sdmmc: mostly working for eMMC, now

This commit is contained in:
Kate J. Temkin 2018-04-28 08:23:59 -06:00
parent eb48e06331
commit 534c50fba5
2 changed files with 320 additions and 61 deletions

View file

@ -139,6 +139,13 @@ enum sdmmc_register_bits {
/* Present state register */
MMC_COMMAND_INHIBIT = 1 << 0,
MMC_DATA_INHIBIT = 1 << 1,
/* Block size register */
MMC_DMA_BOUNDARY_MAXIMUM = (0x3 << 12),
MMC_DMA_BOUNDARY_512K = (0x3 << 12),
MMC_DMA_BOUNDARY_16K = (0x2 << 12),
MMC_TRANSFER_BLOCK_512B = (0x1FF << 0),
/* Command register */
MMC_COMMAND_NUMBER_SHIFT = 8,
@ -151,7 +158,8 @@ enum sdmmc_register_bits {
MMC_TRANSFER_DMA_ENABLE = (1 << 0),
MMC_TRANSFER_LIMIT_BLOCK_COUNT = (1 << 1),
MMC_TRANSFER_MULTIPLE_BLOCKS = (1 << 5),
MMC_TRANSFER_HOST_TO_CARD = (1 << 4),
MMC_TRANSFER_AUTO_CMD12 = (1 <<2),
MMC_TRANSFER_CARD_TO_HOST = (1 << 4),
/* Interrupt status */
MMC_STATUS_COMMAND_COMPLETE = (1 << 0),
@ -210,11 +218,38 @@ enum sdmmc_command_magic {
};
/**
* Version magic numbers for different CSD versions.
*/
enum sdmmc_csd_versions {
MMC_CSD_VERSION1 = 0,
MMC_CSD_VERSION2 = 1,
};
/**
* Positions of different fields in various CSDs.
* May eventually be replaced with a bitfield struct, if we use enough of the CSDs.
*/
enum sdmmc_csd_extents {
/* csd structure version */
MMC_CSD_STRUCTURE_START = 126,
MMC_CSD_STRUCTURE_WIDTH = 2,
/* read block length */
MMC_CSD_V1_READ_BL_LENGTH_START = 80,
MMC_CSD_V1_READ_BL_LENGTH_WIDTH = 4,
};
/**
* Page-aligned bounce buffer to target with SDMMC DMA.
* FIXME: size this thing
* If the size of this buffer is changed, the block_size
*/
static uint8_t ALIGN(4096) sdmmc_bounce_buffer[4096 * 4];
static const uint16_t sdmmc_bounce_dma_boundary = MMC_DMA_BOUNDARY_16K;
/**
* Debug print for SDMMC information.
@ -534,6 +569,9 @@ static int sdmmc_hardware_init(struct mmc *mmc)
// Set SDHCI_CLOCK_CARD_EN
regs->clock_control |= 0x04;
// Ensure we're using System DMA (SDMA) mode for DMA.
regs->host_control &= ~MMC_DMA_SELECT_MASK;
mmc_print(mmc, "initialized.");
return 0;
}
@ -562,6 +600,31 @@ static int sdmmc_wait_for_command_readiness(struct mmc *mmc)
}
/**
* Blocks until the SD driver is ready to transmit data,
* or the MMC controller's timeout interval is met.
*
* @param mmc The MMC controller
*/
static int sdmmc_wait_for_data_readiness(struct mmc *mmc)
{
uint32_t timebase = get_time();
// Wait until we either wind up ready, or until we've timed out.
while(true) {
if (get_time_since(timebase) > mmc->timeout) {
mmc_print(mmc, "timed out waiting for command readiness!");
return ETIMEDOUT;
}
// Wait until we're not inhibited from sending commands...
if (!(mmc->regs->present_state & MMC_DATA_INHIBIT))
return 0;
}
}
/**
* Blocks until the SD driver has completed issuing a command.
*
@ -628,14 +691,10 @@ static void sdmmc_prepare_command_data(struct mmc *mmc, uint16_t blocks, bool is
if (blocks) {
mmc->regs->dma_address = (uint32_t)sdmmc_bounce_buffer;
// Ensure we're using System DMA mode for DMA.
mmc->regs->host_control &= ~MMC_DMA_SELECT_MASK;
// Set up the DMA block size and count.
// FIXME: implement!
mmc_print(mmc, "WARNING: block size and count register needs to be set up, but CSD code isnt done yet!");
mmc->regs->block_size = 0;
mmc->regs->block_count = 0;
// This is synchronized with the size of our bounce buffer.
mmc->regs->block_size = sdmmc_bounce_dma_boundary | MMC_TRANSFER_BLOCK_512B;
mmc->regs->block_count = blocks;
}
// Populate the command argument.
@ -643,15 +702,19 @@ static void sdmmc_prepare_command_data(struct mmc *mmc, uint16_t blocks, bool is
// Always use DMA mode for data, as that's what Nintendo does. :)
if (blocks) {
mmc->regs->transfer_mode = MMC_TRANSFER_DMA_ENABLE | MMC_TRANSFER_LIMIT_BLOCK_COUNT ;
uint32_t to_write = MMC_TRANSFER_DMA_ENABLE | MMC_TRANSFER_LIMIT_BLOCK_COUNT;
// If this is a multi-block datagram, indicate so.
if (blocks > 1)
mmc->regs->transfer_mode |= MMC_TRANSFER_MULTIPLE_BLOCKS;
// Also, configure the host to automatically stop the card when transfers are complete.
if (blocks > 1) {
to_write |= (MMC_TRANSFER_MULTIPLE_BLOCKS | MMC_TRANSFER_AUTO_CMD12);
}
// If this is a write, set the WRITE mode.
if (is_write)
mmc->regs->transfer_mode |= MMC_TRANSFER_HOST_TO_CARD;
// If this is a read, set the READ mode.
if (!is_write)
to_write |= MMC_TRANSFER_CARD_TO_HOST;
mmc->regs->transfer_mode = to_write;
}
}
@ -675,7 +738,7 @@ static void sdmmc_prepare_command_registers(struct mmc *mmc, int blocks_to_xfer,
if (command == CMD_STOP_TRANSMISSION)
to_write |= MMC_COMMAND_TYPE_ABORT;
// TODO: do we want to support CRC or index checks?
// If this command has a data stage, include it.
if (blocks_to_xfer)
to_write |= MMC_COMMAND_HAS_DATA;
@ -719,12 +782,18 @@ static void sdmmc_handle_command_response(struct mmc *mmc,
{
uint32_t *buffer = (uint32_t *)response_buffer;
// If we don't have a place to put the response,
// skip copying it out.
if (!response_buffer) {
return;
}
switch(type) {
// Easy case: we don't have a response. We don't need to do anything.
case MMC_RESPONSE_NONE:
break;
// If we have a 48-bit response, then we have 32 bits of response and 16 bits of CRC.
// If we have a 48-bit response, then we have 32 bits of response and 16 bits of CRC/command.
// The naming is a little odd, but that's thanks to the SDMMC standard.
case MMC_RESPONSE_LEN48:
case MMC_RESPONSE_LEN48_CHK_BUSY:
@ -733,14 +802,10 @@ static void sdmmc_handle_command_response(struct mmc *mmc,
mmc_print(mmc, "response: %08x", *buffer);
break;
// If we have a 136-bit response, we have 120 response and 16 bits of CRC.
// If we have a 136-bit response, we have 128 of response and 8 bits of CRC.
// TODO: validate that this is the right format/endianness/everything
case MMC_RESPONSE_LEN136:
// Clear the final byte of the buffer, as it won't have a full copy.
// (We don't copy in the CRC.):
buffer[3] = 0;
// Copy the response to the buffer manually.
// We avoid memcpy here, because this is volatile.
for(int i = 0; i < 4; ++i)
@ -756,22 +821,17 @@ static void sdmmc_handle_command_response(struct mmc *mmc,
/**
* Handles copying data from the SDMMC bounce buffer to the final target buffer.
* Returns the block size for a given operation on the MMC controller.
*
* @param blocks_to_transfer The number of SDMMC blocks to be transferred with the given command,
* or 0 to indicate that this command should not expect response data.
* @param is_write True iff the given command issues data _to_ the card, instead of vice versa.
* @param data_buffer A byte buffer that either contains the data to be sent, or which should
* receive data, depending on the is_write argument.
* @param mmc The MMC controller for which we're quierying block size.
* @param is_write True iff the given operation is a write.
*/
static void sdmmc_handle_command_data(struct mmc *mmc, int blocks_to_transfer,
bool is_write, void *data_buffer)
static uint32_t sdmmc_get_block_size(struct mmc *mmc, bool is_write)
{
(void)blocks_to_transfer;
// FIXME: support write blocks?
(void)is_write;
(void)data_buffer;
mmc_print(mmc, "WARNING: not handling command data yet -- not implemented!");
return (1 << mmc->read_block_order);
}
@ -783,7 +843,7 @@ static void sdmmc_handle_command_data(struct mmc *mmc, int blocks_to_transfer,
* @param checks Determines which sanity checks the host controller should run.
* @param argument The argument to the SDMMC command.
* @param response_buffer A buffer to store the response. Should be at uint32_t for a LEN48 command,
* or 16 bytes for a LEN136 command.
* or 16 bytes for a LEN136 command. If this arguemnt is NULL, no response will be returned.
* @param blocks_to_transfer The number of SDMMC blocks to be transferred with the given command,
* or 0 to indicate that this command should not expect response data.
* @param is_write True iff the given command issues data _to_ the card, instead of vice versa.
@ -794,14 +854,27 @@ static void sdmmc_handle_command_data(struct mmc *mmc, int blocks_to_transfer,
*/
static int sdmmc_send_command(struct mmc *mmc, enum sdmmc_command command,
enum sdmmc_response_type response_type, enum sdmmc_response_checks checks,
uint32_t argument, void *response_buffer, int blocks_to_transfer,
uint32_t argument, void *response_buffer, uint16_t blocks_to_transfer,
bool is_write, void *data_buffer)
{
uint32_t total_data_to_xfer = sdmmc_get_block_size(mmc, is_write) * blocks_to_transfer;
int rc;
// XXX: get rid of
mmc_print(mmc, "issuing CMD%d", command);
// If this transfer would have us send more than we can, fail out.
if (total_data_to_xfer > sizeof(sdmmc_bounce_buffer)) {
mmc_print(mmc, "ERROR: transfer is larger than our maximum DMA transfer size!");
return -E2BIG;
}
// Sanity check: if this is a data transfer, make sure we have a data buffer...
if (blocks_to_transfer && !data_buffer) {
mmc_print(mmc, "ERROR: no data buffer provided, but this is a data transfer!");
return -EINVAL;
}
// Wait until we can issue commands to the device.
rc = sdmmc_wait_for_command_readiness(mmc);
if (rc) {
@ -809,9 +882,24 @@ static int sdmmc_send_command(struct mmc *mmc, enum sdmmc_command command,
return -EBUSY;
}
// If this is a data command, wait until we can use the data lines.
if (blocks_to_transfer) {
rc = sdmmc_wait_for_data_readiness(mmc);
if (rc) {
mmc_print(mmc, "card not willing to accept data-commands (%d / %08x)", rc, mmc->regs->present_state);
return -EBUSY;
}
}
// If we have data to send, prepare it.
sdmmc_prepare_command_data(mmc, blocks_to_transfer, is_write, argument);
// If this is a write and we have data, we'll need to populate the bounce buffer before
// issuing the command.
if (blocks_to_transfer && is_write) {
memcpy(sdmmc_bounce_buffer, data_buffer, total_data_to_xfer);
}
// Configure the controller to send the command.
sdmmc_prepare_command_registers(mmc, blocks_to_transfer, command, response_type, checks);
@ -823,13 +911,11 @@ static int sdmmc_send_command(struct mmc *mmc, enum sdmmc_command command,
if (rc) {
mmc_print(mmc, "failed to issue CMD%d (%d / %08x)", command, rc, mmc->regs->int_status);
mmc_print_command_errors(mmc, rc);
sdmmc_enable_interrupts(mmc, false);
return rc;
}
// Disable resporting psuedo-interrupts.
// (This is mostly for when the GIC is brought up)
sdmmc_enable_interrupts(mmc, false);
// Copy the response received to the output buffer, if applicable.
sdmmc_handle_command_response(mmc, response_type, response_buffer);
@ -841,13 +927,33 @@ static int sdmmc_send_command(struct mmc *mmc, enum sdmmc_command command,
rc = sdmmc_wait_for_transfer_completion(mmc);
if (rc) {
mmc_print(mmc, "failed to complete CMD%d data stage (%d)", command, rc);
sdmmc_enable_interrupts(mmc, false);
return rc;
}
// Copy the SDMMC result from the bounce buffer to the target buffer.
sdmmc_handle_command_data(mmc, blocks_to_transfer, is_write, data_buffer);
// If this is a read, and we've just finished a transfer, copy the data from
// our bounce buffer to the target data buffer.
if (!is_write) {
printk("read result (%d):\n", total_data_to_xfer);
for (int i = 0; i < 64; ++i) {
if(i % 8 == 0) {
printk("\n");
}
printk("%02x ", sdmmc_bounce_buffer[i]);
}
printk("\n");
memcpy(data_buffer, sdmmc_bounce_buffer, total_data_to_xfer);
}
}
// Disable resporting psuedo-interrupts.
// (This is mostly for when the GIC is brought up)
sdmmc_enable_interrupts(mmc, false);
mmc_print(mmc, "CMD%d success!", command);
return 0;
}
@ -885,6 +991,9 @@ static int emmc_card_init(struct mmc *mmc)
mmc_print(mmc, "setting up card as eMMC");
// We only support Switch eMMC addressing, which is alawys block-based.
mmc->uses_block_addressing = true;
// Bring the bus out of its idle state.
rc = sdmmc_send_simple_command(mmc, CMD_GO_IDLE_OR_INIT, MMC_RESPONSE_NONE, 0, NULL);
if (rc) {
@ -892,7 +1001,6 @@ static int emmc_card_init(struct mmc *mmc)
return rc;
}
// Wait for the card to finish being busy.
while (true) {
@ -922,6 +1030,81 @@ static int emmc_card_init(struct mmc *mmc)
}
/**
* Reads a collection of bits from the CSD register.
*
* @param csd An array of four uint32_ts containing the CSD.
* @param start The bit number to start at.
* @param width. The width of the relveant read.
*
* @returns the extracted bits
*/
static uint32_t sdmmc_extract_csd_bits(uint32_t *csd, int start, int width)
{
uint32_t relevant_dword, result;
int offset_into_dword, bits_into_next_dword;
// Sanity check our span.
if ((start + width) > 128) {
printk("MMC ERROR: invalid CSD slice!\n");
return 0xFFFFFFFF;
}
// Figure out where the relevant range is in our CSD.
relevant_dword = csd[start / 32];
offset_into_dword = start % 32;
// Grab all the bits we can from the relevant DWORD.
result = relevant_dword >> offset_into_dword;
// Special case: if we spanned a word boundary, we'll
// need to read one word.
//
// FIXME: I'm writing this at 5AM, and this requires basic arithemtic,
// my greatest weakness. This is going to be stupid wrong.
if (offset_into_dword + width > 32) {
bits_into_next_dword = (offset_into_dword + width) - 32;
// Grab the next dword in the CSD...
relevant_dword = csd[(start / 32) + 1];
// ... mask away the bits higher than the bits we want...
relevant_dword &= (1 << (bits_into_next_dword)) - 1;
// .. and shift the relevant bits up to their position.
relevant_dword <<= (width - bits_into_next_dword);
// Finally, combine in the new word.
result |= relevant_dword;
}
return result;
}
/**
* Parses a fetched CSD per the Version 1 standard.
*
* @param mmc The MMC structure to be populated.
* @param csd A four-dword array containing the read CSD.
*
* @returns int 0 on success, or an error code if the CSD appears invalid
*/
static int sdmmc_parse_csd_version1(struct mmc *mmc, uint32_t *csd)
{
// Get the maximum allowed read-block size.
mmc->read_block_order = sdmmc_extract_csd_bits(csd, MMC_CSD_V1_READ_BL_LENGTH_START, MMC_CSD_V1_READ_BL_LENGTH_WIDTH);
// TODO: handle other attributes
// Print a summary of the read CSD.
mmc_print(mmc, "CSD summary:");
mmc_print(mmc, " read_block_order: %d", mmc->read_block_order);
return 0;
}
/**
* Reads the active MMC card's Card Specific Data, and updates the MMC object's properties.
*
@ -932,15 +1115,31 @@ static int sdmmc_read_and_parse_csd(struct mmc *mmc)
{
int rc;
uint32_t csd[4];
uint16_t csd_version;
// Request the CSD from the device.
rc = sdmmc_send_simple_command(mmc, CMD_SEND_CSD, MMC_RESPONSE_LEN136, mmc->relative_address << 16, csd);
if (rc) {
mmc_print(mmc, "could not get the card's CSD!");
return ENODEV;
}
// FIXME: parse CSD
return 0;
// Figure out the CSD version.
csd_version = sdmmc_extract_csd_bits(csd, MMC_CSD_STRUCTURE_START, MMC_CSD_STRUCTURE_WIDTH);
// Handle each CSD version.
switch(csd_version) {
// Handle version 1 CSDs.
// (The Switch eMMC appears to always use ver1 CSDs.)
case MMC_CSD_VERSION1:
return sdmmc_parse_csd_version1(mmc, csd);
// For now, don't support any others.
default:
mmc_print(mmc, "ERROR: we don't currently support cards with v%d CSDs!", csd_version);
return ENOTTY;
}
}
@ -953,16 +1152,52 @@ static int sdmmc_read_and_parse_csd(struct mmc *mmc)
static int sdmmc_read_and_parse_ext_csd(struct mmc *mmc)
{
int rc;
uint32_t csd[4];
uint8_t ext_csd[512];
// FIXME: reading the extended CSD requires us to read data; so we're not ready to do it yet
// FIXME: parse CSD
// Read the single EXT CSD block.
// FIXME: support block sizes other than 512B?
rc = sdmmc_send_command(mmc, CMD_SEND_EXT_CSD, MMC_RESPONSE_LEN48, MMC_CHECKS_ALL, 0, NULL, 1, false, ext_csd);
if (rc) {
mmc_print(mmc, "ERROR: failed to read the extended CSD!");
return rc;
}
(void)csd;
(void)rc;
// Parse the extended CSD here.
mmc_print(mmc, "extended CSD looks like:");
for (int i = 0; i < 64; ++i) {
mmc_print(mmc, "ERROR: ext-CSD reading not yet implemented");
return ENOSYS;
if(i % 8 == 0) {
printk("\n");
}
printk("%02x ", ext_csd[i]);
}
printk("\n");
return 0;
}
/**
* Decides on a block transfer sized based on the information observed,
* and applies it to the card.
*/
static int sdmmc_set_up_block_transfer_size(struct mmc *mmc)
{
int rc;
// For now, we'll only ever set up 512B blocks, because
// 1) every card supports this, and 2) we use SDMA, which only supports up to 512B
mmc->read_block_order = 9;
// Inform the card of the block size we'll want to use.
rc = sdmmc_send_simple_command(mmc, CMD_SET_BLKLEN, MMC_RESPONSE_LEN48, 1 << mmc->read_block_order, NULL);
if (rc) {
mmc_print(mmc, "could not fetch the CID");
return ENODEV;
}
return 0;
}
@ -1007,6 +1242,13 @@ static int sdmmc_card_init(struct mmc *mmc)
return EPIPE;
}
// Determine the block size we want to work with, and then set up the size accordingly.
rc = sdmmc_set_up_block_transfer_size(mmc);
if (rc) {
mmc_print(mmc, "could not set up block transfer sizes! (%d)", rc);
return EPIPE;
}
// Read and handle card's Extended Card Specific Data (ext-CSD).
rc = sdmmc_read_and_parse_ext_csd(mmc);
if (rc) {
@ -1092,7 +1334,6 @@ int sdmmc_init(struct mmc *mmc, enum sdmmc_controller controller)
return rc;
}
return 0;
}
@ -1102,10 +1343,25 @@ int sdmmc_init(struct mmc *mmc, enum sdmmc_controller controller)
*
* @param mmc The MMC device to work with.
* @param buffer The output buffer to target.
* @param sector The sector number to read.
* @param block The sector number to read.
* @param count The number of sectors to read.
*
* @return 0 on success, or an error code on failure.
*/
int sdmmc_read(struct mmc *mmc, void *buffer, uint32_t sector, unsigned int count)
int sdmmc_read(struct mmc *mmc, void *buffer, uint32_t block, unsigned int count)
{
return -1;
// Determine if we need to perform a single-block or multi-block read.
uint32_t command = (count == 1) ? CMD_READ_SINGLE_BLOCK : CMD_READ_MULTIPLE_BLOCK;
// Determine the argument, which indicates which address we're reading/writing.
uint32_t extent = block;
// If this card uses byte addressing rather than sector addressing,
// multiply by the block size.
if (!mmc->uses_block_addressing) {
extent *= sdmmc_get_block_size(mmc, false);
}
// Execute the relevant read.
return sdmmc_send_command(mmc, command, MMC_RESPONSE_LEN48, MMC_CHECKS_ALL, extent, NULL, count, false, buffer);
}

View file

@ -33,6 +33,9 @@ struct mmc {
uint8_t cid[15];
uint32_t relative_address;
uint8_t read_block_order;
bool uses_block_addressing;
/* Pointers to hardware structures */
volatile struct tegra_sdmmc *regs;
};