ams.mitm: more romfs building space/time tradeoffs.

This is needed for Animal Crossing 2.0.0, which has >99000 fucking files.

We now do several passes over dir/file tables instead of one pass,
doing entire hash tables before we touch dir/file tables. Thus we
no longer need to simultaneously allocate hash table and dir/file table space.

In addition, we now do repeated passes building a segment of hash tables
at a time, when insufficient memory is available. Similar is also now the
case for file/dir tables, we try 0x40000 work buffer and divide by 2
until we successfully alloc. We don't allow a work buffer <0x4000, for
write/perf reasons. If a game triggers that, let me know I guess.

Hard to imagine a worse torture-test for this code than animal crossing.
This commit is contained in:
Michael Scire 2021-11-03 23:52:38 -07:00
parent a73e0e8f16
commit 5eabca7f04
2 changed files with 211 additions and 124 deletions

View file

@ -64,28 +64,61 @@ namespace ams::mitm::fs {
}; };
static_assert(util::is_pod<FileEntry>::value && sizeof(FileEntry) == 0x20); static_assert(util::is_pod<FileEntry>::value && sizeof(FileEntry) == 0x20);
class DynamicTableCache {
NON_COPYABLE(DynamicTableCache);
NON_MOVEABLE(DynamicTableCache);
private:
static constexpr size_t MaxCachedSize = (1_MB / 4);
private:
size_t m_cache_bitsize;
protected:
void *m_cache;
protected:
DynamicTableCache(size_t sz) {
size_t cache_size = util::CeilingPowerOfTwo(std::min(sz, MaxCachedSize));
m_cache = std::malloc(cache_size);
while (m_cache == nullptr) {
cache_size >>= 1;
AMS_ABORT_UNLESS(cache_size >= 16_KB);
}
m_cache_bitsize = util::CountTrailingZeros(cache_size);
}
~DynamicTableCache() {
std::free(m_cache);
}
ALWAYS_INLINE size_t GetCacheSize() const { return static_cast<size_t>(1) << m_cache_bitsize; }
};
class HashTableStorage : public DynamicTableCache {
public:
HashTableStorage(size_t sz) : DynamicTableCache(sz) { /* ... */ }
ALWAYS_INLINE u32 *GetBuffer() { return reinterpret_cast<u32 *>(m_cache); }
ALWAYS_INLINE size_t GetBufferSize() const { return DynamicTableCache::GetCacheSize(); }
};
template<typename Entry> template<typename Entry>
class TableReader { class TableReader : public DynamicTableCache {
NON_COPYABLE(TableReader); NON_COPYABLE(TableReader);
NON_MOVEABLE(TableReader); NON_MOVEABLE(TableReader);
private: private:
static constexpr size_t MaxCachedSize = (1_MB / 4);
static constexpr size_t FallbackCacheSize = 1_KB; static constexpr size_t FallbackCacheSize = 1_KB;
private: private:
ams::fs::IStorage *m_storage; ams::fs::IStorage *m_storage;
size_t m_offset; size_t m_offset;
size_t m_size; size_t m_size;
size_t m_cache_idx; size_t m_cache_idx;
void *m_cache;
u8 m_fallback_cache[FallbackCacheSize]; u8 m_fallback_cache[FallbackCacheSize];
private: private:
ALWAYS_INLINE void Read(size_t ofs, void *dst, size_t size) { ALWAYS_INLINE void Read(size_t ofs, void *dst, size_t size) {
R_ABORT_UNLESS(m_storage->Read(m_offset + ofs, dst, size)); R_ABORT_UNLESS(m_storage->Read(m_offset + ofs, dst, size));
} }
ALWAYS_INLINE void ReloadCacheImpl(size_t idx) { ALWAYS_INLINE void ReloadCacheImpl(size_t idx) {
const size_t rel_ofs = idx * MaxCachedSize; const size_t rel_ofs = idx * this->GetCacheSize();
AMS_ABORT_UNLESS(rel_ofs < m_size); AMS_ABORT_UNLESS(rel_ofs < m_size);
const size_t new_cache_size = std::min(m_size - rel_ofs, MaxCachedSize); const size_t new_cache_size = std::min(m_size - rel_ofs, this->GetCacheSize());
this->Read(rel_ofs, m_cache, new_cache_size); this->Read(rel_ofs, m_cache, new_cache_size);
m_cache_idx = idx; m_cache_idx = idx;
} }
@ -97,23 +130,18 @@ namespace ams::mitm::fs {
} }
ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) { ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) {
return ofs / MaxCachedSize; return ofs / this->GetCacheSize();
} }
public: public:
TableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : m_storage(s), m_offset(ofs), m_size(sz), m_cache_idx(0) { TableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : DynamicTableCache(sz), m_storage(s), m_offset(ofs), m_size(sz), m_cache_idx(0) {
m_cache = std::malloc(std::min(sz, MaxCachedSize));
AMS_ABORT_UNLESS(m_cache != nullptr); AMS_ABORT_UNLESS(m_cache != nullptr);
this->ReloadCacheImpl(0); this->ReloadCacheImpl(0);
} }
~TableReader() {
std::free(m_cache);
}
const Entry *GetEntry(u32 entry_offset) { const Entry *GetEntry(u32 entry_offset) {
this->ReloadCache(this->GetCacheIndex(entry_offset)); this->ReloadCache(this->GetCacheIndex(entry_offset));
const size_t ofs = entry_offset % MaxCachedSize; const size_t ofs = entry_offset % this->GetCacheSize();
const Entry *entry = reinterpret_cast<const Entry *>(reinterpret_cast<uintptr_t>(m_cache) + ofs); const Entry *entry = reinterpret_cast<const Entry *>(reinterpret_cast<uintptr_t>(m_cache) + ofs);
if (AMS_UNLIKELY(this->GetCacheIndex(entry_offset) != this->GetCacheIndex(entry_offset + sizeof(Entry) + entry->name_size + sizeof(u32)))) { if (AMS_UNLIKELY(this->GetCacheIndex(entry_offset) != this->GetCacheIndex(entry_offset + sizeof(Entry) + entry->name_size + sizeof(u32)))) {
@ -125,18 +153,16 @@ namespace ams::mitm::fs {
}; };
template<typename Entry> template<typename Entry>
class TableWriter { class TableWriter : public DynamicTableCache {
NON_COPYABLE(TableWriter); NON_COPYABLE(TableWriter);
NON_MOVEABLE(TableWriter); NON_MOVEABLE(TableWriter);
private: private:
static constexpr size_t MaxCachedSize = (1_MB / 4);
static constexpr size_t FallbackCacheSize = 1_KB; static constexpr size_t FallbackCacheSize = 1_KB;
private: private:
::FsFile *m_file; ::FsFile *m_file;
size_t m_offset; size_t m_offset;
size_t m_size; size_t m_size;
size_t m_cache_idx; size_t m_cache_idx;
void *m_cache;
u8 m_fallback_cache[FallbackCacheSize]; u8 m_fallback_cache[FallbackCacheSize];
size_t m_fallback_cache_entry_offset; size_t m_fallback_cache_entry_offset;
size_t m_fallback_cache_entry_size; size_t m_fallback_cache_entry_size;
@ -157,8 +183,8 @@ namespace ams::mitm::fs {
AMS_ABORT_UNLESS(!(m_cache_dirty && m_fallback_cache_dirty)); AMS_ABORT_UNLESS(!(m_cache_dirty && m_fallback_cache_dirty));
if (m_cache_dirty) { if (m_cache_dirty) {
const size_t ofs = m_cache_idx * MaxCachedSize; const size_t ofs = m_cache_idx * this->GetCacheSize();
this->Write(ofs, m_cache, std::min(m_size - ofs, MaxCachedSize)); this->Write(ofs, m_cache, std::min(m_size - ofs, this->GetCacheSize()));
m_cache_dirty = false; m_cache_dirty = false;
} }
if (m_fallback_cache_dirty) { if (m_fallback_cache_dirty) {
@ -168,12 +194,12 @@ namespace ams::mitm::fs {
} }
ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) { ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) {
return ofs / MaxCachedSize; return ofs / this->GetCacheSize();
} }
ALWAYS_INLINE void RefreshCacheImpl() { ALWAYS_INLINE void RefreshCacheImpl() {
const size_t cur_cache = m_cache_idx * MaxCachedSize; const size_t cur_cache = m_cache_idx * this->GetCacheSize();
this->Read(cur_cache, m_cache, std::min(m_size - cur_cache, MaxCachedSize)); this->Read(cur_cache, m_cache, std::min(m_size - cur_cache, this->GetCacheSize()));
} }
ALWAYS_INLINE void RefreshCache(u32 entry_offset) { ALWAYS_INLINE void RefreshCache(u32 entry_offset) {
@ -184,29 +210,27 @@ namespace ams::mitm::fs {
} }
} }
public: public:
TableWriter(::FsFile *f, size_t ofs, size_t sz) : m_file(f), m_offset(ofs), m_size(sz), m_cache_idx(0), m_fallback_cache_entry_offset(), m_fallback_cache_entry_size(), m_cache_dirty(), m_fallback_cache_dirty() { TableWriter(::FsFile *f, size_t ofs, size_t sz) : DynamicTableCache(sz), m_file(f), m_offset(ofs), m_size(sz), m_cache_idx(0), m_fallback_cache_entry_offset(), m_fallback_cache_entry_size(), m_cache_dirty(), m_fallback_cache_dirty() {
const size_t cache_size = std::min(sz, MaxCachedSize);
m_cache = std::malloc(cache_size);
AMS_ABORT_UNLESS(m_cache != nullptr); AMS_ABORT_UNLESS(m_cache != nullptr);
std::memset(m_cache, 0, cache_size);
std::memset(m_cache, 0, this->GetCacheSize());
std::memset(m_fallback_cache, 0, sizeof(m_fallback_cache)); std::memset(m_fallback_cache, 0, sizeof(m_fallback_cache));
for (size_t cur = 0; cur < m_size; cur += MaxCachedSize) { for (size_t cur = 0; cur < m_size; cur += this->GetCacheSize()) {
this->Write(cur, m_cache, std::min(m_size - cur, MaxCachedSize)); this->Write(cur, m_cache, std::min(m_size - cur, this->GetCacheSize()));
} }
} }
~TableWriter() { ~TableWriter() {
this->Flush(); this->Flush();
std::free(m_cache);
} }
Entry *GetEntry(u32 entry_offset, u32 name_len) { Entry *GetEntry(u32 entry_offset, u32 name_len) {
this->RefreshCache(entry_offset); this->RefreshCache(entry_offset);
const size_t ofs = entry_offset % MaxCachedSize; const size_t ofs = entry_offset % this->GetCacheSize();
Entry *entry = reinterpret_cast<Entry *>(reinterpret_cast<uintptr_t>(m_cache) + ofs); Entry *entry = reinterpret_cast<Entry *>(reinterpret_cast<uintptr_t>(m_cache) + ofs);
if (ofs + sizeof(Entry) + util::AlignUp(name_len, sizeof(u32)) > MaxCachedSize) { if (ofs + sizeof(Entry) + util::AlignUp(name_len, sizeof(u32)) > this->GetCacheSize()) {
this->Flush(); this->Flush();
m_fallback_cache_entry_offset = entry_offset; m_fallback_cache_entry_offset = entry_offset;
@ -226,7 +250,6 @@ namespace ams::mitm::fs {
using DirectoryTableWriter = TableWriter<DirectoryEntry>; using DirectoryTableWriter = TableWriter<DirectoryEntry>;
using FileTableWriter = TableWriter<FileEntry>; using FileTableWriter = TableWriter<FileEntry>;
constexpr inline u32 CalculatePathHash(u32 parent, const char *_path, u32 start, size_t path_len) { constexpr inline u32 CalculatePathHash(u32 parent, const char *_path, u32 start, size_t path_len) {
const unsigned char *path = reinterpret_cast<const unsigned char *>(_path); const unsigned char *path = reinterpret_cast<const unsigned char *>(_path);
u32 hash = parent ^ 123456789; u32 hash = parent ^ 123456789;
@ -526,113 +549,151 @@ namespace ams::mitm::fs {
} }
} }
/* Populate file tables. */ /* Set all files' hash value = hash index. */
{ for (const auto &it : m_files) {
/* Allocate the hash table. */ BuildFileContext *cur_file = it.get();
void *fht_buf = std::malloc(m_file_hash_table_size); cur_file->hash_value = CalculatePathHash(cur_file->parent->entry_offset, cur_file->path.get(), 0, cur_file->path_len) % num_file_hash_table_entries;
AMS_ABORT_UNLESS(fht_buf != nullptr); }
u32 *file_hash_table = reinterpret_cast<u32 *>(fht_buf);
std::memset(file_hash_table, 0xFF, m_file_hash_table_size);
ON_SCOPE_EXIT {
R_ABORT_UNLESS(fsFileWrite(std::addressof(metadata_file), m_dir_hash_table_size + m_dir_table_size, file_hash_table, m_file_hash_table_size, FsWriteOption_None));
std::free(fht_buf);
};
/* Write the file table. */ /* Set all directories' hash value = hash index. */
{ for (const auto &it : m_directories) {
FileTableWriter file_table(std::addressof(metadata_file), m_dir_hash_table_size + m_dir_table_size + m_file_hash_table_size, m_file_table_size); BuildDirectoryContext *cur_dir = it.get();
cur_dir->hash_value = CalculatePathHash(cur_dir == m_root ? 0 : cur_dir->parent->entry_offset, cur_dir->path.get(), 0, cur_dir->path_len) % num_dir_hash_table_entries;
}
/* Write hash tables. */
{
HashTableStorage hash_table_storage(std::max(m_dir_hash_table_size, m_file_hash_table_size));
u32 *hash_table = hash_table_storage.GetBuffer();
size_t hash_table_size = hash_table_storage.GetBufferSize();
/* Write the file hash table. */
for (size_t ofs = 0; ofs < m_file_hash_table_size; ofs += hash_table_size) {
std::memset(hash_table, 0xFF, hash_table_size);
const u32 ofs_ind = ofs / sizeof(u32);
const u32 end_ind = (ofs + hash_table_size) / sizeof(u32);
for (const auto &it : m_files) { for (const auto &it : m_files) {
BuildFileContext *cur_file = it.get(); BuildFileContext *cur_file = it.get();
FileEntry *cur_entry = file_table.GetEntry(cur_file->entry_offset, cur_file->path_len); if (cur_file->HasHashMark()) {
continue;
}
/* Set entry fields. */ if (const auto hash_ind = cur_file->hash_value; ofs_ind <= hash_ind && hash_ind < end_ind) {
cur_entry->parent = cur_file->parent->entry_offset; cur_file->hash_value = hash_table[hash_ind - ofs_ind];
cur_entry->sibling = (cur_file->sibling == nullptr) ? EmptyEntry : cur_file->sibling->entry_offset; hash_table[hash_ind - ofs_ind] = cur_file->entry_offset;
cur_entry->offset = cur_file->offset;
cur_entry->size = cur_file->size;
/* Insert into hash table. */ cur_file->SetHashMark();
const u32 name_size = cur_file->path_len; }
const size_t hash_ind = CalculatePathHash(cur_entry->parent, cur_file->path.get(), 0, name_size) % num_file_hash_table_entries; }
cur_entry->hash = file_hash_table[hash_ind];
file_hash_table[hash_ind] = cur_file->entry_offset;
/* Set name. */ R_ABORT_UNLESS(fsFileWrite(std::addressof(metadata_file), m_dir_hash_table_size + m_dir_table_size + ofs, hash_table, std::min(m_file_hash_table_size - ofs, hash_table_size), FsWriteOption_None));
cur_entry->name_size = name_size; }
if (name_size) {
std::memcpy(cur_entry->name, cur_file->path.get(), name_size); /* Write the directory hash table. */
for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) { for (size_t ofs = 0; ofs < m_dir_hash_table_size; ofs += hash_table_size) {
cur_entry->name[i] = 0; std::memset(hash_table, 0xFF, hash_table_size);
const u32 ofs_ind = ofs / sizeof(u32);
const u32 end_ind = (ofs + hash_table_size) / sizeof(u32);
for (const auto &it : m_directories) {
BuildDirectoryContext *cur_dir = it.get();
if (cur_dir->HasHashMark()) {
continue;
}
if (const auto hash_ind = cur_dir->hash_value; ofs_ind <= hash_ind && hash_ind < end_ind) {
cur_dir->hash_value = hash_table[hash_ind - ofs_ind];
hash_table[hash_ind - ofs_ind] = cur_dir->entry_offset;
cur_dir->SetHashMark();
}
}
R_ABORT_UNLESS(fsFileWrite(std::addressof(metadata_file), ofs, hash_table, std::min(m_dir_hash_table_size - ofs, hash_table_size), FsWriteOption_None));
}
}
/* Write the file table. */
{
FileTableWriter file_table(std::addressof(metadata_file), m_dir_hash_table_size + m_dir_table_size + m_file_hash_table_size, m_file_table_size);
for (const auto &it : m_files) {
BuildFileContext *cur_file = it.get();
FileEntry *cur_entry = file_table.GetEntry(cur_file->entry_offset, cur_file->path_len);
cur_file->ClearHashMark();
/* Set entry fields. */
cur_entry->parent = cur_file->parent->entry_offset;
cur_entry->sibling = (cur_file->sibling == nullptr) ? EmptyEntry : cur_file->sibling->entry_offset;
cur_entry->offset = cur_file->offset;
cur_entry->size = cur_file->size;
cur_entry->hash = cur_file->hash_value;
/* Set name. */
const u32 name_size = cur_file->path_len;
cur_entry->name_size = name_size;
if (name_size) {
std::memcpy(cur_entry->name, cur_file->path.get(), name_size);
for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) {
cur_entry->name[i] = 0;
}
}
/* Emplace a source. */
switch (cur_file->source_type) {
case DataSourceType::Storage:
case DataSourceType::File:
{
/* Try to compact if possible. */
auto &back = out_infos->back();
if (back.source_type == cur_file->source_type) {
back.size = cur_file->offset + FilePartitionOffset + cur_file->size - back.virtual_offset;
} else {
out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, cur_file->orig_offset + FilePartitionOffset);
}
} }
} break;
case DataSourceType::LooseSdFile:
/* Emplace a source. */ {
switch (cur_file->source_type) { char *new_path = new char[cur_file->GetPathLength() + 1];
case DataSourceType::Storage: cur_file->GetPath(new_path);
case DataSourceType::File: out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, new_path);
{ }
/* Try to compact if possible. */ break;
auto &back = out_infos->back(); AMS_UNREACHABLE_DEFAULT_CASE();
if (back.source_type == cur_file->source_type) {
back.size = cur_file->offset + FilePartitionOffset + cur_file->size - back.virtual_offset;
} else {
out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, cur_file->orig_offset + FilePartitionOffset);
}
}
break;
case DataSourceType::LooseSdFile:
{
char *new_path = new char[cur_file->GetPathLength() + 1];
cur_file->GetPath(new_path);
out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, new_path);
}
break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
} }
} }
} }
/* Populate directory tables. */ /* Write the directory table. */
{ {
/* Allocate the hash table. */ DirectoryTableWriter dir_table(std::addressof(metadata_file), m_dir_hash_table_size, m_dir_table_size);
void *dht_buf = std::malloc(m_dir_hash_table_size);
AMS_ABORT_UNLESS(dht_buf != nullptr);
u32 *dir_hash_table = reinterpret_cast<u32 *>(dht_buf);
std::memset(dir_hash_table, 0xFF, m_dir_hash_table_size);
ON_SCOPE_EXIT {
R_ABORT_UNLESS(fsFileWrite(std::addressof(metadata_file), 0, dir_hash_table, m_dir_hash_table_size, FsWriteOption_None));
std::free(dht_buf);
};
/* Write the file table. */ for (const auto &it : m_directories) {
{ BuildDirectoryContext *cur_dir = it.get();
DirectoryTableWriter dir_table(std::addressof(metadata_file), m_dir_hash_table_size, m_dir_table_size); DirectoryEntry *cur_entry = dir_table.GetEntry(cur_dir->entry_offset, cur_dir->path_len);
for (const auto &it : m_directories) { cur_dir->ClearHashMark();
BuildDirectoryContext *cur_dir = it.get();
DirectoryEntry *cur_entry = dir_table.GetEntry(cur_dir->entry_offset, cur_dir->path_len);
/* Set entry fields. */ /* Set entry fields. */
cur_entry->parent = cur_dir == m_root ? 0 : cur_dir->parent->entry_offset; cur_entry->parent = cur_dir == m_root ? 0 : cur_dir->parent->entry_offset;
cur_entry->sibling = (cur_dir->sibling == nullptr) ? EmptyEntry : cur_dir->sibling->entry_offset; cur_entry->sibling = (cur_dir->sibling == nullptr) ? EmptyEntry : cur_dir->sibling->entry_offset;
cur_entry->child = (cur_dir->child == nullptr) ? EmptyEntry : cur_dir->child->entry_offset; cur_entry->child = (cur_dir->child == nullptr) ? EmptyEntry : cur_dir->child->entry_offset;
cur_entry->file = (cur_dir->file == nullptr) ? EmptyEntry : cur_dir->file->entry_offset; cur_entry->file = (cur_dir->file == nullptr) ? EmptyEntry : cur_dir->file->entry_offset;
cur_entry->hash = cur_dir->hash_value;
/* Insert into hash table. */ /* Set name. */
const u32 name_size = cur_dir->path_len; const u32 name_size = cur_dir->path_len;
const size_t hash_ind = CalculatePathHash(cur_entry->parent, cur_dir->path.get(), 0, name_size) % num_dir_hash_table_entries; cur_entry->name_size = name_size;
cur_entry->hash = dir_hash_table[hash_ind]; if (name_size) {
dir_hash_table[hash_ind] = cur_dir->entry_offset; std::memcpy(cur_entry->name, cur_dir->path.get(), name_size);
for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) {
/* Set name. */ cur_entry->name[i] = 0;
cur_entry->name_size = name_size;
if (name_size) {
std::memcpy(cur_entry->name, cur_dir->path.get(), name_size);
for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) {
cur_entry->name[i] = 0;
}
} }
} }
} }

View file

@ -19,7 +19,7 @@
namespace ams::mitm::fs::romfs { namespace ams::mitm::fs::romfs {
enum class DataSourceType { enum class DataSourceType : u8 {
Storage, Storage,
File, File,
LooseSdFile, LooseSdFile,
@ -120,10 +120,11 @@ namespace ams::mitm::fs::romfs {
BuildFileContext *file; BuildFileContext *file;
u32 path_len; u32 path_len;
u32 entry_offset; u32 entry_offset;
u32 hash_value;
struct RootTag{}; struct RootTag{};
BuildDirectoryContext(RootTag) : parent(nullptr), child(nullptr), sibling(nullptr), file(nullptr), path_len(0), entry_offset(0) { BuildDirectoryContext(RootTag) : parent(nullptr), child(nullptr), sibling(nullptr), file(nullptr), path_len(0), entry_offset(0), hash_value(0xFFFFFFFF) {
this->path = std::make_unique<char[]>(1); this->path = std::make_unique<char[]>(1);
} }
@ -154,6 +155,18 @@ namespace ams::mitm::fs::romfs {
dst[parent_len + 1 + this->path_len] = '\x00'; dst[parent_len + 1 + this->path_len] = '\x00';
return parent_len + 1 + this->path_len; return parent_len + 1 + this->path_len;
} }
bool HasHashMark() const {
return reinterpret_cast<uintptr_t>(this->sibling) & UINT64_C(0x8000000000000000);
}
void SetHashMark() {
this->sibling = reinterpret_cast<BuildDirectoryContext *>(reinterpret_cast<uintptr_t>(this->sibling) | UINT64_C(0x8000000000000000));
}
void ClearHashMark() {
this->sibling = reinterpret_cast<BuildDirectoryContext *>(reinterpret_cast<uintptr_t>(this->sibling) & ~UINT64_C(0x8000000000000000));
}
}; };
struct BuildFileContext { struct BuildFileContext {
@ -168,9 +181,10 @@ namespace ams::mitm::fs::romfs {
s64 orig_offset; s64 orig_offset;
u32 path_len; u32 path_len;
u32 entry_offset; u32 entry_offset;
u32 hash_value;
DataSourceType source_type; DataSourceType source_type;
BuildFileContext(const char *entry_name, size_t entry_name_len, s64 sz, s64 o_o, DataSourceType type) : parent(nullptr), sibling(nullptr), offset(0), size(sz), orig_offset(o_o), entry_offset(0), source_type(type) { BuildFileContext(const char *entry_name, size_t entry_name_len, s64 sz, s64 o_o, DataSourceType type) : parent(nullptr), sibling(nullptr), offset(0), size(sz), orig_offset(o_o), entry_offset(0), hash_value(0xFFFFFFFF), source_type(type) {
this->path_len = entry_name_len; this->path_len = entry_name_len;
this->path = std::unique_ptr<char[]>(new char[this->path_len + 1]); this->path = std::unique_ptr<char[]>(new char[this->path_len + 1]);
std::memcpy(this->path.get(), entry_name, entry_name_len); std::memcpy(this->path.get(), entry_name, entry_name_len);
@ -197,6 +211,18 @@ namespace ams::mitm::fs::romfs {
dst[parent_len + 1 + this->path_len] = '\x00'; dst[parent_len + 1 + this->path_len] = '\x00';
return parent_len + 1 + this->path_len; return parent_len + 1 + this->path_len;
} }
bool HasHashMark() const {
return reinterpret_cast<uintptr_t>(this->sibling) & UINT64_C(0x8000000000000000);
}
void SetHashMark() {
this->sibling = reinterpret_cast<BuildFileContext *>(reinterpret_cast<uintptr_t>(this->sibling) | UINT64_C(0x8000000000000000));
}
void ClearHashMark() {
this->sibling = reinterpret_cast<BuildFileContext *>(reinterpret_cast<uintptr_t>(this->sibling) & ~UINT64_C(0x8000000000000000));
}
}; };
class DirectoryTableReader; class DirectoryTableReader;