { void Initialize() {
this->impl.Initialize(); m_impl.Initialize();
} }
void Update(const void *data, size_t size) { void Update(const void *data, size_t size) {
this->impl.Update(data, size); m_impl.Update(data, size);
} }
void GetHash(void *dst, size_t size) { void GetHash(void *dst, size_t size) {
this->impl.GetHash(dst, size); m_impl.GetHash(dst, size);
} }
void InitializeWithContext(const Sha256Context *context) { void InitializeWithContext(const Sha256Context *context) {
this->impl.InitializeWithContext(context); m_impl.InitializeWithContext(context);
} }
size_t GetContext(Sha256Context *context) const { size_t GetContext(Sha256Context *context) const {
return this->impl.GetContext(context); return m_impl.GetContext(context);
} }
size_t GetBufferedDataSize() const { size_t GetBufferedDataSize() const {
return this->impl.GetBufferedDataSize(); return m_impl.GetBufferedDataSize();
} }
void GetBufferedData(void *dst, size_t dst_size) const { void GetBufferedData(void *dst, size_t dst_size) const {
return this->impl.GetBufferedData(dst, dst_size); return m_impl.GetBufferedData(dst, dst_size);
} }
}; };

View file

@ -34,21 +34,21 @@ namespace ams::crypto {
static constexpr size_t BlockSize = Impl::BlockSize; static constexpr size_t BlockSize = Impl::BlockSize;
static constexpr size_t IvSize = Impl::IvSize; static constexpr size_t IvSize = Impl::IvSize;
private: private:
Impl impl; Impl m_impl;
public: public:
XtsDecryptor() { /* ... */ } XtsDecryptor() { /* ... */ }
template<typename BlockCipher2> template<typename BlockCipher2>
void Initialize(const BlockCipher *cipher1, const BlockCipher2 *cipher2, const void *iv, size_t iv_size) { void Initialize(const BlockCipher *cipher1, const BlockCipher2 *cipher2, const void *iv, size_t iv_size) {
this->impl.InitializeDecryption(cipher1, cipher2, iv, iv_size); m_impl.InitializeDecryption(cipher1, cipher2, iv, iv_size);
} }
size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) {
return this->impl.template Update<BlockCipher>(dst, dst_size, src, src_size); return m_impl.template Update<BlockCipher>(dst, dst_size, src, src_size);
} }
size_t Finalize(void *dst, size_t dst_size) { size_t Finalize(void *dst, size_t dst_size) {
return this->impl.FinalizeDecryption(dst, dst_size); return m_impl.FinalizeDecryption(dst, dst_size);
} }
}; };

View file

@ -34,21 +34,21 @@ namespace ams::crypto {
static constexpr size_t BlockSize = Impl::BlockSize; static constexpr size_t BlockSize = Impl::BlockSize;
static constexpr size_t IvSize = Impl::IvSize; static constexpr size_t IvSize = Impl::IvSize;
private: private:
Impl impl; Impl m_impl;
public: public:
XtsEncryptor() { /* ... */ } XtsEncryptor() { /* ... */ }
template<typename BlockCipher2> template<typename BlockCipher2>
void Initialize(const BlockCipher *cipher1, const BlockCipher2 *cipher2, const void *iv, size_t iv_size) { void Initialize(const BlockCipher *cipher1, const BlockCipher2 *cipher2, const void *iv, size_t iv_size) {
this->impl.InitializeEncryption(cipher1, cipher2, iv, iv_size); m_impl.InitializeEncryption(cipher1, cipher2, iv, iv_size);
} }
size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t Update(void *dst, size_t dst_size, const void *src, size_t src_size) {
return this->impl.template Update<BlockCipher>(dst, dst_size, src, src_size); return m_impl.template Update<BlockCipher>(dst, dst_size, src, src_size);
} }
size_t Finalize(void *dst, size_t dst_size) { size_t Finalize(void *dst, size_t dst_size) {
return this->impl.FinalizeEncryption(dst, dst_size); return m_impl.FinalizeEncryption(dst, dst_size);
} }
}; };

View file

@ -31,10 +31,10 @@ namespace ams::crypto::impl {
static constexpr size_t RoundKeySize = BlockSize * (RoundCount + 1); static constexpr size_t RoundKeySize = BlockSize * (RoundCount + 1);
private: private:
#ifdef ATMOSPHERE_IS_EXOSPHERE #ifdef ATMOSPHERE_IS_EXOSPHERE
int slot; int m_slot;
#endif #endif
#ifdef ATMOSPHERE_IS_STRATOSPHERE #ifdef ATMOSPHERE_IS_STRATOSPHERE
u32 round_keys[RoundKeySize / sizeof(u32)]; u32 m_round_keys[RoundKeySize / sizeof(u32)];
#endif #endif
public: public:
~AesImpl(); ~AesImpl();
@ -45,7 +45,7 @@ namespace ams::crypto::impl {
#ifdef ATMOSPHERE_IS_STRATOSPHERE #ifdef ATMOSPHERE_IS_STRATOSPHERE
const u8 *GetRoundKey() const { const u8 *GetRoundKey() const {
return reinterpret_cast<const u8 *>(this->round_keys); return reinterpret_cast<const u8 *>(m_round_keys);
} }
#endif #endif
}; };

View file

@ -46,43 +46,43 @@ namespace ams::crypto::impl {
private: private:
friend class WordAllocator; friend class WordAllocator;
private: private:
WordAllocator *allocator; WordAllocator *m_allocator;
Word *buffer; Word *m_buffer;
size_t count; size_t m_count;
private: private:
constexpr ALWAYS_INLINE Allocation(WordAllocator *a, Word *w, size_t c) : allocator(a), buffer(w), count(c) { /* ... */ } constexpr ALWAYS_INLINE Allocation(WordAllocator *a, Word *w, size_t c) : m_allocator(a), m_buffer(w), m_count(c) { /* ... */ }
public: public:
ALWAYS_INLINE ~Allocation() { if (allocator) { allocator->Free(this->buffer, this->count); } } ALWAYS_INLINE ~Allocation() { if (m_allocator) { m_allocator->Free(m_buffer, m_count); } }
constexpr ALWAYS_INLINE Word *GetBuffer() const { return this->buffer; } constexpr ALWAYS_INLINE Word *GetBuffer() const { return m_buffer; }
constexpr ALWAYS_INLINE size_t GetCount() const { return this->count; } constexpr ALWAYS_INLINE size_t GetCount() const { return m_count; }
constexpr ALWAYS_INLINE bool IsValid() const { return this->buffer != nullptr; } constexpr ALWAYS_INLINE bool IsValid() const { return m_buffer != nullptr; }
}; };
friend class Allocation; friend class Allocation;
private: private:
Word *buffer; Word *m_buffer;
size_t count; size_t m_count;
size_t max_count; size_t m_max_count;
size_t min_count; size_t m_min_count;
private: private:
ALWAYS_INLINE void Free(void *words, size_t num) { ALWAYS_INLINE void Free(void *words, size_t num) {
this->buffer -= num; m_buffer -= num;
this->count += num; m_count += num;
AMS_ASSERT(words == this->buffer); AMS_ASSERT(words == m_buffer);
AMS_UNUSED(words); AMS_UNUSED(words);
} }
public: public:
constexpr ALWAYS_INLINE WordAllocator(Word *buf, size_t c) : buffer(buf), count(c), max_count(c), min_count(c) { /* ... */ } constexpr ALWAYS_INLINE WordAllocator(Word *buf, size_t c) : m_buffer(buf), m_count(c), m_max_count(c), m_min_count(c) { /* ... */ }
ALWAYS_INLINE Allocation Allocate(size_t num) { ALWAYS_INLINE Allocation Allocate(size_t num) {
if (num <= this->count) { if (num <= m_count) {
Word *allocated = this->buffer; Word *allocated = m_buffer;
this->buffer += num; m_buffer += num;
this->count -= num; m_count -= num;
this->min_count = std::min(this->count, this->min_count); m_min_count = std::min(m_count, m_min_count);
return Allocation(this, allocated, num); return Allocation(this, allocated, num);
} else { } else {
@ -91,23 +91,23 @@ namespace ams::crypto::impl {
} }
constexpr ALWAYS_INLINE size_t GetMaxUsedSize() const { constexpr ALWAYS_INLINE size_t GetMaxUsedSize() const {
return (this->max_count - this->min_count) * sizeof(Word); return (m_max_count - m_min_count) * sizeof(Word);
} }
}; };
private: private:
Word *words; Word *m_words;
size_t num_words; size_t m_num_words;
size_t max_words; size_t m_max_words;
private: private:
static void ImportImpl(Word *out, size_t out_size, const u8 *src, size_t src_size); static void ImportImpl(Word *out, size_t out_size, const u8 *src, size_t src_size);
static void ExportImpl(u8 *out, size_t out_size, const Word *src, size_t src_size); static void ExportImpl(u8 *out, size_t out_size, const Word *src, size_t src_size);
public: public:
constexpr BigNum() : words(), num_words(), max_words() { /* ... */ } constexpr BigNum() : m_words(), m_num_words(), m_max_words() { /* ... */ }
~BigNum() { /* ... */ } ~BigNum() { /* ... */ }
constexpr void ReserveStatic(Word *buf, size_t capacity) { constexpr void ReserveStatic(Word *buf, size_t capacity) {
this->words = buf; m_words = buf;
this->max_words = capacity; m_max_words = capacity;
} }
bool Import(const void *src, size_t src_size); bool Import(const void *src, size_t src_size);
@ -116,7 +116,7 @@ namespace ams::crypto::impl {
size_t GetSize() const; size_t GetSize() const;
bool IsZero() const { bool IsZero() const {
return this->num_words == 0; return m_num_words == 0;
} }
bool ExpMod(void *dst, const void *src, size_t size, const BigNum &exp, u32 *work_buf, size_t work_buf_size) const; bool ExpMod(void *dst, const void *src, size_t size, const BigNum &exp, u32 *work_buf, size_t work_buf_size) const;
@ -154,10 +154,10 @@ namespace ams::crypto::impl {
static constexpr size_t NumWords = util::AlignUp(NumBits, BitsPerWord) / BitsPerWord; static constexpr size_t NumWords = util::AlignUp(NumBits, BitsPerWord) / BitsPerWord;
static constexpr size_t NumBytes = NumWords * sizeof(Word); static constexpr size_t NumBytes = NumWords * sizeof(Word);
private: private:
Word word_buf[NumWords]; Word m_word_buf[NumWords];
public: public:
constexpr StaticBigNum() : word_buf() { constexpr StaticBigNum() : m_word_buf() {
this->ReserveStatic(word_buf, NumWords); this->ReserveStatic(m_word_buf, NumWords);
} }
}; };

View file

@ -37,13 +37,13 @@ namespace ams::crypto::impl {
State_Initialized, State_Initialized,
}; };
private: private:
const BlockCipher *block_cipher; const BlockCipher *m_block_cipher;
u8 counter[IvSize]; u8 m_counter[IvSize];
u8 encrypted_counter[BlockSize]; u8 m_encrypted_counter[BlockSize];
size_t buffer_offset; size_t m_buffer_offset;
State state; State m_state;
public: public:
CtrModeImpl() : state(State_None) { /* ... */ } CtrModeImpl() : m_state(State_None) { /* ... */ }
~CtrModeImpl() { ~CtrModeImpl() {
ClearMemory(this, sizeof(*this)); ClearMemory(this, sizeof(*this));
@ -57,8 +57,8 @@ namespace ams::crypto::impl {
AMS_ASSERT(iv_size == IvSize); AMS_ASSERT(iv_size == IvSize);
AMS_ASSERT(offset >= 0); AMS_ASSERT(offset >= 0);
this->block_cipher = block_cipher; m_block_cipher = block_cipher;
this->state = State_Initialized; m_state = State_Initialized;
this->SwitchMessage(iv, iv_size); this->SwitchMessage(iv, iv_size);
@ -69,32 +69,32 @@ namespace ams::crypto::impl {
} }
if (size_t remaining = static_cast<size_t>(offset % BlockSize); remaining != 0) { if (size_t remaining = static_cast<size_t>(offset % BlockSize); remaining != 0) {
this->block_cipher->EncryptBlock(this->encrypted_counter, sizeof(this->encrypted_counter), this->counter, sizeof(this->counter)); m_block_cipher->EncryptBlock(m_encrypted_counter, sizeof(m_encrypted_counter), m_counter, sizeof(m_counter));
this->IncrementCounter(); this->IncrementCounter();
this->buffer_offset = remaining; m_buffer_offset = remaining;
} }
} }
} }
void SwitchMessage(const void *iv, size_t iv_size) { void SwitchMessage(const void *iv, size_t iv_size) {
AMS_ASSERT(this->state == State_Initialized); AMS_ASSERT(m_state == State_Initialized);
AMS_ASSERT(iv_size == IvSize); AMS_ASSERT(iv_size == IvSize);
std::memcpy(this->counter, iv, iv_size); std::memcpy(m_counter, iv, iv_size);
this->buffer_offset = 0; m_buffer_offset = 0;
} }
void IncrementCounter() { void IncrementCounter() {
for (s32 i = IvSize - 1; i >= 0; --i) { for (s32 i = IvSize - 1; i >= 0; --i) {
if (++this->counter[i] != 0) { if (++m_counter[i] != 0) {
break; break;
} }
} }
} }
size_t Update(void *_dst, size_t dst_size, const void *_src, size_t src_size) { size_t Update(void *_dst, size_t dst_size, const void *_src, size_t src_size) {
AMS_ASSERT(this->state == State_Initialized); AMS_ASSERT(m_state == State_Initialized);
AMS_ASSERT(dst_size >= src_size); AMS_ASSERT(dst_size >= src_size);
AMS_UNUSED(dst_size); AMS_UNUSED(dst_size);
@ -102,10 +102,10 @@ namespace ams::crypto::impl {
const u8 *src = static_cast<const u8 *>(_src); const u8 *src = static_cast<const u8 *>(_src);
size_t remaining = src_size; size_t remaining = src_size;
if (this->buffer_offset > 0) { if (m_buffer_offset > 0) {
const size_t xor_size = std::min(BlockSize - this->buffer_offset, remaining); const size_t xor_size = std::min(BlockSize - m_buffer_offset, remaining);
const u8 *ctr = this->encrypted_counter + this->buffer_offset; const u8 *ctr = m_encrypted_counter + m_buffer_offset;
for (size_t i = 0; i < xor_size; i++) { for (size_t i = 0; i < xor_size; i++) {
dst[i] = src[i] ^ ctr[i]; dst[i] = src[i] ^ ctr[i];
} }
@ -113,10 +113,10 @@ namespace ams::crypto::impl {
src += xor_size; src += xor_size;
dst += xor_size; dst += xor_size;
remaining -= xor_size; remaining -= xor_size;
this->buffer_offset += xor_size; m_buffer_offset += xor_size;
if (this->buffer_offset == BlockSize) { if (m_buffer_offset == BlockSize) {
this->buffer_offset = 0; m_buffer_offset = 0;
} }
} }
@ -133,7 +133,7 @@ namespace ams::crypto::impl {
if (remaining > 0) { if (remaining > 0) {
this->ProcessBlock(dst, src, remaining); this->ProcessBlock(dst, src, remaining);
this->buffer_offset = remaining; m_buffer_offset = remaining;
} }
return src_size; return src_size;
@ -146,18 +146,18 @@ namespace ams::crypto::impl {
u16 acc = 0; u16 acc = 0;
const u8 *block = reinterpret_cast<const u8 *>(_block); const u8 *block = reinterpret_cast<const u8 *>(_block);
for (s32 i = IvSize - 1; i >= 0; --i) { for (s32 i = IvSize - 1; i >= 0; --i) {
acc += (this->counter[i] + block[i]); acc += (m_counter[i] + block[i]);
this->counter[i] = acc & 0xFF; m_counter[i] = acc & 0xFF;
acc >>= 8; acc >>= 8;
} }
} }
void ProcessBlock(u8 *dst, const u8 *src, size_t src_size) { void ProcessBlock(u8 *dst, const u8 *src, size_t src_size) {
this->block_cipher->EncryptBlock(this->encrypted_counter, BlockSize, this->counter, IvSize); m_block_cipher->EncryptBlock(m_encrypted_counter, BlockSize, m_counter, IvSize);
this->IncrementCounter(); this->IncrementCounter();
for (size_t i = 0; i < src_size; i++) { for (size_t i = 0; i < src_size; i++) {
dst[i] = src[i] ^ this->encrypted_counter[i]; dst[i] = src[i] ^ m_encrypted_counter[i];
} }
} }

View file

@ -63,23 +63,23 @@ namespace ams::crypto::impl {
using CipherFunction = void (*)(void *dst_block, const void *src_block, const void *ctx); using CipherFunction = void (*)(void *dst_block, const void *src_block, const void *ctx);
private: private:
State state; State m_state;
const BlockCipher *block_cipher; const BlockCipher *m_block_cipher;
CipherFunction cipher_func; CipherFunction m_cipher_func;
u8 pad[sizeof(u64)]; u8 m_pad[sizeof(u64)];
Block block_x; Block m_block_x;
Block block_y; Block m_block_y;
Block block_ek; Block m_block_ek;
Block block_ek0; Block m_block_ek0;
Block block_tmp; Block m_block_tmp;
size_t aad_size; size_t m_aad_size;
size_t msg_size; size_t m_msg_size;
u32 aad_remaining; u32 m_aad_remaining;
u32 msg_remaining; u32 m_msg_remaining;
u32 counter; u32 m_counter;
Block h_mult_blocks[16]; Block m_h_mult_blocks[16];
public: public:
GcmModeImpl() : state(State_None) { /* ... */ } GcmModeImpl() : m_state(State_None) { /* ... */ }
~GcmModeImpl() { ~GcmModeImpl() {
ClearMemory(this, sizeof(*this)); ClearMemory(this, sizeof(*this));

View file

@ -43,17 +43,17 @@ namespace ams::crypto::impl {
State_Done = 2, State_Done = 2,
}; };
private: private:
Hash hash_function; Hash m_hash_function;
u32 key[BlockSize / sizeof(u32)]; u32 m_key[BlockSize / sizeof(u32)];
u32 mac[MacSize / sizeof(u32)]; u32 m_mac[MacSize / sizeof(u32)];
State state; State m_state;
public: public:
HmacImpl() : state(State_None) { /* ... */ } HmacImpl() : m_state(State_None) { /* ... */ }
~HmacImpl() { ~HmacImpl() {
static_assert(offsetof(HmacImpl, hash_function) == 0); static_assert(offsetof(HmacImpl, m_hash_function) == 0);
/* Clear everything except for the hash function. */ /* Clear everything except for the hash function. */
ClearMemory(reinterpret_cast<u8 *>(this) + sizeof(this->hash_function), sizeof(*this) - sizeof(this->hash_function)); ClearMemory(reinterpret_cast<u8 *>(this) + sizeof(m_hash_function), sizeof(*this) - sizeof(m_hash_function));
} }
void Initialize(const void *key, size_t key_size); void Initialize(const void *key, size_t key_size);
@ -64,64 +64,64 @@ namespace ams::crypto::impl {
template<typename Hash> template<typename Hash>
inline void HmacImpl<Hash>::Initialize(const void *key, size_t key_size) { inline void HmacImpl<Hash>::Initialize(const void *key, size_t key_size) {
/* Clear the key storage. */ /* Clear the key storage. */
std::memset(this->key, 0, sizeof(this->key)); std::memset(m_key, 0, sizeof(m_key));
/* Set the key storage. */ /* Set the key storage. */
if (key_size > BlockSize) { if (key_size > BlockSize) {
this->hash_function.Initialize(); m_hash_function.Initialize();
this->hash_function.Update(key, key_size); m_hash_function.Update(key, key_size);
this->hash_function.GetHash(this->key, this->hash_function.HashSize); m_hash_function.GetHash(m_key, m_hash_function.HashSize);
} else { } else {
std::memcpy(this->key, key, key_size); std::memcpy(m_key, key, key_size);
} }
/* Xor the key with the ipad. */ /* Xor the key with the ipad. */
for (size_t i = 0; i < util::size(this->key); i++) { for (size_t i = 0; i < util::size(m_key); i++) {
this->key[i] ^= IpadMagic; m_key[i] ^= IpadMagic;
} }
/* Update the hash function with the xor'd key. */ /* Update the hash function with the xor'd key. */
this->hash_function.Initialize(); m_hash_function.Initialize();
this->hash_function.Update(this->key, BlockSize); m_hash_function.Update(m_key, BlockSize);
/* Mark initialized. */ /* Mark initialized. */
this->state = State_Initialized; m_state = State_Initialized;
} }
template<typename Hash> template<typename Hash>
inline void HmacImpl<Hash>::Update(const void *data, size_t data_size) { inline void HmacImpl<Hash>::Update(const void *data, size_t data_size) {
AMS_ASSERT(this->state == State_Initialized); AMS_ASSERT(m_state == State_Initialized);
this->hash_function.Update(data, data_size); m_hash_function.Update(data, data_size);
} }
template<typename Hash> template<typename Hash>
inline void HmacImpl<Hash>::GetMac(void *dst, size_t dst_size) { inline void HmacImpl<Hash>::GetMac(void *dst, size_t dst_size) {
AMS_ASSERT(this->state == State_Initialized || this->state == State_Done); AMS_ASSERT(m_state == State_Initialized || m_state == State_Done);
AMS_ASSERT(dst_size >= MacSize); AMS_ASSERT(dst_size >= MacSize);
AMS_UNUSED(dst_size); AMS_UNUSED(dst_size);
/* If we're not already finalized, get the final mac. */ /* If we're not already finalized, get the final mac. */
if (this->state == State_Initialized) { if (m_state == State_Initialized) {
/* Get the hash of ((key ^ ipad) || data). */ /* Get the hash of ((key ^ ipad) || data). */
this->hash_function.GetHash(this->mac, MacSize); m_hash_function.GetHash(m_mac, MacSize);
/* Xor the key with the opad. */ /* Xor the key with the opad. */
for (size_t i = 0; i < util::size(this->key); i++) { for (size_t i = 0; i < util::size(m_key); i++) {
this->key[i] ^= IpadMagicXorOpadMagic; m_key[i] ^= IpadMagicXorOpadMagic;
} }
/* Calculate the final mac as hash of ((key ^ opad) || hash((key ^ ipad) || data)) */ /* Calculate the final mac as hash of ((key ^ opad) || hash((key ^ ipad) || data)) */
this->hash_function.Initialize(); m_hash_function.Initialize();
this->hash_function.Update(this->key, BlockSize); m_hash_function.Update(m_key, BlockSize);
this->hash_function.Update(this->mac, MacSize); m_hash_function.Update(m_mac, MacSize);
this->hash_function.GetHash(this->mac, MacSize); m_hash_function.GetHash(m_mac, MacSize);
/* Set our state as done. */ /* Set our state as done. */
this->state = State_Done; m_state = State_Done;
} }
std::memcpy(dst, this->mac, MacSize); std::memcpy(dst, m_mac, MacSize);
} }
} }

View file

@ -37,12 +37,12 @@ namespace ams::crypto::impl {
bool finalized; bool finalized;
}; };
private: private:
State state; State m_state;
public: public:
Sha1Impl() { /* ... */ } Sha1Impl() { /* ... */ }
~Sha1Impl() { ~Sha1Impl() {
static_assert(std::is_trivially_destructible<State>::value); static_assert(std::is_trivially_destructible<State>::value);
ClearMemory(std::addressof(this->state), sizeof(this->state)); ClearMemory(std::addressof(m_state), sizeof(m_state));
} }
void Initialize(); void Initialize();

View file

@ -42,12 +42,12 @@ namespace ams::crypto::impl {
bool finalized; bool finalized;
}; };
private: private:
State state; State m_state;
public: public:
Sha256Impl() { /* ... */ } Sha256Impl() { /* ... */ }
~Sha256Impl() { ~Sha256Impl() {
static_assert(std::is_trivially_destructible<State>::value); static_assert(std::is_trivially_destructible<State>::value);
ClearMemory(std::addressof(this->state), sizeof(this->state)); ClearMemory(std::addressof(m_state), sizeof(m_state));
} }
void Initialize(); void Initialize();
@ -57,13 +57,13 @@ namespace ams::crypto::impl {
void InitializeWithContext(const Sha256Context *context); void InitializeWithContext(const Sha256Context *context);
size_t GetContext(Sha256Context *context) const; size_t GetContext(Sha256Context *context) const;
size_t GetBufferedDataSize() const { return this->state.num_buffered; } size_t GetBufferedDataSize() const { return m_state.num_buffered; }
void GetBufferedData(void *dst, size_t dst_size) const { void GetBufferedData(void *dst, size_t dst_size) const {
AMS_ASSERT(dst_size >= this->GetBufferedDataSize()); AMS_ASSERT(dst_size >= this->GetBufferedDataSize());
AMS_UNUSED(dst_size); AMS_UNUSED(dst_size);
std::memcpy(dst, this->state.buffer, this->GetBufferedDataSize()); std::memcpy(dst, m_state.buffer, this->GetBufferedDataSize());
} }
}; };

View file

@ -38,15 +38,15 @@ namespace ams::crypto::impl {
State_Done State_Done
}; };
private: private:
u8 buffer[BlockSize]; u8 m_buffer[BlockSize];
u8 tweak[BlockSize]; u8 m_tweak[BlockSize];
u8 last_block[BlockSize]; u8 m_last_block[BlockSize];
size_t num_buffered; size_t m_num_buffered;
const void *cipher_ctx; const void *m_cipher_ctx;
void (*cipher_func)(void *dst_block, const void *src_block, const void *cipher_ctx); void (*m_cipher_func)(void *dst_block, const void *src_block, const void *cipher_ctx);
State state; State m_state;
public: public:
XtsModeImpl() : num_buffered(0), state(State_None) { /* ... */ } XtsModeImpl() : m_num_buffered(0), m_state(State_None) { /* ... */ }
~XtsModeImpl() { ~XtsModeImpl() {
ClearMemory(this, sizeof(*this)); ClearMemory(this, sizeof(*this));
@ -67,10 +67,10 @@ namespace ams::crypto::impl {
AMS_ASSERT(tweak_size == IvSize); AMS_ASSERT(tweak_size == IvSize);
AMS_UNUSED(tweak_size); AMS_UNUSED(tweak_size);
cipher->EncryptBlock(this->tweak, IvSize, tweak, IvSize); cipher->EncryptBlock(m_tweak, IvSize, tweak, IvSize);
this->num_buffered = 0; m_num_buffered = 0;
this->state = State_Initialized; m_state = State_Initialized;
} }
void ProcessBlock(u8 *dst, const u8 *src); void ProcessBlock(u8 *dst, const u8 *src);
@ -80,8 +80,8 @@ namespace ams::crypto::impl {
static_assert(BlockCipher1::BlockSize == BlockSize); static_assert(BlockCipher1::BlockSize == BlockSize);
static_assert(BlockCipher2::BlockSize == BlockSize); static_assert(BlockCipher2::BlockSize == BlockSize);
this->cipher_ctx = cipher1; m_cipher_ctx = cipher1;
this->cipher_func = EncryptBlockCallback<BlockCipher1>; m_cipher_func = EncryptBlockCallback<BlockCipher1>;
this->Initialize(cipher2, tweak, tweak_size); this->Initialize(cipher2, tweak, tweak_size);
} }
@ -91,8 +91,8 @@ namespace ams::crypto::impl {
static_assert(BlockCipher1::BlockSize == BlockSize); static_assert(BlockCipher1::BlockSize == BlockSize);
static_assert(BlockCipher2::BlockSize == BlockSize); static_assert(BlockCipher2::BlockSize == BlockSize);
this->cipher_ctx = cipher1; m_cipher_ctx = cipher1;
this->cipher_func = DecryptBlockCallback<BlockCipher1>; m_cipher_func = DecryptBlockCallback<BlockCipher1>;
this->Initialize(cipher2, tweak, tweak_size); this->Initialize(cipher2, tweak, tweak_size);
} }
@ -108,7 +108,7 @@ namespace ams::crypto::impl {
} }
size_t GetBufferedDataSize() const { size_t GetBufferedDataSize() const {
return this->num_buffered; return m_num_buffered;
} }
constexpr size_t GetBlockSize() const { constexpr size_t GetBlockSize() const {

View file

@ -29,11 +29,11 @@ namespace ams {
/* TODO: Better understand device code components. */ /* TODO: Better understand device code components. */
class DeviceCode { class DeviceCode {
private: private:
impl::DeviceCodeType inner_value; impl::DeviceCodeType m_inner_value;
public: public:
constexpr DeviceCode(impl::DeviceCodeType v) : inner_value(v) { /* ... */ } constexpr DeviceCode(impl::DeviceCodeType v) : m_inner_value(v) { /* ... */ }
constexpr impl::DeviceCodeType GetInternalValue() const { return this->inner_value; } constexpr impl::DeviceCodeType GetInternalValue() const { return m_inner_value; }
constexpr bool operator==(const DeviceCode &rhs) const { constexpr bool operator==(const DeviceCode &rhs) const {
return this->GetInternalValue() == rhs.GetInternalValue(); return this->GetInternalValue() == rhs.GetInternalValue();

View file

@ -56,31 +56,31 @@ namespace ams::freebsd {
template<typename T> template<typename T>
class RBEntry { class RBEntry {
private: private:
T *rbe_left = nullptr; T *m_rbe_left = nullptr;
T *rbe_right = nullptr; T *m_rbe_right = nullptr;
T *rbe_parent = nullptr; T *m_rbe_parent = nullptr;
RBColor rbe_color = RBColor::RB_BLACK; RBColor m_rbe_color = RBColor::RB_BLACK;
public: public:
[[nodiscard]] constexpr ALWAYS_INLINE T *Left() { return this->rbe_left; } [[nodiscard]] constexpr ALWAYS_INLINE T *Left() { return m_rbe_left; }
[[nodiscard]] constexpr ALWAYS_INLINE const T *Left() const { return this->rbe_left; } [[nodiscard]] constexpr ALWAYS_INLINE const T *Left() const { return m_rbe_left; }
constexpr ALWAYS_INLINE void SetLeft(T *e) { this->rbe_left = e; } constexpr ALWAYS_INLINE void SetLeft(T *e) { m_rbe_left = e; }
[[nodiscard]] constexpr ALWAYS_INLINE T *Right() { return this->rbe_right; } [[nodiscard]] constexpr ALWAYS_INLINE T *Right() { return m_rbe_right; }
[[nodiscard]] constexpr ALWAYS_INLINE const T *Right() const { return this->rbe_right; } [[nodiscard]] constexpr ALWAYS_INLINE const T *Right() const { return m_rbe_right; }
constexpr ALWAYS_INLINE void SetRight(T *e) { this->rbe_right = e; } constexpr ALWAYS_INLINE void SetRight(T *e) { m_rbe_right = e; }
[[nodiscard]] constexpr ALWAYS_INLINE T *Parent() { return this->rbe_parent; } [[nodiscard]] constexpr ALWAYS_INLINE T *Parent() { return m_rbe_parent; }
[[nodiscard]] constexpr ALWAYS_INLINE const T *Parent() const { return this->rbe_parent; } [[nodiscard]] constexpr ALWAYS_INLINE const T *Parent() const { return m_rbe_parent; }
constexpr ALWAYS_INLINE void SetParent(T *e) { this->rbe_parent = e; } constexpr ALWAYS_INLINE void SetParent(T *e) { m_rbe_parent = e; }
[[nodiscard]] constexpr ALWAYS_INLINE bool IsBlack() const { return this->rbe_color == RBColor::RB_BLACK; } [[nodiscard]] constexpr ALWAYS_INLINE bool IsBlack() const { return m_rbe_color == RBColor::RB_BLACK; }
[[nodiscard]] constexpr ALWAYS_INLINE bool IsRed() const { return this->rbe_color == RBColor::RB_RED; } [[nodiscard]] constexpr ALWAYS_INLINE bool IsRed() const { return m_rbe_color == RBColor::RB_RED; }
[[nodiscard]] constexpr ALWAYS_INLINE RBColor Color() const { return this->rbe_color; } [[nodiscard]] constexpr ALWAYS_INLINE RBColor Color() const { return m_rbe_color; }
constexpr ALWAYS_INLINE void SetColor(RBColor c) { this->rbe_color = c; } constexpr ALWAYS_INLINE void SetColor(RBColor c) { m_rbe_color = c; }
}; };
template<typename T> struct CheckRBEntry { static constexpr bool value = false; }; template<typename T> struct CheckRBEntry { static constexpr bool value = false; };
@ -98,11 +98,11 @@ namespace ams::freebsd {
template<typename T> requires HasRBEntry<T> template<typename T> requires HasRBEntry<T>
class RBHead { class RBHead {
private: private:
T *rbh_root = nullptr; T *m_rbh_root = nullptr;
public: public:
[[nodiscard]] constexpr ALWAYS_INLINE T *Root() { return this->rbh_root; } [[nodiscard]] constexpr ALWAYS_INLINE T *Root() { return m_rbh_root; }
[[nodiscard]] constexpr ALWAYS_INLINE const T *Root() const { return this->rbh_root; } [[nodiscard]] constexpr ALWAYS_INLINE const T *Root() const { return m_rbh_root; }
constexpr ALWAYS_INLINE void SetRoot(T *root) { this->rbh_root = root; } constexpr ALWAYS_INLINE void SetRoot(T *root) { m_rbh_root = root; }
[[nodiscard]] constexpr ALWAYS_INLINE bool IsEmpty() const { return this->Root() == nullptr; } [[nodiscard]] constexpr ALWAYS_INLINE bool IsEmpty() const { return this->Root() == nullptr; }
}; };

View file

@ -24,7 +24,7 @@ namespace ams {
struct TimeSpanType { struct TimeSpanType {
public: public:
s64 ns; s64 _ns;
public: public:
static constexpr ALWAYS_INLINE TimeSpanType FromNanoSeconds(s64 ns) { return {ns}; } static constexpr ALWAYS_INLINE TimeSpanType FromNanoSeconds(s64 ns) { return {ns}; }
static constexpr ALWAYS_INLINE TimeSpanType FromMicroSeconds(s64 ms) { return FromNanoSeconds(ms * INT64_C(1000)); } static constexpr ALWAYS_INLINE TimeSpanType FromMicroSeconds(s64 ms) { return FromNanoSeconds(ms * INT64_C(1000)); }
@ -34,7 +34,7 @@ namespace ams {
static constexpr ALWAYS_INLINE TimeSpanType FromHours(s64 h) { return FromMinutes(h * INT64_C(60)); } static constexpr ALWAYS_INLINE TimeSpanType FromHours(s64 h) { return FromMinutes(h * INT64_C(60)); }
static constexpr ALWAYS_INLINE TimeSpanType FromDays(s64 d) { return FromHours(d * INT64_C(24)); } static constexpr ALWAYS_INLINE TimeSpanType FromDays(s64 d) { return FromHours(d * INT64_C(24)); }
constexpr ALWAYS_INLINE s64 GetNanoSeconds() const { return this->ns; } constexpr ALWAYS_INLINE s64 GetNanoSeconds() const { return _ns; }
constexpr ALWAYS_INLINE s64 GetMicroSeconds() const { return this->GetNanoSeconds() / (INT64_C(1000)); } constexpr ALWAYS_INLINE s64 GetMicroSeconds() const { return this->GetNanoSeconds() / (INT64_C(1000)); }
constexpr ALWAYS_INLINE s64 GetMilliSeconds() const { return this->GetNanoSeconds() / (INT64_C(1000) * INT64_C(1000)); } constexpr ALWAYS_INLINE s64 GetMilliSeconds() const { return this->GetNanoSeconds() / (INT64_C(1000) * INT64_C(1000)); }
constexpr ALWAYS_INLINE s64 GetSeconds() const { return this->GetNanoSeconds() / (INT64_C(1000) * INT64_C(1000) * INT64_C(1000)); } constexpr ALWAYS_INLINE s64 GetSeconds() const { return this->GetNanoSeconds() / (INT64_C(1000) * INT64_C(1000) * INT64_C(1000)); }
@ -42,15 +42,15 @@ namespace ams {
constexpr ALWAYS_INLINE s64 GetHours() const { return this->GetNanoSeconds() / (INT64_C(1000) * INT64_C(1000) * INT64_C(1000) * INT64_C( 60) * INT64_C( 60)); } constexpr ALWAYS_INLINE s64 GetHours() const { return this->GetNanoSeconds() / (INT64_C(1000) * INT64_C(1000) * INT64_C(1000) * INT64_C( 60) * INT64_C( 60)); }
constexpr ALWAYS_INLINE s64 GetDays() const { return this->GetNanoSeconds() / (INT64_C(1000) * INT64_C(1000) * INT64_C(1000) * INT64_C( 60) * INT64_C( 60) * INT64_C( 24)); } constexpr ALWAYS_INLINE s64 GetDays() const { return this->GetNanoSeconds() / (INT64_C(1000) * INT64_C(1000) * INT64_C(1000) * INT64_C( 60) * INT64_C( 60) * INT64_C( 24)); }
constexpr ALWAYS_INLINE friend bool operator==(const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs.ns == rhs.ns; } constexpr ALWAYS_INLINE friend bool operator==(const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs._ns == rhs._ns; }
constexpr ALWAYS_INLINE friend bool operator!=(const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs.ns != rhs.ns; } constexpr ALWAYS_INLINE friend bool operator!=(const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs._ns != rhs._ns; }
constexpr ALWAYS_INLINE friend bool operator<=(const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs.ns <= rhs.ns; } constexpr ALWAYS_INLINE friend bool operator<=(const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs._ns <= rhs._ns; }
constexpr ALWAYS_INLINE friend bool operator>=(const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs.ns >= rhs.ns; } constexpr ALWAYS_INLINE friend bool operator>=(const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs._ns >= rhs._ns; }
constexpr ALWAYS_INLINE friend bool operator< (const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs.ns < rhs.ns; } constexpr ALWAYS_INLINE friend bool operator< (const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs._ns < rhs._ns; }
constexpr ALWAYS_INLINE friend bool operator> (const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs.ns > rhs.ns; } constexpr ALWAYS_INLINE friend bool operator> (const TimeSpanType &lhs, const TimeSpanType &rhs) { return lhs._ns > rhs._ns; }
constexpr ALWAYS_INLINE TimeSpanType &operator+=(const TimeSpanType &rhs) { this->ns += rhs.ns; return *this; } constexpr ALWAYS_INLINE TimeSpanType &operator+=(const TimeSpanType &rhs) { _ns += rhs._ns; return *this; }
constexpr ALWAYS_INLINE TimeSpanType &operator-=(const TimeSpanType &rhs) { this->ns -= rhs.ns; return *this; } constexpr ALWAYS_INLINE TimeSpanType &operator-=(const TimeSpanType &rhs) { _ns -= rhs._ns; return *this; }
constexpr ALWAYS_INLINE friend TimeSpanType operator+(const TimeSpanType &lhs, const TimeSpanType &rhs) { TimeSpanType r(lhs); return r += rhs; } constexpr ALWAYS_INLINE friend TimeSpanType operator+(const TimeSpanType &lhs, const TimeSpanType &rhs) { TimeSpanType r(lhs); return r += rhs; }
constexpr ALWAYS_INLINE friend TimeSpanType operator-(const TimeSpanType &lhs, const TimeSpanType &rhs) { TimeSpanType r(lhs); return r -= rhs; } constexpr ALWAYS_INLINE friend TimeSpanType operator-(const TimeSpanType &lhs, const TimeSpanType &rhs) { TimeSpanType r(lhs); return r -= rhs; }
@ -61,13 +61,13 @@ namespace ams {
private: private:
using ZeroTag = const class ZeroTagImpl{} *; using ZeroTag = const class ZeroTagImpl{} *;
private: private:
TimeSpanType ts; TimeSpanType m_ts;
public: public:
constexpr ALWAYS_INLINE TimeSpan(ZeroTag z = nullptr) : ts(TimeSpanType::FromNanoSeconds(0)) { AMS_UNUSED(z); /* ... */ } constexpr ALWAYS_INLINE TimeSpan(ZeroTag z = nullptr) : m_ts(TimeSpanType::FromNanoSeconds(0)) { AMS_UNUSED(z); /* ... */ }
constexpr ALWAYS_INLINE TimeSpan(const TimeSpanType &t) : ts(t) { /* ... */ } constexpr ALWAYS_INLINE TimeSpan(const TimeSpanType &t) : m_ts(t) { /* ... */ }
template<typename R, typename P> template<typename R, typename P>
constexpr ALWAYS_INLINE TimeSpan(const std::chrono::duration<R, P>& c) : ts(TimeSpanType::FromNanoSeconds(static_cast<std::chrono::nanoseconds>(c).count())) { /* ... */ } constexpr ALWAYS_INLINE TimeSpan(const std::chrono::duration<R, P>& c) : m_ts(TimeSpanType::FromNanoSeconds(static_cast<std::chrono::nanoseconds>(c).count())) { /* ... */ }
public: public:
static constexpr ALWAYS_INLINE TimeSpan FromNanoSeconds(s64 ns) { return TimeSpanType::FromNanoSeconds(ns); } static constexpr ALWAYS_INLINE TimeSpan FromNanoSeconds(s64 ns) { return TimeSpanType::FromNanoSeconds(ns); }
static constexpr ALWAYS_INLINE TimeSpan FromMicroSeconds(s64 ms) { return TimeSpanType::FromMicroSeconds(ms); } static constexpr ALWAYS_INLINE TimeSpan FromMicroSeconds(s64 ms) { return TimeSpanType::FromMicroSeconds(ms); }
@ -77,29 +77,29 @@ namespace ams {
static constexpr ALWAYS_INLINE TimeSpan FromHours(s64 h) { return TimeSpanType::FromHours(h); } static constexpr ALWAYS_INLINE TimeSpan FromHours(s64 h) { return TimeSpanType::FromHours(h); }
static constexpr ALWAYS_INLINE TimeSpan FromDays(s64 d) { return TimeSpanType::FromDays(d); } static constexpr ALWAYS_INLINE TimeSpan FromDays(s64 d) { return TimeSpanType::FromDays(d); }
constexpr ALWAYS_INLINE s64 GetNanoSeconds() const { return this->ts.GetNanoSeconds(); } constexpr ALWAYS_INLINE s64 GetNanoSeconds() const { return m_ts.GetNanoSeconds(); }
constexpr ALWAYS_INLINE s64 GetMicroSeconds() const { return this->ts.GetMicroSeconds(); } constexpr ALWAYS_INLINE s64 GetMicroSeconds() const { return m_ts.GetMicroSeconds(); }
constexpr ALWAYS_INLINE s64 GetMilliSeconds() const { return this->ts.GetMilliSeconds(); } constexpr ALWAYS_INLINE s64 GetMilliSeconds() const { return m_ts.GetMilliSeconds(); }
constexpr ALWAYS_INLINE s64 GetSeconds() const { return this->ts.GetSeconds(); } constexpr ALWAYS_INLINE s64 GetSeconds() const { return m_ts.GetSeconds(); }
constexpr ALWAYS_INLINE s64 GetMinutes() const { return this->ts.GetMinutes(); } constexpr ALWAYS_INLINE s64 GetMinutes() const { return m_ts.GetMinutes(); }
constexpr ALWAYS_INLINE s64 GetHours() const { return this->ts.GetHours(); } constexpr ALWAYS_INLINE s64 GetHours() const { return m_ts.GetHours(); }
constexpr ALWAYS_INLINE s64 GetDays() const { return this->ts.GetDays(); } constexpr ALWAYS_INLINE s64 GetDays() const { return m_ts.GetDays(); }
constexpr ALWAYS_INLINE friend bool operator==(const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.ts == rhs.ts; } constexpr ALWAYS_INLINE friend bool operator==(const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.m_ts == rhs.m_ts; }
constexpr ALWAYS_INLINE friend bool operator!=(const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.ts != rhs.ts; } constexpr ALWAYS_INLINE friend bool operator!=(const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.m_ts != rhs.m_ts; }
constexpr ALWAYS_INLINE friend bool operator<=(const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.ts <= rhs.ts; } constexpr ALWAYS_INLINE friend bool operator<=(const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.m_ts <= rhs.m_ts; }
constexpr ALWAYS_INLINE friend bool operator>=(const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.ts >= rhs.ts; } constexpr ALWAYS_INLINE friend bool operator>=(const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.m_ts >= rhs.m_ts; }
constexpr ALWAYS_INLINE friend bool operator< (const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.ts < rhs.ts; } constexpr ALWAYS_INLINE friend bool operator< (const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.m_ts < rhs.m_ts; }
constexpr ALWAYS_INLINE friend bool operator> (const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.ts > rhs.ts; } constexpr ALWAYS_INLINE friend bool operator> (const TimeSpan &lhs, const TimeSpan &rhs) { return lhs.m_ts > rhs.m_ts; }
constexpr ALWAYS_INLINE TimeSpan &operator+=(const TimeSpan &rhs) { this->ts += rhs.ts; return *this; } constexpr ALWAYS_INLINE TimeSpan &operator+=(const TimeSpan &rhs) { m_ts += rhs.m_ts; return *this; }
constexpr ALWAYS_INLINE TimeSpan &operator-=(const TimeSpan &rhs) { this->ts -= rhs.ts; return *this; } constexpr ALWAYS_INLINE TimeSpan &operator-=(const TimeSpan &rhs) { m_ts -= rhs.m_ts; return *this; }
constexpr ALWAYS_INLINE friend TimeSpan operator+(const TimeSpan &lhs, const TimeSpan &rhs) { TimeSpan r(lhs); return r += rhs; } constexpr ALWAYS_INLINE friend TimeSpan operator+(const TimeSpan &lhs, const TimeSpan &rhs) { TimeSpan r(lhs); return r += rhs; }
constexpr ALWAYS_INLINE friend TimeSpan operator-(const TimeSpan &lhs, const TimeSpan &rhs) { TimeSpan r(lhs); return r -= rhs; } constexpr ALWAYS_INLINE friend TimeSpan operator-(const TimeSpan &lhs, const TimeSpan &rhs) { TimeSpan r(lhs); return r -= rhs; }
constexpr ALWAYS_INLINE operator TimeSpanType() const { constexpr ALWAYS_INLINE operator TimeSpanType() const {
return this->ts; return m_ts;
} }
}; };

View file

@ -27,9 +27,9 @@ namespace ams::util {
static constexpr size_t AlignedSize = ((Size + Alignment - 1) / Alignment) * Alignment; static constexpr size_t AlignedSize = ((Size + Alignment - 1) / Alignment) * Alignment;
static_assert(AlignedSize % Alignment == 0); static_assert(AlignedSize % Alignment == 0);
private: private:
u8 buffer[Alignment + AlignedSize]; u8 m_buffer[Alignment + AlignedSize];
public: public:
ALWAYS_INLINE operator u8 *() { return reinterpret_cast<u8 *>(util::AlignUp(reinterpret_cast<uintptr_t>(this->buffer), Alignment)); } ALWAYS_INLINE operator u8 *() { return reinterpret_cast<u8 *>(util::AlignUp(reinterpret_cast<uintptr_t>(m_buffer), Alignment)); }
}; };
} }

View file

@ -111,17 +111,17 @@ namespace ams::util {
class Reference { class Reference {
friend struct BitFlagSet<N, T>; friend struct BitFlagSet<N, T>;
private: private:
BitFlagSet<N, T> *set; BitFlagSet<N, T> *m_set;
s32 idx; s32 m_idx;
private: private:
constexpr ALWAYS_INLINE Reference() : set(nullptr), idx(0) { /* ... */ } constexpr ALWAYS_INLINE Reference() : m_set(nullptr), m_idx(0) { /* ... */ }
constexpr ALWAYS_INLINE Reference(BitFlagSet<N, T> &s, s32 i) : set(std::addressof(s)), idx(i) { /* ... */ } constexpr ALWAYS_INLINE Reference(BitFlagSet<N, T> &s, s32 i) : m_set(std::addressof(s)), m_idx(i) { /* ... */ }
public: public:
constexpr ALWAYS_INLINE Reference &operator=(bool en) { this->set->Set(this->idx, en); return *this; } constexpr ALWAYS_INLINE Reference &operator=(bool en) { m_set->Set(m_idx, en); return *this; }
constexpr ALWAYS_INLINE Reference &operator=(const Reference &r) { this->set->Set(this->idx, r); return *this; } constexpr ALWAYS_INLINE Reference &operator=(const Reference &r) { m_set->Set(m_idx, r); return *this; }
constexpr ALWAYS_INLINE Reference &Negate() { this->set->Negate(this->idx); return *this; } constexpr ALWAYS_INLINE Reference &Negate() { m_set->Negate(m_idx); return *this; }
constexpr ALWAYS_INLINE operator bool() const { return this->set->Test(this->idx); } constexpr ALWAYS_INLINE operator bool() const { return m_set->Test(m_idx); }
constexpr ALWAYS_INLINE bool operator~() const { return !this->set->Test(this->idx); } constexpr ALWAYS_INLINE bool operator~() const { return !m_set->Test(m_idx); }
}; };
template<s32 _Index> template<s32 _Index>

View file

@ -40,22 +40,22 @@ namespace ams::util {
return Storage(1) << (FlagsPerWord - 1 - bit); return Storage(1) << (FlagsPerWord - 1 - bit);
} }
private: private:
Storage words[NumWords]; Storage m_words[NumWords];
public: public:
constexpr ALWAYS_INLINE BitSet() : words() { /* ... */ } constexpr ALWAYS_INLINE BitSet() : m_words() { /* ... */ }
constexpr ALWAYS_INLINE void SetBit(size_t i) { constexpr ALWAYS_INLINE void SetBit(size_t i) {
this->words[i / FlagsPerWord] |= GetBitMask(i % FlagsPerWord); m_words[i / FlagsPerWord] |= GetBitMask(i % FlagsPerWord);
} }
constexpr ALWAYS_INLINE void ClearBit(size_t i) { constexpr ALWAYS_INLINE void ClearBit(size_t i) {
this->words[i / FlagsPerWord] &= ~GetBitMask(i % FlagsPerWord); m_words[i / FlagsPerWord] &= ~GetBitMask(i % FlagsPerWord);
} }
constexpr ALWAYS_INLINE size_t CountLeadingZero() const { constexpr ALWAYS_INLINE size_t CountLeadingZero() const {
for (size_t i = 0; i < NumWords; i++) { for (size_t i = 0; i < NumWords; i++) {
if (this->words[i]) { if (m_words[i]) {
return FlagsPerWord * i + CountLeadingZeroImpl(this->words[i]); return FlagsPerWord * i + CountLeadingZeroImpl(m_words[i]);
} }
} }
return FlagsPerWord * NumWords; return FlagsPerWord * NumWords;
@ -63,7 +63,7 @@ namespace ams::util {
constexpr ALWAYS_INLINE size_t GetNextSet(size_t n) const { constexpr ALWAYS_INLINE size_t GetNextSet(size_t n) const {
for (size_t i = (n + 1) / FlagsPerWord; i < NumWords; i++) { for (size_t i = (n + 1) / FlagsPerWord; i < NumWords; i++) {
Storage word = this->words[i]; Storage word = m_words[i];
if (!util::IsAligned(n + 1, FlagsPerWord)) { if (!util::IsAligned(n + 1, FlagsPerWord)) {
word &= GetBitMask(n % FlagsPerWord) - 1; word &= GetBitMask(n % FlagsPerWord) - 1;
} }

View file

@ -37,32 +37,32 @@ namespace ams::util {
return __builtin_ctzll(static_cast<u64>(v)); return __builtin_ctzll(static_cast<u64>(v));
} }
T value; T m_value;
public: public:
/* Note: GCC has a bug in constant-folding here. Workaround: wrap entire caller with constexpr. */ /* Note: GCC has a bug in constant-folding here. Workaround: wrap entire caller with constexpr. */
constexpr ALWAYS_INLINE BitsOf(T value = T(0u)) : value(value) { constexpr ALWAYS_INLINE BitsOf(T value = T(0u)) : m_value(value) {
/* ... */ /* ... */
} }
constexpr ALWAYS_INLINE bool operator==(const BitsOf &other) const { constexpr ALWAYS_INLINE bool operator==(const BitsOf &other) const {
return this->value == other.value; return m_value == other.m_value;
} }
constexpr ALWAYS_INLINE bool operator!=(const BitsOf &other) const { constexpr ALWAYS_INLINE bool operator!=(const BitsOf &other) const {
return this->value != other.value; return m_value != other.m_value;
} }
constexpr ALWAYS_INLINE int operator*() const { constexpr ALWAYS_INLINE int operator*() const {
return GetLsbPos(this->value); return GetLsbPos(m_value);
} }
constexpr ALWAYS_INLINE BitsOf &operator++() { constexpr ALWAYS_INLINE BitsOf &operator++() {
this->value &= ~(T(1u) << GetLsbPos(this->value)); m_value &= ~(T(1u) << GetLsbPos(m_value));
return *this; return *this;
} }
constexpr ALWAYS_INLINE BitsOf &operator++(int) { constexpr ALWAYS_INLINE BitsOf &operator++(int) {
BitsOf ret(this->value); BitsOf ret(m_value);
++(*this); ++(*this);
return ret; return ret;
} }

View file

@ -24,20 +24,20 @@ namespace ams::util {
template<class Key, class Value, size_t N> template<class Key, class Value, size_t N>
class BoundedMap { class BoundedMap {
private: private:
std::array<util::optional<Key>, N> keys; std::array<util::optional<Key>, N> m_keys;
std::array<TypedStorage<Value>, N> values; std::array<TypedStorage<Value>, N> m_values;
private: private:
ALWAYS_INLINE void FreeEntry(size_t i) { ALWAYS_INLINE void FreeEntry(size_t i) {
this->keys[i].reset(); m_keys[i].reset();
DestroyAt(this->values[i]); DestroyAt(m_values[i]);
} }
public: public:
constexpr BoundedMap() : keys(), values() { /* ... */ } constexpr BoundedMap() : m_keys(), m_values() { /* ... */ }
Value *Find(const Key &key) { Value *Find(const Key &key) {
for (size_t i = 0; i < N; i++) { for (size_t i = 0; i < N; i++) {
if (this->keys[i] && this->keys[i].value() == key) { if (m_keys[i] && m_keys[i].value() == key) {
return GetPointer(this->values[i]); return GetPointer(m_values[i]);
} }
} }
return nullptr; return nullptr;
@ -45,7 +45,7 @@ namespace ams::util {
void Remove(const Key &key) { void Remove(const Key &key) {
for (size_t i = 0; i < N; i++) { for (size_t i = 0; i < N; i++) {
if (this->keys[i] && this->keys[i].value() == key) { if (m_keys[i] && m_keys[i].value() == key) {
this->FreeEntry(i); this->FreeEntry(i);
break; break;
} }
@ -60,7 +60,7 @@ namespace ams::util {
bool IsFull() { bool IsFull() {
for (size_t i = 0; i < N; i++) { for (size_t i = 0; i < N; i++) {
if (!this->keys[i]) { if (!m_keys[i]) {
return false; return false;
} }
} }
@ -76,9 +76,9 @@ namespace ams::util {
/* Find a free value. */ /* Find a free value. */
for (size_t i = 0; i < N; i++) { for (size_t i = 0; i < N; i++) {
if (!this->keys[i]) { if (!m_keys[i]) {
this->keys[i] = key; m_keys[i] = key;
ConstructAt(this->values[i], std::forward<Value>(value)); ConstructAt(m_values[i], std::forward<Value>(value));
return true; return true;
} }
} }
@ -89,17 +89,17 @@ namespace ams::util {
bool InsertOrAssign(const Key &key, Value &&value) { bool InsertOrAssign(const Key &key, Value &&value) {
/* Try to find and assign an existing value. */ /* Try to find and assign an existing value. */
for (size_t i = 0; i < N; i++) { for (size_t i = 0; i < N; i++) {
if (this->keys[i] && this->keys[i].value() == key) { if (m_keys[i] && m_keys[i].value() == key) {
GetReference(this->values[i]) = std::forward<Value>(value); GetReference(m_values[i]) = std::forward<Value>(value);
return true; return true;
} }
} }
/* Find a free value. */ /* Find a free value. */
for (size_t i = 0; i < N; i++) { for (size_t i = 0; i < N; i++) {
if (!this->keys[i]) { if (!m_keys[i]) {
this->keys[i] = key; m_keys[i] = key;
ConstructAt(this->values[i], std::move(value)); ConstructAt(m_values[i], std::move(value));
return true; return true;
} }
} }
@ -116,9 +116,9 @@ namespace ams::util {
/* Find a free value. */ /* Find a free value. */
for (size_t i = 0; i < N; i++) { for (size_t i = 0; i < N; i++) {
if (!this->keys[i]) { if (!m_keys[i]) {
this->keys[i] = key; m_keys[i] = key;
ConstructAt(this->values[i], std::forward<Args>(args)...); ConstructAt(m_values[i], std::forward<Args>(args)...);
return true; return true;
} }
} }

View file

@ -119,22 +119,22 @@ namespace ams::util {
private: private:
friend class ConstIterator; friend class ConstIterator;
private: private:
const FixedTree *m_this; const FixedTree *m_tree;
int m_index; int m_index;
protected: protected:
constexpr ALWAYS_INLINE IteratorBase(const FixedTree *tree, int index) : m_this(tree), m_index(index) { /* ... */ } constexpr ALWAYS_INLINE IteratorBase(const FixedTree *tree, int index) : m_tree(tree), m_index(index) { /* ... */ }
constexpr bool IsEqualImpl(const IteratorBase &rhs) const { constexpr bool IsEqualImpl(const IteratorBase &rhs) const {
/* Validate pre-conditions. */ /* Validate pre-conditions. */
AMS_ASSERT(m_this); AMS_ASSERT(m_tree);
/* Check for tree equality. */ /* Check for tree equality. */
if (m_this != rhs.m_this) { if (m_tree != rhs.m_tree) {
return false; return false;
} }
/* Check for nil. */ /* Check for nil. */
if (m_this->IsNil(m_index) && m_this->IsNil(rhs.m_index)) { if (m_tree->IsNil(m_index) && m_tree->IsNil(rhs.m_index)) {
return true; return true;
} }
@ -144,19 +144,19 @@ namespace ams::util {
constexpr IteratorMember &DereferenceImpl() const { constexpr IteratorMember &DereferenceImpl() const {
/* Validate pre-conditions. */ /* Validate pre-conditions. */
AMS_ASSERT(m_this); AMS_ASSERT(m_tree);
if (!m_this->IsNil(m_index)) { if (!m_tree->IsNil(m_index)) {
return m_this->m_nodes[m_index].m_data; return m_tree->m_nodes[m_index].m_data;
} else { } else {
AMS_ASSERT(false); AMS_ASSERT(false);
return m_this->GetNode(std::numeric_limits<int>::max())->m_data; return m_tree->GetNode(std::numeric_limits<int>::max())->m_data;
} }
} }
constexpr ALWAYS_INLINE IteratorBase &IncrementImpl() { constexpr ALWAYS_INLINE IteratorBase &IncrementImpl() {
/* Validate pre-conditions. */ /* Validate pre-conditions. */
AMS_ASSERT(m_this); AMS_ASSERT(m_tree);
this->OperateIndex(true); this->OperateIndex(true);
return *this; return *this;
@ -164,7 +164,7 @@ namespace ams::util {
constexpr ALWAYS_INLINE IteratorBase &DecrementImpl() { constexpr ALWAYS_INLINE IteratorBase &DecrementImpl() {
/* Validate pre-conditions. */ /* Validate pre-conditions. */
AMS_ASSERT(m_this); AMS_ASSERT(m_tree);
this->OperateIndex(false); this->OperateIndex(false);
return *this; return *this;
@ -176,18 +176,18 @@ namespace ams::util {
if (m_index == Index_BeforeBegin) { if (m_index == Index_BeforeBegin) {
m_index = 0; m_index = 0;
} else { } else {
m_index = m_this->UncheckedPP(m_index); m_index = m_tree->UncheckedPP(m_index);
if (m_this->IsNil(m_index)) { if (m_tree->IsNil(m_index)) {
m_index = Index_AfterEnd; m_index = Index_AfterEnd;
} }
} }
} else { } else {
/* We're decrementing. */ /* We're decrementing. */
if (m_index == Index_AfterEnd) { if (m_index == Index_AfterEnd) {
m_index = static_cast<int>(m_this->size()) - 1; m_index = static_cast<int>(m_tree->size()) - 1;
} else { } else {
m_index = m_this->UncheckedMM(m_index); m_index = m_tree->UncheckedMM(m_index);
if (m_this->IsNil(m_index)) { if (m_tree->IsNil(m_index)) {
m_index = Index_BeforeBegin; m_index = Index_BeforeBegin;
} }
} }
@ -233,7 +233,7 @@ namespace ams::util {
constexpr ALWAYS_INLINE ConstIterator(const FixedTree &tree, int index) : IteratorBase(std::addressof(tree), index) { /* ... */ } constexpr ALWAYS_INLINE ConstIterator(const FixedTree &tree, int index) : IteratorBase(std::addressof(tree), index) { /* ... */ }
constexpr ALWAYS_INLINE ConstIterator(const ConstIterator &rhs) = default; constexpr ALWAYS_INLINE ConstIterator(const ConstIterator &rhs) = default;
constexpr ALWAYS_INLINE ConstIterator(const Iterator &rhs) : IteratorBase(rhs.m_this, rhs.m_index) { /* ... */ } constexpr ALWAYS_INLINE ConstIterator(const Iterator &rhs) : IteratorBase(rhs.m_tree, rhs.m_index) { /* ... */ }
constexpr ALWAYS_INLINE bool operator==(const ConstIterator &rhs) const { constexpr ALWAYS_INLINE bool operator==(const ConstIterator &rhs) const {
return this->IsEqualImpl(rhs); return this->IsEqualImpl(rhs);

View file

@ -36,13 +36,13 @@ namespace ams::util {
private: private:
friend class impl::IntrusiveListImpl; friend class impl::IntrusiveListImpl;
IntrusiveListNode *prev; IntrusiveListNode *m_prev;
IntrusiveListNode *next; IntrusiveListNode *m_next;
public: public:
constexpr ALWAYS_INLINE IntrusiveListNode() : prev(this), next(this) { /* ... */ } constexpr ALWAYS_INLINE IntrusiveListNode() : m_prev(this), m_next(this) { /* ... */ }
constexpr ALWAYS_INLINE bool IsLinked() const { constexpr ALWAYS_INLINE bool IsLinked() const {
return this->next != this; return m_next != this;
} }
private: private:
ALWAYS_INLINE void LinkPrev(IntrusiveListNode *node) { ALWAYS_INLINE void LinkPrev(IntrusiveListNode *node) {
@ -53,11 +53,11 @@ namespace ams::util {
ALWAYS_INLINE void SplicePrev(IntrusiveListNode *first, IntrusiveListNode *last) { ALWAYS_INLINE void SplicePrev(IntrusiveListNode *first, IntrusiveListNode *last) {
/* Splice a range into the list. */ /* Splice a range into the list. */
auto last_prev = last->prev; auto last_prev = last->m_prev;
first->prev = this->prev; first->m_prev = m_prev;
this->prev->next = first; last_prev->m_next = this;
last_prev->next = this; m_prev->m_next = first;
this->prev = last_prev; m_prev = last_prev;
} }
ALWAYS_INLINE void LinkNext(IntrusiveListNode *node) { ALWAYS_INLINE void LinkNext(IntrusiveListNode *node) {
@ -68,40 +68,40 @@ namespace ams::util {
ALWAYS_INLINE void SpliceNext(IntrusiveListNode *first, IntrusiveListNode *last) { ALWAYS_INLINE void SpliceNext(IntrusiveListNode *first, IntrusiveListNode *last) {
/* Splice a range into the list. */ /* Splice a range into the list. */
auto last_prev = last->prev; auto last_prev = last->m_prev;
first->prev = this; first->m_prev = this;
last_prev->next = next; last_prev->m_next = m_next;
this->next->prev = last_prev; m_next->m_prev = last_prev;
this->next = first; m_next = first;
} }
ALWAYS_INLINE void Unlink() { ALWAYS_INLINE void Unlink() {
this->Unlink(this->next); this->Unlink(m_next);
} }
ALWAYS_INLINE void Unlink(IntrusiveListNode *last) { ALWAYS_INLINE void Unlink(IntrusiveListNode *last) {
/* Unlink a node from a next node. */ /* Unlink a node from a next node. */
auto last_prev = last->prev; auto last_prev = last->m_prev;
this->prev->next = last; m_prev->m_next = last;
last->prev = this->prev; last->m_prev = m_prev;
last_prev->next = this; last_prev->m_next = this;
this->prev = last_prev; m_prev = last_prev;
} }
ALWAYS_INLINE IntrusiveListNode *GetPrev() { ALWAYS_INLINE IntrusiveListNode *GetPrev() {
return this->prev; return m_prev;
} }
ALWAYS_INLINE const IntrusiveListNode *GetPrev() const { ALWAYS_INLINE const IntrusiveListNode *GetPrev() const {
return this->prev; return m_prev;
} }
ALWAYS_INLINE IntrusiveListNode *GetNext() { ALWAYS_INLINE IntrusiveListNode *GetNext() {
return this->next; return m_next;
} }
ALWAYS_INLINE const IntrusiveListNode *GetNext() const { ALWAYS_INLINE const IntrusiveListNode *GetNext() const {
return this->next; return m_next;
} }
}; };
/* DEPRECATED: static_assert(std::is_literal_type<IntrusiveListNode>::value); */ /* DEPRECATED: static_assert(std::is_literal_type<IntrusiveListNode>::value); */
@ -111,7 +111,7 @@ namespace ams::util {
class IntrusiveListImpl { class IntrusiveListImpl {
NON_COPYABLE(IntrusiveListImpl); NON_COPYABLE(IntrusiveListImpl);
private: private:
IntrusiveListNode root_node; IntrusiveListNode m_root_node;
public: public:
template<bool Const> template<bool Const>
class Iterator; class Iterator;
@ -137,12 +137,12 @@ namespace ams::util {
using pointer = typename std::conditional<Const, IntrusiveListImpl::const_pointer, IntrusiveListImpl::pointer>::type; using pointer = typename std::conditional<Const, IntrusiveListImpl::const_pointer, IntrusiveListImpl::pointer>::type;
using reference = typename std::conditional<Const, IntrusiveListImpl::const_reference, IntrusiveListImpl::reference>::type; using reference = typename std::conditional<Const, IntrusiveListImpl::const_reference, IntrusiveListImpl::reference>::type;
private: private:
pointer node; pointer m_node;
public: public:
ALWAYS_INLINE explicit Iterator(pointer n) : node(n) { /* ... */ } ALWAYS_INLINE explicit Iterator(pointer n) : m_node(n) { /* ... */ }
ALWAYS_INLINE bool operator==(const Iterator &rhs) const { ALWAYS_INLINE bool operator==(const Iterator &rhs) const {
return this->node == rhs.node; return m_node == rhs.m_node;
} }
ALWAYS_INLINE bool operator!=(const Iterator &rhs) const { ALWAYS_INLINE bool operator!=(const Iterator &rhs) const {
@ -150,20 +150,20 @@ namespace ams::util {
} }
ALWAYS_INLINE pointer operator->() const { ALWAYS_INLINE pointer operator->() const {
return this->node; return m_node;
} }
ALWAYS_INLINE reference operator*() const { ALWAYS_INLINE reference operator*() const {
return *this->node; return *m_node;
} }
ALWAYS_INLINE Iterator &operator++() { ALWAYS_INLINE Iterator &operator++() {
this->node = this->node->next; m_node = m_node->m_next;
return *this; return *this;
} }
ALWAYS_INLINE Iterator &operator--() { ALWAYS_INLINE Iterator &operator--() {
this->node = this->node->prev; m_node = m_node->m_prev;
return *this; return *this;
} }
@ -180,31 +180,31 @@ namespace ams::util {
} }
ALWAYS_INLINE operator Iterator<true>() const { ALWAYS_INLINE operator Iterator<true>() const {
return Iterator<true>(this->node); return Iterator<true>(m_node);
} }
ALWAYS_INLINE Iterator<false> GetNonConstIterator() const { ALWAYS_INLINE Iterator<false> GetNonConstIterator() const {
return Iterator<false>(const_cast<IntrusiveListImpl::pointer>(this->node)); return Iterator<false>(const_cast<IntrusiveListImpl::pointer>(m_node));
} }
}; };
public: public:
constexpr ALWAYS_INLINE IntrusiveListImpl() : root_node() { /* ... */ } constexpr ALWAYS_INLINE IntrusiveListImpl() : m_root_node() { /* ... */ }
/* Iterator accessors. */ /* Iterator accessors. */
ALWAYS_INLINE iterator begin() { ALWAYS_INLINE iterator begin() {
return iterator(this->root_node.GetNext()); return iterator(m_root_node.GetNext());
} }
ALWAYS_INLINE const_iterator begin() const { ALWAYS_INLINE const_iterator begin() const {
return const_iterator(this->root_node.GetNext()); return const_iterator(m_root_node.GetNext());
} }
ALWAYS_INLINE iterator end() { ALWAYS_INLINE iterator end() {
return iterator(std::addressof(this->root_node)); return iterator(std::addressof(m_root_node));
} }
ALWAYS_INLINE const_iterator end() const { ALWAYS_INLINE const_iterator end() const {
return const_iterator(std::addressof(this->root_node)); return const_iterator(std::addressof(m_root_node));
} }
ALWAYS_INLINE iterator iterator_to(reference v) { ALWAYS_INLINE iterator iterator_to(reference v) {
@ -221,7 +221,7 @@ namespace ams::util {
/* Content management. */ /* Content management. */
ALWAYS_INLINE bool empty() const { ALWAYS_INLINE bool empty() const {
return !this->root_node.IsLinked(); return !m_root_node.IsLinked();
} }
ALWAYS_INLINE size_type size() const { ALWAYS_INLINE size_type size() const {
@ -229,35 +229,35 @@ namespace ams::util {
} }
ALWAYS_INLINE reference back() { ALWAYS_INLINE reference back() {
return *this->root_node.GetPrev(); return *m_root_node.GetPrev();
} }
ALWAYS_INLINE const_reference back() const { ALWAYS_INLINE const_reference back() const {
return *this->root_node.GetPrev(); return *m_root_node.GetPrev();
} }
ALWAYS_INLINE reference front() { ALWAYS_INLINE reference front() {
return *this->root_node.GetNext(); return *m_root_node.GetNext();
} }
ALWAYS_INLINE const_reference front() const { ALWAYS_INLINE const_reference front() const {
return *this->root_node.GetNext(); return *m_root_node.GetNext();
} }
ALWAYS_INLINE void push_back(reference node) { ALWAYS_INLINE void push_back(reference node) {
this->root_node.LinkPrev(std::addressof(node)); m_root_node.LinkPrev(std::addressof(node));
} }
ALWAYS_INLINE void push_front(reference node) { ALWAYS_INLINE void push_front(reference node) {
this->root_node.LinkNext(std::addressof(node)); m_root_node.LinkNext(std::addressof(node));
} }
ALWAYS_INLINE void pop_back() { ALWAYS_INLINE void pop_back() {
this->root_node.GetPrev()->Unlink(); m_root_node.GetPrev()->Unlink();
} }
ALWAYS_INLINE void pop_front() { ALWAYS_INLINE void pop_front() {
this->root_node.GetNext()->Unlink(); m_root_node.GetNext()->Unlink();
} }
ALWAYS_INLINE iterator insert(const_iterator pos, reference node) { ALWAYS_INLINE iterator insert(const_iterator pos, reference node) {
@ -315,7 +315,7 @@ namespace ams::util {
class IntrusiveList { class IntrusiveList {
NON_COPYABLE(IntrusiveList); NON_COPYABLE(IntrusiveList);
private: private:
impl::IntrusiveListImpl impl; impl::IntrusiveListImpl m_impl;
public: public:
template<bool Const> template<bool Const>
class Iterator; class Iterator;
@ -345,16 +345,16 @@ namespace ams::util {
using pointer = typename std::conditional<Const, IntrusiveList::const_pointer, IntrusiveList::pointer>::type; using pointer = typename std::conditional<Const, IntrusiveList::const_pointer, IntrusiveList::pointer>::type;
using reference = typename std::conditional<Const, IntrusiveList::const_reference, IntrusiveList::reference>::type; using reference = typename std::conditional<Const, IntrusiveList::const_reference, IntrusiveList::reference>::type;
private: private:
ImplIterator iterator; ImplIterator m_iterator;
private: private:
explicit ALWAYS_INLINE Iterator(ImplIterator it) : iterator(it) { /* ... */ } explicit ALWAYS_INLINE Iterator(ImplIterator it) : m_iterator(it) { /* ... */ }
ALWAYS_INLINE ImplIterator GetImplIterator() const { ALWAYS_INLINE ImplIterator GetImplIterator() const {
return this->iterator; return m_iterator;
} }
public: public:
ALWAYS_INLINE bool operator==(const Iterator &rhs) const { ALWAYS_INLINE bool operator==(const Iterator &rhs) const {
return this->iterator == rhs.iterator; return m_iterator == rhs.m_iterator;
} }
ALWAYS_INLINE bool operator!=(const Iterator &rhs) const { ALWAYS_INLINE bool operator!=(const Iterator &rhs) const {
@ -362,37 +362,37 @@ namespace ams::util {
} }
ALWAYS_INLINE pointer operator->() const { ALWAYS_INLINE pointer operator->() const {
return std::addressof(Traits::GetParent(*this->iterator)); return std::addressof(Traits::GetParent(*m_iterator));
} }
ALWAYS_INLINE reference operator*() const { ALWAYS_INLINE reference operator*() const {
return Traits::GetParent(*this->iterator); return Traits::GetParent(*m_iterator);
} }
ALWAYS_INLINE Iterator &operator++() { ALWAYS_INLINE Iterator &operator++() {
++this->iterator; ++m_iterator;
return *this; return *this;
} }
ALWAYS_INLINE Iterator &operator--() { ALWAYS_INLINE Iterator &operator--() {
--this->iterator; --m_iterator;
return *this; return *this;
} }
ALWAYS_INLINE Iterator operator++(int) { ALWAYS_INLINE Iterator operator++(int) {
const Iterator it{*this}; const Iterator it{*this};
++this->iterator; ++m_iterator;
return it; return it;
} }
ALWAYS_INLINE Iterator operator--(int) { ALWAYS_INLINE Iterator operator--(int) {
const Iterator it{*this}; const Iterator it{*this};
--this->iterator; --m_iterator;
return it; return it;
} }
ALWAYS_INLINE operator Iterator<true>() const { ALWAYS_INLINE operator Iterator<true>() const {
return Iterator<true>(this->iterator); return Iterator<true>(m_iterator);
} }
}; };
private: private:
@ -412,23 +412,23 @@ namespace ams::util {
return Traits::GetParent(node); return Traits::GetParent(node);
} }
public: public:
constexpr ALWAYS_INLINE IntrusiveList() : impl() { /* ... */ } constexpr ALWAYS_INLINE IntrusiveList() : m_impl() { /* ... */ }
/* Iterator accessors. */ /* Iterator accessors. */
ALWAYS_INLINE iterator begin() { ALWAYS_INLINE iterator begin() {
return iterator(this->impl.begin()); return iterator(m_impl.begin());
} }
ALWAYS_INLINE const_iterator begin() const { ALWAYS_INLINE const_iterator begin() const {
return const_iterator(this->impl.begin()); return const_iterator(m_impl.begin());
} }
ALWAYS_INLINE iterator end() { ALWAYS_INLINE iterator end() {
return iterator(this->impl.end()); return iterator(m_impl.end());
} }
ALWAYS_INLINE const_iterator end() const { ALWAYS_INLINE const_iterator end() const {
return const_iterator(this->impl.end()); return const_iterator(m_impl.end());
} }
ALWAYS_INLINE const_iterator cbegin() const { ALWAYS_INLINE const_iterator cbegin() const {
@ -464,82 +464,82 @@ namespace ams::util {
} }
ALWAYS_INLINE iterator iterator_to(reference v) { ALWAYS_INLINE iterator iterator_to(reference v) {
return iterator(this->impl.iterator_to(GetNode(v))); return iterator(m_impl.iterator_to(GetNode(v)));
} }
ALWAYS_INLINE const_iterator iterator_to(const_reference v) const { ALWAYS_INLINE const_iterator iterator_to(const_reference v) const {
return const_iterator(this->impl.iterator_to(GetNode(v))); return const_iterator(m_impl.iterator_to(GetNode(v)));
} }
/* Content management. */ /* Content management. */
ALWAYS_INLINE bool empty() const { ALWAYS_INLINE bool empty() const {
return this->impl.empty(); return m_impl.empty();
} }
ALWAYS_INLINE size_type size() const { ALWAYS_INLINE size_type size() const {
return this->impl.size(); return m_impl.size();
} }
ALWAYS_INLINE reference back() { ALWAYS_INLINE reference back() {
AMS_ASSERT(!this->impl.empty()); AMS_ASSERT(!m_impl.empty());
return GetParent(this->impl.back()); return GetParent(m_impl.back());
} }
ALWAYS_INLINE const_reference back() const { ALWAYS_INLINE const_reference back() const {
AMS_ASSERT(!this->impl.empty()); AMS_ASSERT(!m_impl.empty());
return GetParent(this->impl.back()); return GetParent(m_impl.back());
} }
ALWAYS_INLINE reference front() { ALWAYS_INLINE reference front() {
AMS_ASSERT(!this->impl.empty()); AMS_ASSERT(!m_impl.empty());
return GetParent(this->impl.front()); return GetParent(m_impl.front());
} }
ALWAYS_INLINE const_reference front() const { ALWAYS_INLINE const_reference front() const {
AMS_ASSERT(!this->impl.empty()); AMS_ASSERT(!m_impl.empty());
return GetParent(this->impl.front()); return GetParent(m_impl.front());
} }
ALWAYS_INLINE void push_back(reference ref) { ALWAYS_INLINE void push_back(reference ref) {
this->impl.push_back(GetNode(ref)); m_impl.push_back(GetNode(ref));
} }
ALWAYS_INLINE void push_front(reference ref) { ALWAYS_INLINE void push_front(reference ref) {
this->impl.push_front(GetNode(ref)); m_impl.push_front(GetNode(ref));
} }
ALWAYS_INLINE void pop_back() { ALWAYS_INLINE void pop_back() {
AMS_ASSERT(!this->impl.empty()); AMS_ASSERT(!m_impl.empty());
this->impl.pop_back(); m_impl.pop_back();
} }
ALWAYS_INLINE void pop_front() { ALWAYS_INLINE void pop_front() {
AMS_ASSERT(!this->impl.empty()); AMS_ASSERT(!m_impl.empty());
this->impl.pop_front(); m_impl.pop_front();
} }
ALWAYS_INLINE iterator insert(const_iterator pos, reference ref) { ALWAYS_INLINE iterator insert(const_iterator pos, reference ref) {
return iterator(this->impl.insert(pos.GetImplIterator(), GetNode(ref))); return iterator(m_impl.insert(pos.GetImplIterator(), GetNode(ref)));
} }
ALWAYS_INLINE void splice(const_iterator pos, IntrusiveList &o) { ALWAYS_INLINE void splice(const_iterator pos, IntrusiveList &o) {
this->impl.splice(pos.GetImplIterator(), o.impl); m_impl.splice(pos.GetImplIterator(), o.m_impl);
} }
ALWAYS_INLINE void splice(const_iterator pos, IntrusiveList &o, const_iterator first) { ALWAYS_INLINE void splice(const_iterator pos, IntrusiveList &o, const_iterator first) {
this->impl.splice(pos.GetImplIterator(), o.impl, first.GetImplIterator()); m_impl.splice(pos.GetImplIterator(), o.m_impl, first.GetImplIterator());
} }
ALWAYS_INLINE void splice(const_iterator pos, IntrusiveList &o, const_iterator first, const_iterator last) { ALWAYS_INLINE void splice(const_iterator pos, IntrusiveList &o, const_iterator first, const_iterator last) {
this->impl.splice(pos.GetImplIterator(), o.impl, first.GetImplIterator(), last.GetImplIterator()); m_impl.splice(pos.GetImplIterator(), o.m_impl, first.GetImplIterator(), last.GetImplIterator());
} }
ALWAYS_INLINE iterator erase(const_iterator pos) { ALWAYS_INLINE iterator erase(const_iterator pos) {
return iterator(this->impl.erase(pos.GetImplIterator())); return iterator(m_impl.erase(pos.GetImplIterator()));
} }
ALWAYS_INLINE void clear() { ALWAYS_INLINE void clear() {
this->impl.clear(); m_impl.clear();
} }
}; };

View file

@ -51,20 +51,20 @@ namespace ams::util {
return value ^ (value >> 30); return value ^ (value >> 30);
} }
private: private:
State state; State m_state;
private: private:
/* Internal API. */ /* Internal API. */
void FinalizeInitialization() { void FinalizeInitialization() {
const u32 state0 = this->state.data[0] & TopBitmask; const u32 state0 = m_state.data[0] & TopBitmask;
const u32 state1 = this->state.data[1]; const u32 state1 = m_state.data[1];
const u32 state2 = this->state.data[2]; const u32 state2 = m_state.data[2];
const u32 state3 = this->state.data[3]; const u32 state3 = m_state.data[3];
if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) { if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) {
this->state.data[0] = 'T'; m_state.data[0] = 'T';
this->state.data[1] = 'I'; m_state.data[1] = 'I';
this->state.data[2] = 'N'; m_state.data[2] = 'N';
this->state.data[3] = 'Y'; m_state.data[3] = 'Y';
} }
for (int i = 0; i < NumDiscardedInitOutputs; i++) { for (int i = 0; i < NumDiscardedInitOutputs; i++) {
@ -102,42 +102,42 @@ namespace ams::util {
state2 ^= y; state2 ^= y;
} }
public: public:
constexpr TinyMT() : state() { /* ... */ } constexpr TinyMT() : m_state() { /* ... */ }
/* Public API. */ /* Public API. */
/* Initialization. */ /* Initialization. */
void Initialize(u32 seed) { void Initialize(u32 seed) {
this->state.data[0] = seed; m_state.data[0] = seed;
this->state.data[1] = ParamMat1; m_state.data[1] = ParamMat1;
this->state.data[2] = ParamMat2; m_state.data[2] = ParamMat2;
this->state.data[3] = ParamTmat; m_state.data[3] = ParamTmat;
for (int i = 1; i < MinimumInitIterations; i++) { for (int i = 1; i < MinimumInitIterations; i++) {
const u32 mixed = XorByShifted30(this->state.data[(i - 1) % NumStateWords]); const u32 mixed = XorByShifted30(m_state.data[(i - 1) % NumStateWords]);
this->state.data[i % NumStateWords] ^= mixed * ParamMult + i; m_state.data[i % NumStateWords] ^= mixed * ParamMult + i;
} }
this->FinalizeInitialization(); this->FinalizeInitialization();
} }
void Initialize(const u32 *seed, int seed_count) { void Initialize(const u32 *seed, int seed_count) {
this->state.data[0] = 0; m_state.data[0] = 0;
this->state.data[1] = ParamMat1; m_state.data[1] = ParamMat1;
this->state.data[2] = ParamMat2; m_state.data[2] = ParamMat2;
this->state.data[3] = ParamTmat; m_state.data[3] = ParamTmat;
{ {
const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1; const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1;
GenerateInitialValuePlus(std::addressof(this->state), 0, seed_count); GenerateInitialValuePlus(std::addressof(m_state), 0, seed_count);
for (int i = 0; i < num_init_iterations; i++) { for (int i = 0; i < num_init_iterations; i++) {
GenerateInitialValuePlus(std::addressof(this->state), (i + 1) % NumStateWords, (i < seed_count) ? seed[i] : 0); GenerateInitialValuePlus(std::addressof(m_state), (i + 1) % NumStateWords, (i < seed_count) ? seed[i] : 0);
} }
for (int i = 0; i < static_cast<int>(NumStateWords); i++) { for (int i = 0; i < static_cast<int>(NumStateWords); i++) {
GenerateInitialValueXor(std::addressof(this->state), (i + 1 + num_init_iterations) % NumStateWords); GenerateInitialValueXor(std::addressof(m_state), (i + 1 + num_init_iterations) % NumStateWords);
} }
} }
@ -146,11 +146,11 @@ namespace ams::util {
/* State management. */ /* State management. */
void GetState(TinyMT::State *out) const { void GetState(TinyMT::State *out) const {
std::memcpy(out->data, this->state.data, sizeof(this->state)); std::memcpy(out->data, m_state.data, sizeof(m_state));
} }
void SetState(const TinyMT::State *state) { void SetState(const TinyMT::State *state) {
std::memcpy(this->state.data, state->data, sizeof(this->state)); std::memcpy(m_state.data, state->data, sizeof(m_state));
} }
/* Random generation. */ /* Random generation. */
@ -185,13 +185,13 @@ namespace ams::util {
NOINLINE u32 GenerateRandomU32() { NOINLINE u32 GenerateRandomU32() {
/* Advance state. */ /* Advance state. */
const u32 x0 = (this->state.data[0] & TopBitmask) ^ this->state.data[1] ^ this->state.data[2]; const u32 x0 = (m_state.data[0] & TopBitmask) ^ m_state.data[1] ^ m_state.data[2];
const u32 y0 = this->state.data[3]; const u32 y0 = m_state.data[3];
const u32 x1 = x0 ^ (x0 << 1); const u32 x1 = x0 ^ (x0 << 1);
const u32 y1 = y0 ^ (y0 >> 1) ^ x1; const u32 y1 = y0 ^ (y0 >> 1) ^ x1;
const u32 state0 = this->state.data[1]; const u32 state0 = m_state.data[1];
u32 state1 = this->state.data[2]; u32 state1 = m_state.data[2];
u32 state2 = x1 ^ (y1 << 10); u32 state2 = x1 ^ (y1 << 10);
const u32 state3 = y1; const u32 state3 = y1;
@ -200,10 +200,10 @@ namespace ams::util {
state2 ^= ParamMat2; state2 ^= ParamMat2;
} }
this->state.data[0] = state0; m_state.data[0] = state0;
this->state.data[1] = state1; m_state.data[1] = state1;
this->state.data[2] = state2; m_state.data[2] = state2;
this->state.data[3] = state3; m_state.data[3] = state3;
/* Temper. */ /* Temper. */
const u32 t1 = state0 + (state2 >> 8); const u32 t1 = state0 + (state2 >> 8);

View file

@ -40,16 +40,16 @@ namespace ams::crypto::impl {
if constexpr (KeySize == 16) { if constexpr (KeySize == 16) {
/* Aes 128. */ /* Aes 128. */
static_assert(sizeof(this->round_keys) == sizeof(::Aes128Context)); static_assert(sizeof(m_round_keys) == sizeof(::Aes128Context));
aes128ContextCreate(reinterpret_cast<Aes128Context *>(this->round_keys), key, is_encrypt); aes128ContextCreate(reinterpret_cast<Aes128Context *>(m_round_keys), key, is_encrypt);
} else if constexpr (KeySize == 24) { } else if constexpr (KeySize == 24) {
/* Aes 192. */ /* Aes 192. */
static_assert(sizeof(this->round_keys) == sizeof(::Aes192Context)); static_assert(sizeof(m_round_keys) == sizeof(::Aes192Context));
aes192ContextCreate(reinterpret_cast<Aes192Context *>(this->round_keys), key, is_encrypt); aes192ContextCreate(reinterpret_cast<Aes192Context *>(m_round_keys), key, is_encrypt);
} else if constexpr (KeySize == 32) { } else if constexpr (KeySize == 32) {
/* Aes 256. */ /* Aes 256. */
static_assert(sizeof(this->round_keys) == sizeof(::Aes256Context)); static_assert(sizeof(m_round_keys) == sizeof(::Aes256Context));
aes256ContextCreate(reinterpret_cast<Aes256Context *>(this->round_keys), key, is_encrypt); aes256ContextCreate(reinterpret_cast<Aes256Context *>(m_round_keys), key, is_encrypt);
} else { } else {
/* Invalid key size. */ /* Invalid key size. */
static_assert(!std::is_same<AesImpl<KeySize>, AesImpl<KeySize>>::value); static_assert(!std::is_same<AesImpl<KeySize>, AesImpl<KeySize>>::value);
@ -65,16 +65,16 @@ namespace ams::crypto::impl {
if constexpr (KeySize == 16) { if constexpr (KeySize == 16) {
/* Aes 128. */ /* Aes 128. */
static_assert(sizeof(this->round_keys) == sizeof(::Aes128Context)); static_assert(sizeof(m_round_keys) == sizeof(::Aes128Context));
aes128EncryptBlock(reinterpret_cast<const Aes128Context *>(this->round_keys), dst, src); aes128EncryptBlock(reinterpret_cast<const Aes128Context *>(m_round_keys), dst, src);
} else if constexpr (KeySize == 24) { } else if constexpr (KeySize == 24) {
/* Aes 192. */ /* Aes 192. */
static_assert(sizeof(this->round_keys) == sizeof(::Aes192Context)); static_assert(sizeof(m_round_keys) == sizeof(::Aes192Context));
aes192EncryptBlock(reinterpret_cast<const Aes192Context *>(this->round_keys), dst, src); aes192EncryptBlock(reinterpret_cast<const Aes192Context *>(m_round_keys), dst, src);
} else if constexpr (KeySize == 32) { } else if constexpr (KeySize == 32) {
/* Aes 256. */ /* Aes 256. */
static_assert(sizeof(this->round_keys) == sizeof(::Aes256Context)); static_assert(sizeof(m_round_keys) == sizeof(::Aes256Context));
aes256EncryptBlock(reinterpret_cast<const Aes256Context *>(this->round_keys), dst, src); aes256EncryptBlock(reinterpret_cast<const Aes256Context *>(m_round_keys), dst, src);
} else { } else {
/* Invalid key size. */ /* Invalid key size. */
static_assert(!std::is_same<AesImpl<KeySize>, AesImpl<KeySize>>::value); static_assert(!std::is_same<AesImpl<KeySize>, AesImpl<KeySize>>::value);
@ -90,16 +90,16 @@ namespace ams::crypto::impl {
if constexpr (KeySize == 16) { if constexpr (KeySize == 16) {
/* Aes 128. */ /* Aes 128. */
static_assert(sizeof(this->round_keys) == sizeof(::Aes128Context)); static_assert(sizeof(m_round_keys) == sizeof(::Aes128Context));
aes128DecryptBlock(reinterpret_cast<const Aes128Context *>(this->round_keys), dst, src); aes128DecryptBlock(reinterpret_cast<const Aes128Context *>(m_round_keys), dst, src);
} else if constexpr (KeySize == 24) { } else if constexpr (KeySize == 24) {
/* Aes 192. */ /* Aes 192. */
static_assert(sizeof(this->round_keys) == sizeof(::Aes192Context)); static_assert(sizeof(m_round_keys) == sizeof(::Aes192Context));
aes192DecryptBlock(reinterpret_cast<const Aes192Context *>(this->round_keys), dst, src); aes192DecryptBlock(reinterpret_cast<const Aes192Context *>(m_round_keys), dst, src);
} else if constexpr (KeySize == 32) { } else if constexpr (KeySize == 32) {
/* Aes 256. */ /* Aes 256. */
static_assert(sizeof(this->round_keys) == sizeof(::Aes256Context)); static_assert(sizeof(m_round_keys) == sizeof(::Aes256Context));
aes256DecryptBlock(reinterpret_cast<const Aes256Context *>(this->round_keys), dst, src); aes256DecryptBlock(reinterpret_cast<const Aes256Context *>(m_round_keys), dst, src);
} else { } else {
/* Invalid key size. */ /* Invalid key size. */
static_assert(!std::is_same<AesImpl<KeySize>, AesImpl<KeySize>>::value); static_assert(!std::is_same<AesImpl<KeySize>, AesImpl<KeySize>>::value);

View file

@ -54,13 +54,13 @@ namespace ams::crypto::impl {
} }
size_t BigNum::GetSize() const { size_t BigNum::GetSize() const {
if (this->num_words == 0) { if (m_num_words == 0) {
return 0; return 0;
} }
static_assert(sizeof(Word) == 4); static_assert(sizeof(Word) == 4);
size_t size = this->num_words * sizeof(Word); size_t size = m_num_words * sizeof(Word);
const Word last = this->words[this->num_words - 1]; const Word last = m_words[m_num_words - 1];
AMS_ASSERT(last != 0); AMS_ASSERT(last != 0);
if (last >= 0x01000000u) { if (last >= 0x01000000u) {
return size - 0; return size - 0;
@ -84,21 +84,21 @@ namespace ams::crypto::impl {
} }
/* Ensure we have space for the number. */ /* Ensure we have space for the number. */
AMS_ASSERT(src_size <= this->max_words * sizeof(Word)); AMS_ASSERT(src_size <= m_max_words * sizeof(Word));
if (AMS_UNLIKELY(!(src_size <= this->max_words * sizeof(Word)))) { if (AMS_UNLIKELY(!(src_size <= m_max_words * sizeof(Word)))) {
return false; return false;
} }
/* Import. */ /* Import. */
this->num_words = util::AlignUp(src_size, sizeof(Word)) / sizeof(Word); m_num_words = util::AlignUp(src_size, sizeof(Word)) / sizeof(Word);
ImportImpl(this->words, this->max_words, data, src_size); ImportImpl(m_words, m_max_words, data, src_size);
return true; return true;
} }
void BigNum::Export(void *dst, size_t dst_size) { void BigNum::Export(void *dst, size_t dst_size) {
AMS_ASSERT(dst_size >= this->GetSize()); AMS_ASSERT(dst_size >= this->GetSize());
ExportImpl(static_cast<u8 *>(dst), dst_size, this->words, this->num_words); ExportImpl(static_cast<u8 *>(dst), dst_size, m_words, m_num_words);
} }
bool BigNum::ExpMod(void *dst, const void *src, size_t size, const BigNum &exp, u32 *work_buf, size_t work_buf_size) const { bool BigNum::ExpMod(void *dst, const void *src, size_t size, const BigNum &exp, u32 *work_buf, size_t work_buf_size) const {
@ -126,7 +126,7 @@ namespace ams::crypto::impl {
} }
/* Perform the exponentiation. */ /* Perform the exponentiation. */
if (!ExpMod(signature.words, signature.words, exp.words, exp.num_words, this->words, this->num_words, std::addressof(allocator))) { if (!ExpMod(signature.m_words, signature.m_words, exp.m_words, exp.m_num_words, m_words, m_num_words, std::addressof(allocator))) {
return false; return false;
} }
@ -138,11 +138,11 @@ namespace ams::crypto::impl {
} }
void BigNum::ClearToZero() { void BigNum::ClearToZero() {
std::memset(this->words, 0, this->num_words * sizeof(Word)); std::memset(m_words, 0, m_num_words * sizeof(Word));
} }
void BigNum::UpdateCount() { void BigNum::UpdateCount() {
this->num_words = CountWords(this->words, this->max_words); m_num_words = CountWords(m_words, m_max_words);
} }
} }

View file

@ -89,7 +89,7 @@ namespace ams::crypto::impl {
template<> template<>
void CtrModeImpl<AesEncryptor128>::ProcessBlocks(u8 *dst, const u8 *src, size_t num_blocks) { void CtrModeImpl<AesEncryptor128>::ProcessBlocks(u8 *dst, const u8 *src, size_t num_blocks) {
/* Preload all round keys + iv into neon registers. */ /* Preload all round keys + iv into neon registers. */
const u8 *keys = this->block_cipher->GetRoundKey(); const u8 *keys = m_block_cipher->GetRoundKey();
DECLARE_ROUND_KEY_VAR(0); DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1); DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2); DECLARE_ROUND_KEY_VAR(2);
@ -101,7 +101,7 @@ namespace ams::crypto::impl {
DECLARE_ROUND_KEY_VAR(8); DECLARE_ROUND_KEY_VAR(8);
DECLARE_ROUND_KEY_VAR(9); DECLARE_ROUND_KEY_VAR(9);
DECLARE_ROUND_KEY_VAR(10); DECLARE_ROUND_KEY_VAR(10);
uint8x16_t ctr0 = vld1q_u8(this->counter); uint8x16_t ctr0 = vld1q_u8(m_counter);
uint64_t high, low; uint64_t high, low;
/* Process three blocks at a time, when possible. */ /* Process three blocks at a time, when possible. */
@ -237,13 +237,13 @@ namespace ams::crypto::impl {
num_blocks--; num_blocks--;
} }
vst1q_u8(this->counter, ctr0); vst1q_u8(m_counter, ctr0);
} }
template<> template<>
void CtrModeImpl<AesEncryptor192>::ProcessBlocks(u8 *dst, const u8 *src, size_t num_blocks) { void CtrModeImpl<AesEncryptor192>::ProcessBlocks(u8 *dst, const u8 *src, size_t num_blocks) {
/* Preload all round keys + iv into neon registers. */ /* Preload all round keys + iv into neon registers. */
const u8 *keys = this->block_cipher->GetRoundKey(); const u8 *keys = m_block_cipher->GetRoundKey();
DECLARE_ROUND_KEY_VAR(0); DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1); DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2); DECLARE_ROUND_KEY_VAR(2);
@ -257,7 +257,7 @@ namespace ams::crypto::impl {
DECLARE_ROUND_KEY_VAR(10); DECLARE_ROUND_KEY_VAR(10);
DECLARE_ROUND_KEY_VAR(11); DECLARE_ROUND_KEY_VAR(11);
DECLARE_ROUND_KEY_VAR(12); DECLARE_ROUND_KEY_VAR(12);
uint8x16_t ctr0 = vld1q_u8(this->counter); uint8x16_t ctr0 = vld1q_u8(m_counter);
uint64_t high, low; uint64_t high, low;
/* Process three blocks at a time, when possible. */ /* Process three blocks at a time, when possible. */
@ -401,13 +401,13 @@ namespace ams::crypto::impl {
num_blocks--; num_blocks--;
} }
vst1q_u8(this->counter, ctr0); vst1q_u8(m_counter, ctr0);
} }
template<> template<>
void CtrModeImpl<AesEncryptor256>::ProcessBlocks(u8 *dst, const u8 *src, size_t num_blocks) { void CtrModeImpl<AesEncryptor256>::ProcessBlocks(u8 *dst, const u8 *src, size_t num_blocks) {
/* Preload all round keys + iv into neon registers. */ /* Preload all round keys + iv into neon registers. */
const u8 *keys = this->block_cipher->GetRoundKey(); const u8 *keys = m_block_cipher->GetRoundKey();
DECLARE_ROUND_KEY_VAR(0); DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1); DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2); DECLARE_ROUND_KEY_VAR(2);
@ -423,7 +423,7 @@ namespace ams::crypto::impl {
DECLARE_ROUND_KEY_VAR(12); DECLARE_ROUND_KEY_VAR(12);
DECLARE_ROUND_KEY_VAR(13); DECLARE_ROUND_KEY_VAR(13);
DECLARE_ROUND_KEY_VAR(14); DECLARE_ROUND_KEY_VAR(14);
uint8x16_t ctr0 = vld1q_u8(this->counter); uint8x16_t ctr0 = vld1q_u8(m_counter);
uint64_t high, low; uint64_t high, low;
/* Process three blocks at a time, when possible. */ /* Process three blocks at a time, when possible. */
@ -576,7 +576,7 @@ namespace ams::crypto::impl {
num_blocks--; num_blocks--;
} }
vst1q_u8(this->counter, ctr0); vst1q_u8(m_counter, ctr0);
} }
} }

View file

@ -108,96 +108,96 @@ namespace ams::crypto::impl {
template<class BlockCipher> template<class BlockCipher>
void GcmModeImpl<BlockCipher>::Initialize(const BlockCipher *block_cipher) { void GcmModeImpl<BlockCipher>::Initialize(const BlockCipher *block_cipher) {
/* Set member variables. */ /* Set member variables. */
this->block_cipher = block_cipher; m_block_cipher = block_cipher;
this->cipher_func = std::addressof(GcmModeImpl<BlockCipher>::ProcessBlock); m_cipher_func = std::addressof(GcmModeImpl<BlockCipher>::ProcessBlock);
/* Pre-calculate values to speed up galois field multiplications later. */ /* Pre-calculate values to speed up galois field multiplications later. */
this->InitializeHashKey(); this->InitializeHashKey();
/* Note that we're initialized. */ /* Note that we're initialized. */
this->state = State_Initialized; m_state = State_Initialized;
} }
template<class BlockCipher> template<class BlockCipher>
void GcmModeImpl<BlockCipher>::Reset(const void *iv, size_t iv_size) { void GcmModeImpl<BlockCipher>::Reset(const void *iv, size_t iv_size) {
/* Validate pre-conditions. */ /* Validate pre-conditions. */
AMS_ASSERT(this->state >= State_Initialized); AMS_ASSERT(m_state >= State_Initialized);
/* Reset blocks. */ /* Reset blocks. */
this->block_x.block_128.Clear(); m_block_x.block_128.Clear();
this->block_tmp.block_128.Clear(); m_block_tmp.block_128.Clear();
/* Clear sizes. */ /* Clear sizes. */
this->aad_size = 0; m_aad_size = 0;
this->msg_size = 0; m_msg_size = 0;
this->aad_remaining = 0; m_aad_remaining = 0;
this->msg_remaining = 0; m_msg_remaining = 0;
/* Update our state. */ /* Update our state. */
this->state = State_ProcessingAad; m_state = State_ProcessingAad;
/* Set our iv. */ /* Set our iv. */
if (iv_size == 12) { if (iv_size == 12) {
/* If our iv is the correct size, simply copy in the iv, and set the magic bit. */ /* If our iv is the correct size, simply copy in the iv, and set the magic bit. */
std::memcpy(std::addressof(this->block_ek0), iv, iv_size); std::memcpy(std::addressof(m_block_ek0), iv, iv_size);
util::StoreBigEndian(this->block_ek0.block_32 + 3, static_cast<u32>(1)); util::StoreBigEndian(m_block_ek0.block_32 + 3, static_cast<u32>(1));
} else { } else {
/* Clear our ek0 block. */ /* Clear our ek0 block. */
this->block_ek0.block_128.Clear(); m_block_ek0.block_128.Clear();
/* Update using the iv as aad. */ /* Update using the iv as aad. */
this->UpdateAad(iv, iv_size); this->UpdateAad(iv, iv_size);
/* Treat the iv as fake msg for the mac that will become our iv. */ /* Treat the iv as fake msg for the mac that will become our iv. */
this->msg_size = this->aad_size; m_msg_size = m_aad_size;
this->aad_size = 0; m_aad_size = 0;
/* Compute a non-final mac. */ /* Compute a non-final mac. */
this->ComputeMac(false); this->ComputeMac(false);
/* Set our ek0 block to our calculated mac block. */ /* Set our ek0 block to our calculated mac block. */
this->block_ek0 = this->block_x; m_block_ek0 = m_block_x;
/* Clear our calculated mac block. */ /* Clear our calculated mac block. */
this->block_x.block_128.Clear(); m_block_x.block_128.Clear();
/* Reset our state. */ /* Reset our state. */
this->msg_size = 0; m_msg_size = 0;
this->aad_size = 0; m_aad_size = 0;
this->msg_remaining = 0; m_msg_remaining = 0;
this->aad_remaining = 0; m_aad_remaining = 0;
} }
/* Set the working block to the iv. */ /* Set the working block to the iv. */
this->block_ek = this->block_ek0; m_block_ek = m_block_ek0;
} }
template<class BlockCipher> template<class BlockCipher>
void GcmModeImpl<BlockCipher>::UpdateAad(const void *aad, size_t aad_size) { void GcmModeImpl<BlockCipher>::UpdateAad(const void *aad, size_t aad_size) {
/* Validate pre-conditions. */ /* Validate pre-conditions. */
AMS_ASSERT(this->state == State_ProcessingAad); AMS_ASSERT(m_state == State_ProcessingAad);
AMS_ASSERT(this->msg_size == 0); AMS_ASSERT(m_msg_size == 0);
/* Update our aad size. */ /* Update our aad size. */
this->aad_size += aad_size; m_aad_size += aad_size;
/* Define a working tracker variable. */ /* Define a working tracker variable. */
const u8 *cur_aad = static_cast<const u8 *>(aad); const u8 *cur_aad = static_cast<const u8 *>(aad);
/* Process any leftover aad data from a previous invocation. */ /* Process any leftover aad data from a previous invocation. */
if (this->aad_remaining > 0) { if (m_aad_remaining > 0) {
while (aad_size > 0) { while (aad_size > 0) {
/* Copy in a byte of the aad to our partial block. */ /* Copy in a byte of the aad to our partial block. */
this->block_x.block_8[this->aad_remaining] ^= *(cur_aad++); m_block_x.block_8[m_aad_remaining] ^= *(cur_aad++);
/* Note that we consumed a byte. */ /* Note that we consumed a byte. */
--aad_size; --aad_size;
/* Increment our partial block size. */ /* Increment our partial block size. */
this->aad_remaining = (this->aad_remaining + 1) % BlockSize; m_aad_remaining = (m_aad_remaining + 1) % BlockSize;
/* If we have a complete block, process it and move onward. */ /* If we have a complete block, process it and move onward. */
GaloisFieldMult(std::addressof(this->block_x), std::addressof(this->block_x), std::addressof(this->h_mult_blocks[0])); GaloisFieldMult(std::addressof(m_block_x), std::addressof(m_block_x), std::addressof(m_h_mult_blocks[0]));
} }
} }
@ -205,11 +205,11 @@ namespace ams::crypto::impl {
while (aad_size >= BlockSize) { while (aad_size >= BlockSize) {
/* Xor the current aad into our work block. */ /* Xor the current aad into our work block. */
for (size_t i = 0; i < BlockSize; ++i) { for (size_t i = 0; i < BlockSize; ++i) {
this->block_x.block_8[i] ^= *(cur_aad++); m_block_x.block_8[i] ^= *(cur_aad++);
} }
/* Multiply the blocks in our galois field. */ /* Multiply the blocks in our galois field. */
GaloisFieldMult(std::addressof(this->block_x), std::addressof(this->block_x), std::addressof(this->h_mult_blocks[0])); GaloisFieldMult(std::addressof(m_block_x), std::addressof(m_block_x), std::addressof(m_h_mult_blocks[0]));
/* Note that we've processed a block. */ /* Note that we've processed a block. */
aad_size -= BlockSize; aad_size -= BlockSize;
@ -218,11 +218,11 @@ namespace ams::crypto::impl {
/* Update our state with whatever aad is left over. */ /* Update our state with whatever aad is left over. */
if (aad_size > 0) { if (aad_size > 0) {
/* Note how much left over data we have. */ /* Note how much left over data we have. */
this->aad_remaining = static_cast<u32>(aad_size); m_aad_remaining = static_cast<u32>(aad_size);
/* Xor the data in. */ /* Xor the data in. */
for (size_t i = 0; i < aad_size; ++i) { for (size_t i = 0; i < aad_size; ++i) {
this->block_x.block_8[i] ^= *(cur_aad++); m_block_x.block_8[i] ^= *(cur_aad++);
} }
} }
} }
@ -234,21 +234,21 @@ namespace ams::crypto::impl {
template<class BlockCipher> template<class BlockCipher>
void GcmModeImpl<BlockCipher>::GetMac(void *dst, size_t dst_size) { void GcmModeImpl<BlockCipher>::GetMac(void *dst, size_t dst_size) {
/* Validate pre-conditions. */ /* Validate pre-conditions. */
AMS_ASSERT(State_ProcessingAad <= this->state && this->state <= State_Done); AMS_ASSERT(State_ProcessingAad <= m_state && m_state <= State_Done);
AMS_ASSERT(dst != nullptr); AMS_ASSERT(dst != nullptr);
AMS_ASSERT(dst_size >= MacSize); AMS_ASSERT(dst_size >= MacSize);
AMS_ASSERT(this->aad_remaining == 0); AMS_ASSERT(m_aad_remaining == 0);
AMS_ASSERT(this->msg_remaining == 0); AMS_ASSERT(m_msg_remaining == 0);
AMS_UNUSED(dst_size); AMS_UNUSED(dst_size);
/* If we haven't already done so, compute the final mac. */ /* If we haven't already done so, compute the final mac. */
if (this->state != State_Done) { if (m_state != State_Done) {
this->ComputeMac(true); this->ComputeMac(true);
this->state = State_Done; m_state = State_Done;
} }
static_assert(sizeof(this->block_x) == MacSize); static_assert(sizeof(m_block_x) == MacSize);
std::memcpy(dst, std::addressof(this->block_x), MacSize); std::memcpy(dst, std::addressof(m_block_x), MacSize);
} }
template<class BlockCipher> template<class BlockCipher>
@ -258,18 +258,18 @@ namespace ams::crypto::impl {
/* to speed up galois field arithmetic. */ /* to speed up galois field arithmetic. */
constexpr const Block EmptyBlock = {}; constexpr const Block EmptyBlock = {};
this->ProcessBlock(std::addressof(this->h_mult_blocks[0]), std::addressof(EmptyBlock), this->block_cipher); this->ProcessBlock(std::addressof(m_h_mult_blocks[0]), std::addressof(EmptyBlock), m_block_cipher);
} }
template<class BlockCipher> template<class BlockCipher>
void GcmModeImpl<BlockCipher>::ComputeMac(bool encrypt) { void GcmModeImpl<BlockCipher>::ComputeMac(bool encrypt) {
/* If we have leftover data, process it. */ /* If we have leftover data, process it. */
if (this->aad_remaining > 0 || this->msg_remaining > 0) { if (m_aad_remaining > 0 || m_msg_remaining > 0) {
GaloisFieldMult(std::addressof(this->block_x), std::addressof(this->block_x), std::addressof(this->h_mult_blocks[0])); GaloisFieldMult(std::addressof(m_block_x), std::addressof(m_block_x), std::addressof(m_h_mult_blocks[0]));
} }
/* Setup the last block. */ /* Setup the last block. */
Block last_block = Block{ .block_128 = { this->msg_size, this->aad_size } }; Block last_block = Block{ .block_128 = { m_msg_size, m_aad_size } };
/* Multiply the last block by 8 to account for bit vs byte sizes. */ /* Multiply the last block by 8 to account for bit vs byte sizes. */
static_assert(offsetof(Block128, hi) == 0); static_assert(offsetof(Block128, hi) == 0);
@ -279,21 +279,21 @@ namespace ams::crypto::impl {
/* Xor the data in. */ /* Xor the data in. */
for (size_t i = 0; i < BlockSize; ++i) { for (size_t i = 0; i < BlockSize; ++i) {
this->block_x.block_8[BlockSize - 1 - i] ^= last_block.block_8[i]; m_block_x.block_8[BlockSize - 1 - i] ^= last_block.block_8[i];
} }
/* Perform the final multiplication. */ /* Perform the final multiplication. */
GaloisFieldMult(std::addressof(this->block_x), std::addressof(this->block_x), std::addressof(this->h_mult_blocks[0])); GaloisFieldMult(std::addressof(m_block_x), std::addressof(m_block_x), std::addressof(m_h_mult_blocks[0]));
/* If we need to do an encryption, do so. */ /* If we need to do an encryption, do so. */
if (encrypt) { if (encrypt) {
/* Encrypt the iv. */ /* Encrypt the iv. */
u8 enc_result[BlockSize]; u8 enc_result[BlockSize];
this->ProcessBlock(enc_result, std::addressof(this->block_ek0), this->block_cipher); this->ProcessBlock(enc_result, std::addressof(m_block_ek0), m_block_cipher);
/* Xor the iv in. */ /* Xor the iv in. */
for (size_t i = 0; i < BlockSize; ++i) { for (size_t i = 0; i < BlockSize; ++i) {
this->block_x.block_8[i] ^= enc_result[i]; m_block_x.block_8[i] ^= enc_result[i];
} }
} }
} }

View file

@ -20,20 +20,20 @@ namespace ams::crypto::impl {
#ifdef ATMOSPHERE_IS_STRATOSPHERE #ifdef ATMOSPHERE_IS_STRATOSPHERE
void Sha1Impl::Initialize() { void Sha1Impl::Initialize() {
static_assert(sizeof(this->state) == sizeof(::Sha1Context)); static_assert(sizeof(m_state) == sizeof(::Sha1Context));
::sha1ContextCreate(reinterpret_cast<::Sha1Context *>(std::addressof(this->state))); ::sha1ContextCreate(reinterpret_cast<::Sha1Context *>(std::addressof(m_state)));
} }
void Sha1Impl::Update(const void *data, size_t size) { void Sha1Impl::Update(const void *data, size_t size) {
static_assert(sizeof(this->state) == sizeof(::Sha1Context)); static_assert(sizeof(m_state) == sizeof(::Sha1Context));
::sha1ContextUpdate(reinterpret_cast<::Sha1Context *>(std::addressof(this->state)), data, size); ::sha1ContextUpdate(reinterpret_cast<::Sha1Context *>(std::addressof(m_state)), data, size);
} }
void Sha1Impl::GetHash(void *dst, size_t size) { void Sha1Impl::GetHash(void *dst, size_t size) {
static_assert(sizeof(this->state) == sizeof(::Sha1Context)); static_assert(sizeof(m_state) == sizeof(::Sha1Context));
AMS_ASSERT(size >= HashSize); AMS_ASSERT(size >= HashSize);
AMS_UNUSED(size); AMS_UNUSED(size);
::sha1ContextGetHash(reinterpret_cast<::Sha1Context *>(std::addressof(this->state)), dst); ::sha1ContextGetHash(reinterpret_cast<::Sha1Context *>(std::addressof(m_state)), dst);
} }
#else #else

View file

@ -20,42 +20,42 @@ namespace ams::crypto::impl {
#ifdef ATMOSPHERE_IS_STRATOSPHERE #ifdef ATMOSPHERE_IS_STRATOSPHERE
void Sha256Impl::Initialize() { void Sha256Impl::Initialize() {
static_assert(sizeof(this->state) == sizeof(::Sha256Context)); static_assert(sizeof(m_state) == sizeof(::Sha256Context));
::sha256ContextCreate(reinterpret_cast<::Sha256Context *>(std::addressof(this->state))); ::sha256ContextCreate(reinterpret_cast<::Sha256Context *>(std::addressof(m_state)));
} }
void Sha256Impl::Update(const void *data, size_t size) { void Sha256Impl::Update(const void *data, size_t size) {
static_assert(sizeof(this->state) == sizeof(::Sha256Context)); static_assert(sizeof(m_state) == sizeof(::Sha256Context));
::sha256ContextUpdate(reinterpret_cast<::Sha256Context *>(std::addressof(this->state)), data, size); ::sha256ContextUpdate(reinterpret_cast<::Sha256Context *>(std::addressof(m_state)), data, size);
} }
void Sha256Impl::GetHash(void *dst, size_t size) { void Sha256Impl::GetHash(void *dst, size_t size) {
static_assert(sizeof(this->state) == sizeof(::Sha256Context)); static_assert(sizeof(m_state) == sizeof(::Sha256Context));
AMS_ASSERT(size >= HashSize); AMS_ASSERT(size >= HashSize);
AMS_UNUSED(size); AMS_UNUSED(size);
::sha256ContextGetHash(reinterpret_cast<::Sha256Context *>(std::addressof(this->state)), dst); ::sha256ContextGetHash(reinterpret_cast<::Sha256Context *>(std::addressof(m_state)), dst);
} }
void Sha256Impl::InitializeWithContext(const Sha256Context *context) { void Sha256Impl::InitializeWithContext(const Sha256Context *context) {
static_assert(sizeof(this->state) == sizeof(::Sha256Context)); static_assert(sizeof(m_state) == sizeof(::Sha256Context));
/* Copy state in from the context. */ /* Copy state in from the context. */
std::memcpy(this->state.intermediate_hash, context->intermediate_hash, sizeof(this->state.intermediate_hash)); std::memcpy(m_state.intermediate_hash, context->intermediate_hash, sizeof(m_state.intermediate_hash));
this->state.bits_consumed = context->bits_consumed; m_state.bits_consumed = context->bits_consumed;
/* Clear the rest of state. */ /* Clear the rest of state. */
std::memset(this->state.buffer, 0, sizeof(this->state.buffer)); std::memset(m_state.buffer, 0, sizeof(m_state.buffer));
this->state.num_buffered = 0; m_state.num_buffered = 0;
this->state.finalized = false; m_state.finalized = false;
} }
size_t Sha256Impl::GetContext(Sha256Context *context) const { size_t Sha256Impl::GetContext(Sha256Context *context) const {
static_assert(sizeof(this->state) == sizeof(::Sha256Context)); static_assert(sizeof(m_state) == sizeof(::Sha256Context));
std::memcpy(context->intermediate_hash, this->state.intermediate_hash, sizeof(context->intermediate_hash)); std::memcpy(context->intermediate_hash, m_state.intermediate_hash, sizeof(context->intermediate_hash));
context->bits_consumed = this->state.bits_consumed; context->bits_consumed = m_state.bits_consumed;
return this->state.num_buffered; return m_state.num_buffered;
} }
#else #else

View file

@ -110,7 +110,7 @@ namespace ams::crypto::impl {
} }
size_t XtsModeImpl::UpdateGeneric(void *dst, size_t dst_size, const void *src, size_t src_size) { size_t XtsModeImpl::UpdateGeneric(void *dst, size_t dst_size, const void *src, size_t src_size) {
AMS_ASSERT(this->state == State_Initialized || this->state == State_Processing); AMS_ASSERT(m_state == State_Initialized || m_state == State_Processing);
return UpdateImpl<void>(this, dst, dst_size, src, src_size); return UpdateImpl<void>(this, dst, dst_size, src, src_size);
} }
@ -118,13 +118,13 @@ namespace ams::crypto::impl {
size_t XtsModeImpl::ProcessBlocksGeneric(u8 *dst, const u8 *src, size_t num_blocks) { size_t XtsModeImpl::ProcessBlocksGeneric(u8 *dst, const u8 *src, size_t num_blocks) {
size_t processed = BlockSize * (num_blocks - 1); size_t processed = BlockSize * (num_blocks - 1);
if (this->state == State_Processing) { if (m_state == State_Processing) {
this->ProcessBlock(dst, this->last_block); this->ProcessBlock(dst, m_last_block);
dst += BlockSize; dst += BlockSize;
processed += BlockSize; processed += BlockSize;
} }
uint8x16_t tweak = vld1q_u8(this->tweak); uint8x16_t tweak = vld1q_u8(m_tweak);
while ((--num_blocks) > 0) { while ((--num_blocks) > 0) {
/* Xor */ /* Xor */
@ -134,7 +134,7 @@ namespace ams::crypto::impl {
/* Encrypt */ /* Encrypt */
vst1q_u8(dst, block); vst1q_u8(dst, block);
this->cipher_func(dst, dst, this->cipher_ctx); m_cipher_func(dst, dst, m_cipher_ctx);
block = vld1q_u8(dst); block = vld1q_u8(dst);
/* Xor */ /* Xor */
@ -146,11 +146,11 @@ namespace ams::crypto::impl {
tweak = MultiplyTweak(tweak); tweak = MultiplyTweak(tweak);
} }
vst1q_u8(this->tweak, tweak); vst1q_u8(m_tweak, tweak);
std::memcpy(this->last_block, src, BlockSize); std::memcpy(m_last_block, src, BlockSize);
this->state = State_Processing; m_state = State_Processing;
return processed; return processed;
} }
@ -168,14 +168,14 @@ namespace ams::crypto::impl {
/* Handle last buffered block. */ /* Handle last buffered block. */
size_t processed = (num_blocks - 1) * BlockSize; size_t processed = (num_blocks - 1) * BlockSize;
if (this->state == State_Processing) { if (m_state == State_Processing) {
this->ProcessBlock(dst, this->last_block); this->ProcessBlock(dst, m_last_block);
dst += BlockSize; dst += BlockSize;
processed += BlockSize; processed += BlockSize;
} }
/* Preload all round keys + iv into neon registers. */ /* Preload all round keys + iv into neon registers. */
const u8 *keys = static_cast<const AesEncryptor128 *>(this->cipher_ctx)->GetRoundKey(); const u8 *keys = static_cast<const AesEncryptor128 *>(m_cipher_ctx)->GetRoundKey();
DECLARE_ROUND_KEY_VAR(0); DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1); DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2); DECLARE_ROUND_KEY_VAR(2);
@ -187,7 +187,7 @@ namespace ams::crypto::impl {
DECLARE_ROUND_KEY_VAR(8); DECLARE_ROUND_KEY_VAR(8);
DECLARE_ROUND_KEY_VAR(9); DECLARE_ROUND_KEY_VAR(9);
DECLARE_ROUND_KEY_VAR(10); DECLARE_ROUND_KEY_VAR(10);
uint8x16_t tweak0 = vld1q_u8(this->tweak); uint8x16_t tweak0 = vld1q_u8(m_tweak);
constexpr uint64_t xorv = 0x87ul; constexpr uint64_t xorv = 0x87ul;
uint64_t high, low, mask; uint64_t high, low, mask;
@ -314,10 +314,10 @@ namespace ams::crypto::impl {
dst += BlockSize; dst += BlockSize;
} }
vst1q_u8(this->tweak, tweak0); vst1q_u8(m_tweak, tweak0);
std::memcpy(this->last_block, src, BlockSize); std::memcpy(m_last_block, src, BlockSize);
this->state = State_Processing; m_state = State_Processing;
return processed; return processed;
} }
@ -327,14 +327,14 @@ namespace ams::crypto::impl {
/* Handle last buffered block. */ /* Handle last buffered block. */
size_t processed = (num_blocks - 1) * BlockSize; size_t processed = (num_blocks - 1) * BlockSize;
if (this->state == State_Processing) { if (m_state == State_Processing) {
this->ProcessBlock(dst, this->last_block); this->ProcessBlock(dst, m_last_block);
dst += BlockSize; dst += BlockSize;
processed += BlockSize; processed += BlockSize;
} }
/* Preload all round keys + iv into neon registers. */ /* Preload all round keys + iv into neon registers. */
const u8 *keys = static_cast<const AesEncryptor192 *>(this->cipher_ctx)->GetRoundKey(); const u8 *keys = static_cast<const AesEncryptor192 *>(m_cipher_ctx)->GetRoundKey();
DECLARE_ROUND_KEY_VAR(0); DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1); DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2); DECLARE_ROUND_KEY_VAR(2);
@ -348,7 +348,7 @@ namespace ams::crypto::impl {
DECLARE_ROUND_KEY_VAR(10); DECLARE_ROUND_KEY_VAR(10);
DECLARE_ROUND_KEY_VAR(11); DECLARE_ROUND_KEY_VAR(11);
DECLARE_ROUND_KEY_VAR(12); DECLARE_ROUND_KEY_VAR(12);
uint8x16_t tweak0 = vld1q_u8(this->tweak); uint8x16_t tweak0 = vld1q_u8(m_tweak);
constexpr uint64_t xorv = 0x87ul; constexpr uint64_t xorv = 0x87ul;
uint64_t high, low, mask; uint64_t high, low, mask;
@ -483,10 +483,10 @@ namespace ams::crypto::impl {
dst += BlockSize; dst += BlockSize;
} }
vst1q_u8(this->tweak, tweak0); vst1q_u8(m_tweak, tweak0);
std::memcpy(this->last_block, src, BlockSize); std::memcpy(m_last_block, src, BlockSize);
this->state = State_Processing; m_state = State_Processing;
return processed; return processed;
} }
@ -496,14 +496,14 @@ namespace ams::crypto::impl {
/* Handle last buffered block. */ /* Handle last buffered block. */
size_t processed = (num_blocks - 1) * BlockSize; size_t processed = (num_blocks - 1) * BlockSize;
if (this->state == State_Processing) { if (m_state == State_Processing) {
this->ProcessBlock(dst, this->last_block); this->ProcessBlock(dst, m_last_block);
dst += BlockSize; dst += BlockSize;
processed += BlockSize; processed += BlockSize;
} }
/* Preload all round keys + iv into neon registers. */ /* Preload all round keys + iv into neon registers. */
const u8 *keys = static_cast<const AesEncryptor256 *>(this->cipher_ctx)->GetRoundKey(); const u8 *keys = static_cast<const AesEncryptor256 *>(m_cipher_ctx)->GetRoundKey();
DECLARE_ROUND_KEY_VAR(0); DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1); DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2); DECLARE_ROUND_KEY_VAR(2);
@ -519,7 +519,7 @@ namespace ams::crypto::impl {
DECLARE_ROUND_KEY_VAR(12); DECLARE_ROUND_KEY_VAR(12);
DECLARE_ROUND_KEY_VAR(13); DECLARE_ROUND_KEY_VAR(13);
DECLARE_ROUND_KEY_VAR(14); DECLARE_ROUND_KEY_VAR(14);
uint8x16_t tweak0 = vld1q_u8(this->tweak); uint8x16_t tweak0 = vld1q_u8(m_tweak);
constexpr uint64_t xorv = 0x87ul; constexpr uint64_t xorv = 0x87ul;
uint64_t high, low, mask; uint64_t high, low, mask;
@ -663,10 +663,10 @@ namespace ams::crypto::impl {
dst += BlockSize; dst += BlockSize;
} }
vst1q_u8(this->tweak, tweak0); vst1q_u8(m_tweak, tweak0);
std::memcpy(this->last_block, src, BlockSize); std::memcpy(m_last_block, src, BlockSize);
this->state = State_Processing; m_state = State_Processing;
return processed; return processed;
} }
@ -676,14 +676,14 @@ namespace ams::crypto::impl {
/* Handle last buffered block. */ /* Handle last buffered block. */
size_t processed = (num_blocks - 1) * BlockSize; size_t processed = (num_blocks - 1) * BlockSize;
if (this->state == State_Processing) { if (m_state == State_Processing) {
this->ProcessBlock(dst, this->last_block); this->ProcessBlock(dst, m_last_block);
dst += BlockSize; dst += BlockSize;
processed += BlockSize; processed += BlockSize;
} }
/* Preload all round keys + iv into neon registers. */ /* Preload all round keys + iv into neon registers. */
const u8 *keys = static_cast<const AesDecryptor128 *>(this->cipher_ctx)->GetRoundKey(); const u8 *keys = static_cast<const AesDecryptor128 *>(m_cipher_ctx)->GetRoundKey();
DECLARE_ROUND_KEY_VAR(0); DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1); DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2); DECLARE_ROUND_KEY_VAR(2);
@ -695,7 +695,7 @@ namespace ams::crypto::impl {
DECLARE_ROUND_KEY_VAR(8); DECLARE_ROUND_KEY_VAR(8);
DECLARE_ROUND_KEY_VAR(9); DECLARE_ROUND_KEY_VAR(9);
DECLARE_ROUND_KEY_VAR(10); DECLARE_ROUND_KEY_VAR(10);
uint8x16_t tweak0 = vld1q_u8(this->tweak); uint8x16_t tweak0 = vld1q_u8(m_tweak);
constexpr uint64_t xorv = 0x87ul; constexpr uint64_t xorv = 0x87ul;
uint64_t high, low, mask; uint64_t high, low, mask;
@ -822,10 +822,10 @@ namespace ams::crypto::impl {
dst += BlockSize; dst += BlockSize;
} }
vst1q_u8(this->tweak, tweak0); vst1q_u8(m_tweak, tweak0);
std::memcpy(this->last_block, src, BlockSize); std::memcpy(m_last_block, src, BlockSize);
this->state = State_Processing; m_state = State_Processing;
return processed; return processed;
} }
@ -835,14 +835,14 @@ namespace ams::crypto::impl {
/* Handle last buffered block. */ /* Handle last buffered block. */
size_t processed = (num_blocks - 1) * BlockSize; size_t processed = (num_blocks - 1) * BlockSize;
if (this->state == State_Processing) { if (m_state == State_Processing) {
this->ProcessBlock(dst, this->last_block); this->ProcessBlock(dst, m_last_block);
dst += BlockSize; dst += BlockSize;
processed += BlockSize; processed += BlockSize;
} }
/* Preload all round keys + iv into neon registers. */ /* Preload all round keys + iv into neon registers. */
const u8 *keys = static_cast<const AesDecryptor192 *>(this->cipher_ctx)->GetRoundKey(); const u8 *keys = static_cast<const AesDecryptor192 *>(m_cipher_ctx)->GetRoundKey();
DECLARE_ROUND_KEY_VAR(0); DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1); DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2); DECLARE_ROUND_KEY_VAR(2);
@ -856,7 +856,7 @@ namespace ams::crypto::impl {
DECLARE_ROUND_KEY_VAR(10); DECLARE_ROUND_KEY_VAR(10);
DECLARE_ROUND_KEY_VAR(11); DECLARE_ROUND_KEY_VAR(11);
DECLARE_ROUND_KEY_VAR(12); DECLARE_ROUND_KEY_VAR(12);
uint8x16_t tweak0 = vld1q_u8(this->tweak); uint8x16_t tweak0 = vld1q_u8(m_tweak);
constexpr uint64_t xorv = 0x87ul; constexpr uint64_t xorv = 0x87ul;
uint64_t high, low, mask; uint64_t high, low, mask;
@ -991,10 +991,10 @@ namespace ams::crypto::impl {
dst += BlockSize; dst += BlockSize;
} }
vst1q_u8(this->tweak, tweak0); vst1q_u8(m_tweak, tweak0);
std::memcpy(this->last_block, src, BlockSize); std::memcpy(m_last_block, src, BlockSize);
this->state = State_Processing; m_state = State_Processing;
return processed; return processed;
} }
@ -1004,14 +1004,14 @@ namespace ams::crypto::impl {
/* Handle last buffered block. */ /* Handle last buffered block. */
size_t processed = (num_blocks - 1) * BlockSize; size_t processed = (num_blocks - 1) * BlockSize;
if (this->state == State_Processing) { if (m_state == State_Processing) {
this->ProcessBlock(dst, this->last_block); this->ProcessBlock(dst, m_last_block);
dst += BlockSize; dst += BlockSize;
processed += BlockSize; processed += BlockSize;
} }
/* Preload all round keys + iv into neon registers. */ /* Preload all round keys + iv into neon registers. */
const u8 *keys = static_cast<const AesDecryptor256 *>(this->cipher_ctx)->GetRoundKey(); const u8 *keys = static_cast<const AesDecryptor256 *>(m_cipher_ctx)->GetRoundKey();
DECLARE_ROUND_KEY_VAR(0); DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1); DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2); DECLARE_ROUND_KEY_VAR(2);
@ -1027,7 +1027,7 @@ namespace ams::crypto::impl {
DECLARE_ROUND_KEY_VAR(12); DECLARE_ROUND_KEY_VAR(12);
DECLARE_ROUND_KEY_VAR(13); DECLARE_ROUND_KEY_VAR(13);
DECLARE_ROUND_KEY_VAR(14); DECLARE_ROUND_KEY_VAR(14);
uint8x16_t tweak0 = vld1q_u8(this->tweak); uint8x16_t tweak0 = vld1q_u8(m_tweak);
constexpr uint64_t xorv = 0x87ul; constexpr uint64_t xorv = 0x87ul;
uint64_t high, low, mask; uint64_t high, low, mask;
@ -1171,10 +1171,10 @@ namespace ams::crypto::impl {
dst += BlockSize; dst += BlockSize;
} }
vst1q_u8(this->tweak, tweak0); vst1q_u8(m_tweak, tweak0);
std::memcpy(this->last_block, src, BlockSize); std::memcpy(m_last_block, src, BlockSize);
this->state = State_Processing; m_state = State_Processing;
return processed; return processed;
} }

View file

@ -39,94 +39,94 @@ namespace ams::crypto::impl {
/* Xor. */ /* Xor. */
for (size_t i = 0; i < BlockSize; i++) { for (size_t i = 0; i < BlockSize; i++) {
tmp[i] = this->tweak[i] ^ src[i]; tmp[i] = m_tweak[i] ^ src[i];
} }
/* Crypt */ /* Crypt */
this->cipher_func(tmp, tmp, this->cipher_ctx); m_cipher_func(tmp, tmp, m_cipher_ctx);
/* Xor. */ /* Xor. */
for (size_t i = 0; i < BlockSize; i++) { for (size_t i = 0; i < BlockSize; i++) {
dst[i] = this->tweak[i] ^ tmp[i]; dst[i] = m_tweak[i] ^ tmp[i];
} }
MultiplyTweakGeneric(reinterpret_cast<u64 *>(this->tweak)); MultiplyTweakGeneric(reinterpret_cast<u64 *>(m_tweak));
} }
size_t XtsModeImpl::FinalizeEncryption(void *dst, size_t dst_size) { size_t XtsModeImpl::FinalizeEncryption(void *dst, size_t dst_size) {
AMS_ASSERT(this->state == State_Processing); AMS_ASSERT(m_state == State_Processing);
AMS_UNUSED(dst_size); AMS_UNUSED(dst_size);
u8 *dst_u8 = static_cast<u8 *>(dst); u8 *dst_u8 = static_cast<u8 *>(dst);
size_t processed = 0; size_t processed = 0;
if (this->num_buffered == 0) { if (m_num_buffered == 0) {
this->ProcessBlock(dst_u8, this->last_block); this->ProcessBlock(dst_u8, m_last_block);
processed = BlockSize; processed = BlockSize;
} else { } else {
this->ProcessBlock(this->last_block, this->last_block); this->ProcessBlock(m_last_block, m_last_block);
std::memcpy(this->buffer + this->num_buffered, this->last_block + this->num_buffered, BlockSize - this->num_buffered); std::memcpy(m_buffer + m_num_buffered, m_last_block + m_num_buffered, BlockSize - m_num_buffered);
this->ProcessBlock(dst_u8, this->buffer); this->ProcessBlock(dst_u8, m_buffer);
std::memcpy(dst_u8 + BlockSize, this->last_block, this->num_buffered); std::memcpy(dst_u8 + BlockSize, m_last_block, m_num_buffered);
processed = BlockSize + this->num_buffered; processed = BlockSize + m_num_buffered;
} }
this->state = State_Done; m_state = State_Done;
return processed; return processed;
} }
size_t XtsModeImpl::FinalizeDecryption(void *dst, size_t dst_size) { size_t XtsModeImpl::FinalizeDecryption(void *dst, size_t dst_size) {
AMS_ASSERT(this->state == State_Processing); AMS_ASSERT(m_state == State_Processing);
AMS_UNUSED(dst_size); AMS_UNUSED(dst_size);
u8 *dst_u8 = static_cast<u8 *>(dst); u8 *dst_u8 = static_cast<u8 *>(dst);
size_t processed = 0; size_t processed = 0;
if (this->num_buffered == 0) { if (m_num_buffered == 0) {
this->ProcessBlock(dst_u8, this->last_block); this->ProcessBlock(dst_u8, m_last_block);
processed = BlockSize; processed = BlockSize;
} else { } else {
u8 tmp_tweak[BlockSize]; u8 tmp_tweak[BlockSize];
std::memcpy(tmp_tweak, this->tweak, BlockSize); std::memcpy(tmp_tweak, m_tweak, BlockSize);
MultiplyTweakGeneric(reinterpret_cast<u64 *>(this->tweak)); MultiplyTweakGeneric(reinterpret_cast<u64 *>(m_tweak));
this->ProcessBlock(this->last_block, this->last_block); this->ProcessBlock(m_last_block, m_last_block);
std::memcpy(this->buffer + this->num_buffered, this->last_block + this->num_buffered, BlockSize - this->num_buffered); std::memcpy(m_buffer + m_num_buffered, m_last_block + m_num_buffered, BlockSize - m_num_buffered);
std::memcpy(this->tweak, tmp_tweak, BlockSize); std::memcpy(m_tweak, tmp_tweak, BlockSize);
this->ProcessBlock(dst_u8, this->buffer); this->ProcessBlock(dst_u8, m_buffer);
std::memcpy(dst_u8 + BlockSize, this->last_block, this->num_buffered); std::memcpy(dst_u8 + BlockSize, m_last_block, m_num_buffered);
processed = BlockSize + this->num_buffered; processed = BlockSize + m_num_buffered;
} }
this->state = State_Done; m_state = State_Done;
return processed; return processed;
} }
size_t XtsModeImpl::ProcessPartialData(u8 *dst, const u8 *src, size_t size) { size_t XtsModeImpl::ProcessPartialData(u8 *dst, const u8 *src, size_t size) {
size_t processed = 0; size_t processed = 0;
std::memcpy(this->buffer + this->num_buffered, src, size); std::memcpy(m_buffer + m_num_buffered, src, size);
this->num_buffered += size; m_num_buffered += size;
if (this->num_buffered == BlockSize) { if (m_num_buffered == BlockSize) {
if (this->state == State_Processing) { if (m_state == State_Processing) {
this->ProcessBlock(dst, this->last_block); this->ProcessBlock(dst, m_last_block);
processed += BlockSize; processed += BlockSize;
} }
std::memcpy(this->last_block, this->buffer, BlockSize); std::memcpy(m_last_block, m_buffer, BlockSize);
this->num_buffered = 0; m_num_buffered = 0;
this->state = State_Processing; m_state = State_Processing;
} }
return processed; return processed;
@ -135,8 +135,8 @@ namespace ams::crypto::impl {
size_t XtsModeImpl::ProcessRemainingData(u8 *dst, const u8 *src, size_t size) { size_t XtsModeImpl::ProcessRemainingData(u8 *dst, const u8 *src, size_t size) {
AMS_UNUSED(dst); AMS_UNUSED(dst);
std::memcpy(this->buffer, src, size); std::memcpy(m_buffer, src, size);
this->num_buffered = size; m_num_buffered = size;
return 0; return 0;
} }