fs: implement PooledBuffer

This commit is contained in:
Michael Scire 2020-04-06 03:15:24 -07:00
parent 50a91b1d6e
commit 496be5ecd4
5 changed files with 521 additions and 6 deletions

View file

@ -26,3 +26,4 @@
#include <stratosphere/fssystem/fssystem_romfs_file_system.hpp> #include <stratosphere/fssystem/fssystem_romfs_file_system.hpp>
#include <stratosphere/fssystem/buffers/fssystem_buffer_manager_utils.hpp> #include <stratosphere/fssystem/buffers/fssystem_buffer_manager_utils.hpp>
#include <stratosphere/fssystem/buffers/fssystem_file_system_buddy_heap.hpp> #include <stratosphere/fssystem/buffers/fssystem_file_system_buddy_heap.hpp>
#include <stratosphere/fssystem/fssystem_pooled_buffer.hpp>

View file

@ -0,0 +1,108 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours.hpp>
#include <stratosphere/fs/impl/fs_newable.hpp>
namespace ams::fssystem {
constexpr inline size_t BufferPoolAlignment = 4_KB;
constexpr inline size_t BufferPoolWorkSize = 320;
class PooledBuffer {
NON_COPYABLE(PooledBuffer);
private:
char *buffer;
size_t size;
private:
static size_t GetAllocatableSizeMaxCore(bool large);
public:
static size_t GetAllocatableSizeMax() { return GetAllocatableSizeMaxCore(false); }
static size_t GetAllocatableParticularlyLargeSizeMax() { return GetAllocatableSizeMaxCore(true); }
private:
void Swap(PooledBuffer &rhs) {
std::swap(this->buffer, rhs.buffer);
std::swap(this->size, rhs.size);
}
public:
/* Constructor/Destructor. */
constexpr PooledBuffer() : buffer(), size() { /* ... */ }
PooledBuffer(size_t ideal_size, size_t required_size) : buffer(), size() {
this->Allocate(ideal_size, required_size);
}
~PooledBuffer() {
this->Deallocate();
}
/* Move and assignment. */
explicit PooledBuffer(PooledBuffer &&rhs) : buffer(rhs.buffer), size(rhs.size) {
rhs.buffer = nullptr;
rhs.size = 0;
}
PooledBuffer &operator=(PooledBuffer &&rhs) {
PooledBuffer(std::move(rhs)).Swap(*this);
return *this;
}
/* Allocation API. */
void Allocate(size_t ideal_size, size_t required_size) {
return this->AllocateCore(ideal_size, required_size, false);
}
void AllocateParticularlyLarge(size_t ideal_size, size_t required_size) {
return this->AllocateCore(ideal_size, required_size, true);
}
void Shrink(size_t ideal_size);
void Deallocate() {
/* Shrink the buffer to empty. */
this->Shrink(0);
AMS_ASSERT(this->buffer == nullptr);
}
char *GetBuffer() const {
AMS_ASSERT(this->buffer != nullptr);
return this->buffer;
}
size_t GetSize() const {
AMS_ASSERT(this->buffer != nullptr);
return this->size;
}
private:
void AllocateCore(size_t ideal_size, size_t required_size, bool large);
};
Result InitializeBufferPool(char *buffer, size_t size);
Result InitializeBufferPool(char *buffer, size_t size, char *work, size_t work_size);
bool IsPooledBuffer(const void *buffer);
size_t GetPooledBufferRetriedCount();
size_t GetPooledBufferReduceAllocationCount();
size_t GetPooledBufferFreeSizePeak();
void ClearPooledBufferPeak();
void RegisterAdditionalDeviceAddress(uintptr_t address, size_t size);
void UnregisterAdditionalDeviceAddress(uintptr_t address);
bool IsAdditionalDeviceAddress(const void *ptr);
}

View file

@ -0,0 +1,272 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
namespace {
class AdditionalDeviceAddressEntry {
private:
/* TODO: SdkMutex */
os::Mutex mutex;
bool is_registered;
uintptr_t address;
size_t size;
public:
constexpr AdditionalDeviceAddressEntry() : mutex(), is_registered(), address(), size() { /* ... */ }
void Register(uintptr_t addr, size_t sz) {
std::scoped_lock lk(this->mutex);
AMS_ASSERT(!this->is_registered);
if (!this->is_registered) {
this->is_registered = true;
this->address = addr;
this->size = size;
}
}
void Unregister(uintptr_t addr) {
std::scoped_lock lk(this->mutex);
if (this->is_registered && this->address == addr) {
this->is_registered = false;
this->address = 0;
this->size = 0;
}
}
bool Includes(const void *ptr) {
std::scoped_lock lk(this->mutex);
if (this->is_registered) {
const uintptr_t addr = reinterpret_cast<uintptr_t>(ptr);
return this->address <= addr && addr < this->address + this->size;
} else {
return false;
}
}
};
constexpr auto RetryWait = TimeSpan::FromMilliSeconds(10);
constexpr size_t HeapBlockSize = BufferPoolAlignment;
static_assert(HeapBlockSize == 4_KB);
/* A heap block is 4KB. An order is a power of two. */
/* This gives blocks of the order 32KB, 512KB, 4MB. */
constexpr s32 HeapOrderTrim = 3;
constexpr s32 HeapOrderMax = 7;
constexpr s32 HeapOrderMaxForLarge = HeapOrderMax + 3;
constexpr size_t HeapAllocatableSizeTrim = HeapBlockSize * (static_cast<size_t>(1) << HeapOrderTrim);
constexpr size_t HeapAllocatableSizeMax = HeapBlockSize * (static_cast<size_t>(1) << HeapOrderMax);
constexpr size_t HeapAllocatableSizeMaxForLarge = HeapBlockSize * (static_cast<size_t>(1) << HeapOrderMaxForLarge);
/* TODO: SdkMutex */
os::Mutex g_heap_mutex;
FileSystemBuddyHeap g_heap;
std::atomic<size_t> g_retry_count;
std::atomic<size_t> g_reduce_allocation_count;
void *g_heap_buffer;
size_t g_heap_size;
size_t g_heap_free_size_peak;
AdditionalDeviceAddressEntry g_additional_device_address_entry;
}
size_t PooledBuffer::GetAllocatableSizeMaxCore(bool large) {
return large ? HeapAllocatableSizeMaxForLarge : HeapAllocatableSizeMax;
}
void PooledBuffer::AllocateCore(size_t ideal_size, size_t required_size, bool large) {
/* Ensure preconditions. */
AMS_ASSERT(g_heap_buffer != nullptr);
AMS_ASSERT(this->buffer == nullptr);
AMS_ASSERT(g_heap.GetBlockSize() == HeapBlockSize);
/* Check that we can allocate this size. */
AMS_ASSERT(required_size <= GetAllocatableSizeMaxCore(large));
const size_t target_size = std::min(std::max(ideal_size, required_size), GetAllocatableSizeMaxCore(large));
/* Loop until we allocate. */
while (true) {
/* Lock the heap and try to allocate. */
{
std::scoped_lock lk(g_heap_mutex);
/* Determine how much we can allocate, and don't allocate more than half the heap. */
size_t allocatable_size = g_heap.GetAllocatableSizeMax();
if (allocatable_size > HeapBlockSize) {
allocatable_size >>= 1;
}
/* Check if this allocation is acceptable. */
if (allocatable_size >= required_size) {
/* Get the order. */
const auto order = g_heap.GetOrderFromBytes(std::min(target_size, allocatable_size));
/* Allocate and get the size. */
this->buffer = reinterpret_cast<char *>(g_heap.AllocateByOrder(order));
this->size = g_heap.GetBytesFromOrder(order);
}
}
/* Check if we allocated. */
if (this->buffer != nullptr) {
/* If we need to trim the end, do so. */
if (this->GetSize() >= target_size + HeapAllocatableSizeTrim) {
this->Shrink(util::AlignUp(target_size, HeapAllocatableSizeTrim));
}
AMS_ASSERT(this->GetSize() >= required_size);
/* If we reduced, note so. */
if (this->GetSize() < std::min(target_size, HeapAllocatableSizeMax)) {
g_reduce_allocation_count++;
}
break;
} else {
/* Sleep. */
/* TODO: os::SleepThread() */
svc::SleepThread(RetryWait.GetNanoSeconds());
g_retry_count++;
}
}
/* Update metrics. */
{
std::scoped_lock lk(g_heap_mutex);
const size_t free_size = g_heap.GetTotalFreeSize();
if (free_size < g_heap_free_size_peak) {
g_heap_free_size_peak = free_size;
}
}
}
void PooledBuffer::Shrink(size_t ideal_size) {
AMS_ASSERT(ideal_size <= GetAllocatableSizeMaxCore(true));
/* Check if we actually need to shrink. */
if (this->size > ideal_size) {
/* If we do, we need to have a buffer allocated from the heap. */
AMS_ASSERT(this->buffer != nullptr);
AMS_ASSERT(g_heap.GetBlockSize(), HeapBlockSize);
const size_t new_size = util::AlignUp(ideal_size, HeapBlockSize);
/* Repeatedly free the tail of our buffer until we're done. */
{
std::scoped_lock lk(g_heap_mutex);
while (new_size < this->size) {
/* Determine the size and order to free. */
const size_t tail_align = util::LeastSignificantOneBit(this->size);
const size_t free_size = std::min(util::FloorPowerOfTwo(this->size - new_size), tail_align);
const s32 free_order = g_heap.GetOrderFromBytes(free_size);
/* Ensure we determined size correctly. */
AMS_ASSERT(util::IsAligned(free_size, HeapBlockSize));
AMS_ASSERT(free_size == g_heap.GetBytesFromOrder(free_order));
/* Actually free the memory. */
g_heap.Free(this->buffer + this->size - free_size, free_order);
this->size -= free_size;
}
}
/* Shrinking to zero means that we have no buffer. */
if (this->size == 0) {
this->buffer = nullptr;
}
}
}
Result InitializeBufferPool(char *buffer, size_t size) {
AMS_ASSERT(g_heap_buffer == nullptr);
AMS_ASSERT(buffer != nullptr);
AMS_ASSERT(util::IsAligned(reinterpret_cast<uintptr_t>(buffer), BufferPoolAlignment));
/* Initialize the heap. */
R_TRY(g_heap.Initialize(reinterpret_cast<uintptr_t>(buffer), size, HeapBlockSize, HeapOrderMaxForLarge + 1));
/* Initialize metrics. */
g_heap_buffer = buffer;
g_heap_size = size;
g_heap_free_size_peak = size;
return ResultSuccess();
}
Result InitializeBufferPool(char *buffer, size_t size, char *work, size_t work_size) {
AMS_ASSERT(g_heap_buffer == nullptr);
AMS_ASSERT(buffer != nullptr);
AMS_ASSERT(util::IsAligned(reinterpret_cast<uintptr_t>(buffer), BufferPoolAlignment));
AMS_ASSERT(work_size >= BufferPoolWorkSize);
/* Initialize the heap. */
R_TRY(g_heap.Initialize(reinterpret_cast<uintptr_t>(buffer), size, HeapBlockSize, HeapOrderMaxForLarge + 1, work, work_size));
/* Initialize metrics. */
g_heap_buffer = buffer;
g_heap_size = size;
g_heap_free_size_peak = size;
return ResultSuccess();
}
bool IsPooledBuffer(const void *buffer) {
AMS_ASSERT(buffer != nullptr);
return g_heap_buffer <= buffer && buffer < reinterpret_cast<char *>(g_heap_buffer) + g_heap_size;
}
size_t GetPooledBufferRetriedCount() {
return g_retry_count;
}
size_t GetPooledBufferReduceAllocationCount() {
return g_reduce_allocation_count;
}
size_t GetPooledBufferFreeSizePeak() {
return g_heap_free_size_peak;
}
void ClearPooledBufferPeak() {
std::scoped_lock lk(g_heap_mutex);
g_heap_free_size_peak = g_heap.GetTotalFreeSize();
g_retry_count = 0;
g_reduce_allocation_count = 0;
}
void RegisterAdditionalDeviceAddress(uintptr_t address, size_t size) {
g_additional_device_address_entry.Register(address, size);
}
void UnregisterAdditionalDeviceAddress(uintptr_t address) {
g_additional_device_address_entry.Unregister(address);
}
bool IsAdditionalDeviceAddress(const void *ptr) {
return g_additional_device_address_entry.Includes(ptr);
}
}

View file

@ -17,16 +17,11 @@
#pragma once #pragma once
#include <vapours/common.hpp> #include <vapours/common.hpp>
#include <vapours/assert.hpp> #include <vapours/assert.hpp>
#include <vapours/util/util_bitutil.hpp>
namespace ams::util { namespace ams::util {
/* Utilities for alignment to power of two. */ /* Utilities for alignment to power of two. */
template<typename T>
constexpr ALWAYS_INLINE bool IsPowerOfTwo(T value) {
using U = typename std::make_unsigned<T>::type;
return (static_cast<U>(value) & static_cast<U>(value - 1)) == 0;
}
template<typename T> template<typename T>
constexpr ALWAYS_INLINE T AlignUp(T value, size_t alignment) { constexpr ALWAYS_INLINE T AlignUp(T value, size_t alignment) {
using U = typename std::make_unsigned<T>::type; using U = typename std::make_unsigned<T>::type;

View file

@ -20,6 +20,16 @@
namespace ams::util { namespace ams::util {
namespace impl {
template<size_t N>
constexpr inline size_t Log2 = Log2<N / 2> + 1;
template<>
constexpr inline size_t Log2<1> = 0;
}
template <typename T> template <typename T>
class BitsOf { class BitsOf {
private: private:
@ -73,4 +83,133 @@ namespace ams::util {
return (... | (T(1u) << args)); return (... | (T(1u) << args));
} }
template<typename T>
constexpr ALWAYS_INLINE T ResetLeastSignificantOneBit(T x) {
return x & (x - 1);
}
template<typename T>
constexpr ALWAYS_INLINE T SetLeastSignificantZeroBit(T x) {
return x | (x + 1);
}
template<typename T>
constexpr ALWAYS_INLINE T LeastSignificantOneBit(T x) {
return x & ~(x - 1);
}
template<typename T>
constexpr ALWAYS_INLINE T LeastSignificantZeroBit(T x) {
return ~x & (x + 1);
}
template<typename T>
constexpr ALWAYS_INLINE T ResetTrailingOnes(T x) {
return x & (x + 1);
}
template<typename T>
constexpr ALWAYS_INLINE T SetTrailingZeros(T x) {
return x | (x - 1);
}
template<typename T>
constexpr ALWAYS_INLINE T MaskTrailingZeros(T x) {
return (~x) & (x - 1);
}
template<typename T>
constexpr ALWAYS_INLINE T MaskTrailingOnes(T x) {
return ~((~x) | (x + 1));
}
template<typename T>
constexpr ALWAYS_INLINE T MaskTrailingZerosAndLeastSignificantOneBit(T x) {
return x ^ (x - 1);
}
template<typename T>
constexpr ALWAYS_INLINE T MaskTrailingOnesAndLeastSignificantZeroBit(T x) {
return x ^ (x + 1);
}
template<typename T>
constexpr ALWAYS_INLINE int PopCount(T x) {
/* TODO: C++20 std::bit_cast */
using U = typename std::make_unsigned<T>::type;
U u = static_cast<U>(x);
/* TODO: C++20 std::is_constant_evaluated */
if (false) {
/* https://en.wikipedia.org/wiki/Hamming_weight */
constexpr U m1 = U(-1) / 0x03;
constexpr U m2 = U(-1) / 0x05;
constexpr U m4 = U(-1) / 0x11;
u = static_cast<U>(u - ((u >> 1) & m1));
u = static_cast<U>((u & m2) + ((u >> 2) & m2));
u = static_cast<U>((u + (u >> 4)) & m4);
for (size_t i = 0; i < impl::Log2<sizeof(T)>; ++i) {
const size_t shift = (0x1 << i) * BITSIZEOF(u8);
u += u >> shift;
}
return static_cast<int>(u & 0x7Fu);
} else {
if constexpr (std::is_same<U, unsigned long long>::value) {
return __builtin_popcountll(u);
} else if constexpr (std::is_same<U, unsigned long>::value) {
return __builtin_popcountl(u);
} else {
static_assert(sizeof(U) <= sizeof(unsigned int));
return __builtin_popcount(static_cast<unsigned int>(u));
}
}
}
template<typename T>
constexpr ALWAYS_INLINE int CountLeadingZeros(T x) {
/* TODO: C++20 std::is_constant_evaluated */
if (false) {
for (size_t i = 0; i < impl::Log2<BITSIZEOF(T)>; ++i) {
const size_t shift = (0x1 << i);
x |= x >> shift;
}
return PopCount(static_cast<T>(~x));
} else {
/* TODO: C++20 std::bit_cast */
using U = typename std::make_unsigned<T>::type;
const U u = static_cast<U>(x);
if constexpr (std::is_same<U, unsigned long long>::value) {
return __builtin_clzll(u);
} else if constexpr (std::is_same<U, unsigned long>::value) {
return __builtin_clzl(u);
} else if constexpr(std::is_same<U, unsigned int>::value) {
return __builtin_clz(u);
} else {
static_assert(sizeof(U) < sizeof(unsigned int));
constexpr size_t BitDiff = BITSIZEOF(unsigned int) - BITSIZEOF(U);
return __builtin_clz(static_cast<unsigned int>(u)) - BitDiff;
}
}
}
template<typename T>
constexpr ALWAYS_INLINE bool IsPowerOfTwo(T x) {
return x > 0 && ResetLeastSignificantOneBit(x) == 0;
}
template<typename T>
constexpr ALWAYS_INLINE T CeilingPowerOfTwo(T x) {
AMS_ASSERT(x > 0);
return T(1) << (BITSIZEOF(T) - CountLeadingZeros(T(x - 1)));
}
template<typename T>
constexpr ALWAYS_INLINE T FloorPowerOfTwo(T x) {
AMS_ASSERT(x > 0);
return T(1) << (BITSIZEOF(T) - CountLeadingZeros(x) - 1);
}
} }