fusee: start fleshing out nxboot for Mariko

This commit is contained in:
hexkyz 2020-12-07 18:39:23 +00:00 committed by SciresM
parent 222300d03c
commit 4809ced64d
23 changed files with 804 additions and 308 deletions

View file

@ -35,6 +35,7 @@ static inline uint32_t get_clk_source_reg(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0x1D4; case CARDEVICE_CORESIGHT: return 0x1D4;
case CARDEVICE_MSELECT: return 0x3B4;
case CARDEVICE_ACTMON: return 0x3E8; case CARDEVICE_ACTMON: return 0x3E8;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -58,6 +59,7 @@ static inline uint32_t get_clk_source_val(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0; case CARDEVICE_CORESIGHT: return 0;
case CARDEVICE_MSELECT: return 0;
case CARDEVICE_ACTMON: return 6; case CARDEVICE_ACTMON: return 6;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -81,6 +83,7 @@ static inline uint32_t get_clk_source_div(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 4; case CARDEVICE_CORESIGHT: return 4;
case CARDEVICE_MSELECT: return 6;
case CARDEVICE_ACTMON: return 0; case CARDEVICE_ACTMON: return 0;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();

View file

@ -51,6 +51,7 @@ typedef enum {
CARDEVICE_USB2 = ((1 << 5) | 0x1A), CARDEVICE_USB2 = ((1 << 5) | 0x1A),
CARDEVICE_CORESIGHT = ((2 << 5) | 0x9), CARDEVICE_CORESIGHT = ((2 << 5) | 0x9),
CARDEVICE_TSEC = ((2 << 5) | 0x13), CARDEVICE_TSEC = ((2 << 5) | 0x13),
CARDEVICE_MSELECT = ((3 << 5) | 0x8),
CARDEVICE_ACTMON = ((3 << 5) | 0x17), CARDEVICE_ACTMON = ((3 << 5) | 0x17),
CARDEVICE_TZRAM = ((3 << 5) | 0x1E), CARDEVICE_TZRAM = ((3 << 5) | 0x1E),
CARDEVICE_SE = ((3 << 5) | 0x1F), CARDEVICE_SE = ((3 << 5) | 0x1F),

View file

@ -590,9 +590,12 @@ static const uint32_t g_ram_pattern_dmi[0x500] = {
0xA, 0x5, 0xC, 0x3, 0xA, 0x5, 0xC, 0x3 0xA, 0x5, 0xC, 0x3, 0xA, 0x5, 0xC, 0x3
}; };
/* /* Determine the current SoC for Mariko specific code. */
* Register read/write helpers. static bool is_soc_mariko() {
*/ return (fuse_get_soc_type() == 1);
}
/* Register read/write helpers. */
static inline void emc_write(uint32_t val, uint32_t offset) { static inline void emc_write(uint32_t val, uint32_t offset) {
MAKE_EMC_REG(offset) = val; MAKE_EMC_REG(offset) = val;
} }
@ -664,10 +667,10 @@ static void ccfifo_write(uint32_t ccfifo_addr, uint32_t ccfifo_data, uint32_t cc
static void start_periodic_compensation() { static void start_periodic_compensation() {
uint32_t mpc_req = 0x4B; uint32_t mpc_req = 0x4B;
// Write to EMC_MPC_0 /* Write to EMC_MPC_0. */
emc_write(mpc_req, EMC_MPC); emc_write(mpc_req, EMC_MPC);
// Dummy read /* Dummy read. */
mpc_req = emc_read(EMC_MPC); mpc_req = emc_read(EMC_MPC);
} }
@ -704,7 +707,7 @@ static uint32_t wait_for_update(uint32_t status_reg, uint32_t bit_mask, bool upd
udelay(1); udelay(1);
} }
// Timeout /* Timeout. */
return 4; return 4;
} }
@ -1114,9 +1117,7 @@ static uint32_t update_clock_tree_delay(tegra_emc_timing_t* current_timing, tegr
bool training_update = (type == TRAINING_UPDATE); bool training_update = (type == TRAINING_UPDATE);
bool periodic_training_update = (type == PERIODIC_TRAINING_UPDATE); bool periodic_training_update = (type == PERIODIC_TRAINING_UPDATE);
/* /* Dev0 MSB. */
* Dev0 MSB.
*/
if (dvfs_pt1 || training_pt1 || periodic_training_update) { if (dvfs_pt1 || training_pt1 || periodic_training_update) {
mrr_req = ((2 << EMC_MRR_DEV_SEL_SHIFT) | (19 << EMC_MRR_MA_SHIFT)); mrr_req = ((2 << EMC_MRR_DEV_SEL_SHIFT) | (19 << EMC_MRR_MA_SHIFT));
emc_write(mrr_req, EMC_MRR); emc_write(mrr_req, EMC_MRR);
@ -1136,9 +1137,7 @@ static uint32_t update_clock_tree_delay(tegra_emc_timing_t* current_timing, tegr
temp1_1 = (mrr_data & 0xff00); temp1_1 = (mrr_data & 0xff00);
} }
/* /* Dev0 LSB. */
* Dev0 LSB.
*/
mrr_req = ((mrr_req & ~EMC_MRR_MA_MASK) | (18 << EMC_MRR_MA_SHIFT)); mrr_req = ((mrr_req & ~EMC_MRR_MA_MASK) | (18 << EMC_MRR_MA_SHIFT));
emc_write(mrr_req, EMC_MRR); emc_write(mrr_req, EMC_MRR);
@ -1249,9 +1248,7 @@ static uint32_t update_clock_tree_delay(tegra_emc_timing_t* current_timing, tegr
if (dram_dev_num != TWO_RANK) if (dram_dev_num != TWO_RANK)
return adel; return adel;
/* /* Dev1 MSB. */
* Dev1 MSB.
*/
if (dvfs_pt1 || training_pt1 || periodic_training_update) { if (dvfs_pt1 || training_pt1 || periodic_training_update) {
mrr_req = ((1 << EMC_MRR_DEV_SEL_SHIFT) | (19 << EMC_MRR_MA_SHIFT)); mrr_req = ((1 << EMC_MRR_DEV_SEL_SHIFT) | (19 << EMC_MRR_MA_SHIFT));
emc_write(mrr_req, EMC_MRR); emc_write(mrr_req, EMC_MRR);
@ -1271,9 +1268,7 @@ static uint32_t update_clock_tree_delay(tegra_emc_timing_t* current_timing, tegr
temp1_1 = (mrr_data & 0xff00); temp1_1 = (mrr_data & 0xff00);
} }
/* /* Dev1 LSB. */
* Dev1 LSB.
*/
mrr_req = ((mrr_req & ~EMC_MRR_MA_MASK) | (18 << EMC_MRR_MA_SHIFT)); mrr_req = ((mrr_req & ~EMC_MRR_MA_MASK) | (18 << EMC_MRR_MA_SHIFT));
emc_write(mrr_req, EMC_MRR); emc_write(mrr_req, EMC_MRR);
@ -1454,9 +1449,7 @@ static uint32_t periodic_compensation_handler(tegra_emc_timing_t *current_timing
start_periodic_compensation(); start_periodic_compensation();
udelay(delay); udelay(delay);
/* /* Generate next sample of data. */
* Generate next sample of data.
*/
adel = update_clock_tree_delay(current_timing, next_timing, dram_dev_num, channel_mode, DVFS_PT1); adel = update_clock_tree_delay(current_timing, next_timing, dram_dev_num, channel_mode, DVFS_PT1);
} }
} }
@ -1477,9 +1470,7 @@ static uint32_t periodic_compensation_handler(tegra_emc_timing_t *current_timing
start_periodic_compensation(); start_periodic_compensation();
udelay(delay); udelay(delay);
/* /* Generate next sample of data. */
* Generate next sample of data.
*/
update_clock_tree_delay(current_timing, next_timing, dram_dev_num, channel_mode, TRAINING_PT1); update_clock_tree_delay(current_timing, next_timing, dram_dev_num, channel_mode, TRAINING_PT1);
} }
@ -3706,7 +3697,7 @@ static int train_one(int z_val, uint32_t next_rate, uint32_t current_rate, tegra
return 0; return 0;
} }
void train_dram(void) { static void train_dram_erista(void) {
volatile tegra_car_t *car = car_get_regs(); volatile tegra_car_t *car = car_get_regs();
tegra_emc_timing_t *timing_tables; tegra_emc_timing_t *timing_tables;
@ -3748,3 +3739,11 @@ void train_dram(void) {
print(SCREEN_LOG_LEVEL_DEBUG, "[MTC]: Done!\n"); print(SCREEN_LOG_LEVEL_DEBUG, "[MTC]: Done!\n");
} }
void train_dram(void) {
if (is_soc_mariko()) {
/* TODO */
} else {
train_dram_erista();
}
}

View file

@ -35,6 +35,7 @@ static inline uint32_t get_clk_source_reg(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0x1D4; case CARDEVICE_CORESIGHT: return 0x1D4;
case CARDEVICE_MSELECT: return 0x3B4;
case CARDEVICE_ACTMON: return 0x3E8; case CARDEVICE_ACTMON: return 0x3E8;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -58,6 +59,7 @@ static inline uint32_t get_clk_source_val(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0; case CARDEVICE_CORESIGHT: return 0;
case CARDEVICE_MSELECT: return 0;
case CARDEVICE_ACTMON: return 6; case CARDEVICE_ACTMON: return 6;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -81,6 +83,7 @@ static inline uint32_t get_clk_source_div(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 4; case CARDEVICE_CORESIGHT: return 4;
case CARDEVICE_MSELECT: return 6;
case CARDEVICE_ACTMON: return 0; case CARDEVICE_ACTMON: return 0;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();

View file

@ -51,6 +51,7 @@ typedef enum {
CARDEVICE_USB2 = ((1 << 5) | 0x1A), CARDEVICE_USB2 = ((1 << 5) | 0x1A),
CARDEVICE_CORESIGHT = ((2 << 5) | 0x9), CARDEVICE_CORESIGHT = ((2 << 5) | 0x9),
CARDEVICE_TSEC = ((2 << 5) | 0x13), CARDEVICE_TSEC = ((2 << 5) | 0x13),
CARDEVICE_MSELECT = ((3 << 5) | 0x8),
CARDEVICE_ACTMON = ((3 << 5) | 0x17), CARDEVICE_ACTMON = ((3 << 5) | 0x17),
CARDEVICE_TZRAM = ((3 << 5) | 0x1E), CARDEVICE_TZRAM = ((3 << 5) | 0x1E),
CARDEVICE_SE = ((3 << 5) | 0x1F), CARDEVICE_SE = ((3 << 5) | 0x1F),

View file

@ -24,12 +24,14 @@
#define I2C1234_BASE 0x7000C000 #define I2C1234_BASE 0x7000C000
#define I2C56_BASE 0x7000D000 #define I2C56_BASE 0x7000D000
#define MAX77621_CPU_I2C_ADDR 0x1B #define MAX77621_CPU_I2C_ADDR 0x1B
#define MAX77621_GPU_I2C_ADDR 0x1C #define MAX77621_GPU_I2C_ADDR 0x1C
#define MAX17050_I2C_ADDR 0x36 #define MAX77812_PHASE31_CPU_I2C_ADDR 0x31
#define MAX77620_PWR_I2C_ADDR 0x3C #define MAX77812_PHASE211_CPU_I2C_ADDR 0x33
#define MAX77620_RTC_I2C_ADDR 0x68 #define MAX17050_I2C_ADDR 0x36
#define BQ24193_I2C_ADDR 0x6B #define MAX77620_PWR_I2C_ADDR 0x3C
#define MAX77620_RTC_I2C_ADDR 0x68
#define BQ24193_I2C_ADDR 0x6B
typedef enum { typedef enum {
I2C_1 = 0, I2C_1 = 0,

View file

@ -0,0 +1,81 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FUSEE_MAX77812_H_
#define FUSEE_MAX77812_H_
#define MAX77812_REG_RESET 0x00
#define MAX77812_REG_INT_SRC 0x01
#define MAX77812_REG_INT_SRC_M 0x02
#define MAX77812_REG_TOPSYS_INT 0x03
#define MAX77812_REG_TOPSYS_INT_M 0x04
#define MAX77812_REG_TOPSYS_STAT 0x05
#define MAX77812_REG_EN_CTRL 0x06
#define MAX77812_REG_STUP_DLY1 0x07
#define MAX77812_REG_STUP_DLY2 0x08
#define MAX77812_REG_STUP_DLY3 0x09
#define MAX77812_REG_SHDN_DLY1 0x0A
#define MAX77812_REG_SHDN_DLY2 0x0B
#define MAX77812_REG_SHDN_DLY3 0x0C
#define MAX77812_REG_SHDN_DLY4 0x0D
#define MAX77812_REG_WDTRSTB_DEB 0x0E
#define MAX77812_REG_GPI_FUNC 0x0F
#define MAX77812_REG_GPI_DEB1 0x10
#define MAX77812_REG_GPI_DEB2 0x11
#define MAX77812_REG_GPI_PD_CTRL 0x12
#define MAX77812_REG_PROT_CFG 0x13
#define MAX77812_REG_I2C_CFG 0x15
#define MAX77812_REG_BUCK_INT 0x20
#define MAX77812_REG_BUCK_INT_M 0x21
#define MAX77812_REG_BUCK_STAT 0x22
#define MAX77812_REG_M1_VOUT 0x23
#define MAX77812_REG_M2_VOUT 0x24
#define MAX77812_REG_M3_VOUT 0x25
#define MAX77812_REG_M4_VOUT 0x26
#define MAX77812_REG_M1_VOUT_D 0x27
#define MAX77812_REG_M2_VOUT_D 0x28
#define MAX77812_REG_M3_VOUT_D 0x29
#define MAX77812_REG_M4_VOUT_D 0x2A
#define MAX77812_REG_M1_VOUT_S 0x2B
#define MAX77812_REG_M2_VOUT_S 0x2C
#define MAX77812_REG_M3_VOUT_S 0x2D
#define MAX77812_REG_M4_VOUT_S 0x2E
#define MAX77812_REG_M1_CGF 0x2F
#define MAX77812_REG_M2_CGF 0x30
#define MAX77812_REG_M3_CGF 0x31
#define MAX77812_REG_M4_CGF 0x32
#define MAX77812_REG_GLB_CFG1 0x33
#define MAX77812_REG_GLB_CFG2 0x34
#define MAX77812_REG_GLB_CFG3 0x35
#define MAX77812_REG_EN_CTRL_MASK(n) BIT(n)
#define MAX77812_START_SLEW_RATE_MASK 0x07
#define MAX77812_SHDN_SLEW_RATE_MASK 0x70
#define MAX77812_RAMPDOWN_SLEW_RATE_MASK 0x07
#define MAX77812_RAMPUP_SLEW_RATE_MASK 0x70
#define MAX77812_VOUT_MASK 0xFF
#define MAX77812_VOUT_N_VOLTAGE 0xFF
#define MAX77812_VOUT_VMIN 250000
#define MAX77812_VOUT_VMAX 1525000
#define MAX77812_VOUT_STEP 5000
#define MAX77812_REGULATOR_ID_M1 0
#define MAX77812_REGULATOR_ID_M2 1
#define MAX77812_REGULATOR_ID_M3 2
#define MAX77812_REGULATOR_ID_M4 3
#endif

View file

@ -35,6 +35,7 @@ static inline uint32_t get_clk_source_reg(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0x1D4; case CARDEVICE_CORESIGHT: return 0x1D4;
case CARDEVICE_MSELECT: return 0x3B4;
case CARDEVICE_ACTMON: return 0x3E8; case CARDEVICE_ACTMON: return 0x3E8;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -58,6 +59,7 @@ static inline uint32_t get_clk_source_val(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0; case CARDEVICE_CORESIGHT: return 0;
case CARDEVICE_MSELECT: return 0;
case CARDEVICE_ACTMON: return 6; case CARDEVICE_ACTMON: return 6;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -81,6 +83,7 @@ static inline uint32_t get_clk_source_div(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 4; case CARDEVICE_CORESIGHT: return 4;
case CARDEVICE_MSELECT: return 6;
case CARDEVICE_ACTMON: return 0; case CARDEVICE_ACTMON: return 0;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();

View file

@ -51,6 +51,7 @@ typedef enum {
CARDEVICE_USB2 = ((1 << 5) | 0x1A), CARDEVICE_USB2 = ((1 << 5) | 0x1A),
CARDEVICE_CORESIGHT = ((2 << 5) | 0x9), CARDEVICE_CORESIGHT = ((2 << 5) | 0x9),
CARDEVICE_TSEC = ((2 << 5) | 0x13), CARDEVICE_TSEC = ((2 << 5) | 0x13),
CARDEVICE_MSELECT = ((3 << 5) | 0x8),
CARDEVICE_ACTMON = ((3 << 5) | 0x17), CARDEVICE_ACTMON = ((3 << 5) | 0x17),
CARDEVICE_TZRAM = ((3 << 5) | 0x1E), CARDEVICE_TZRAM = ((3 << 5) | 0x1E),
CARDEVICE_SE = ((3 << 5) | 0x1F), CARDEVICE_SE = ((3 << 5) | 0x1F),

View file

@ -22,75 +22,101 @@
#include "sysreg.h" #include "sysreg.h"
#include "i2c.h" #include "i2c.h"
#include "car.h" #include "car.h"
#include "fuse.h"
#include "mc.h" #include "mc.h"
#include "timers.h" #include "timers.h"
#include "pmc.h" #include "pmc.h"
#include "max77620.h" #include "max77620.h"
#include "max77812.h"
void _cluster_enable_power() /* Determine the current SoC for Mariko specific code. */
{ static bool is_soc_mariko() {
uint8_t val = 0; return (fuse_get_soc_type() == 1);
i2c_query(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_AME_GPIO, &val, 1);
val &= 0xDF;
i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_AME_GPIO, &val, 1);
val = 0x09;
i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_GPIO5, &val, 1);
/* Enable power. */
val = 0x20;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x02, &val, 1);
val = 0x8D;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x03, &val, 1);
val = 0xB7;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x00, &val, 1);
val = 0xB7;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x01, &val, 1);
} }
int _cluster_pmc_enable_partition(uint32_t part, uint32_t toggle) static void cluster_enable_power(uint32_t regulator) {
{ switch (regulator) {
case 0: /* Regulator_Max77621 */
uint8_t val = 0;
i2c_query(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_AME_GPIO, &val, 1);
val &= 0xDF;
i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_AME_GPIO, &val, 1);
val = 0x09;
i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_GPIO5, &val, 1);
val = 0x20;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x02, &val, 1);
val = 0x8D;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x03, &val, 1);
val = 0xB7;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x00, &val, 1);
val = 0xB7;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x01, &val, 1);
break;
case 1: /* Regulator_Max77812PhaseConfiguration31 */
uint8_t val = 0;
i2c_query(I2C_5, MAX77812_PHASE31_CPU_I2C_ADDR, MAX77812_REG_EN_CTRL, &val, 1);
if (val) {
val |= 0x40;
i2c_send(I2C_5, MAX77812_PHASE31_CPU_I2C_ADDR, MAX77812_REG_EN_CTRL, &val, 1);
}
val = 0x6E;
i2c_send(I2C_5, MAX77812_PHASE31_CPU_I2C_ADDR, MAX77812_REG_M4_VOUT, &val, 1);
break;
case 2: /* Regulator_Max77812PhaseConfiguration211 */
uint8_t val = 0;
i2c_query(I2C_5, MAX77812_PHASE211_CPU_I2C_ADDR, MAX77812_REG_EN_CTRL, &val, 1);
if (val) {
val |= 0x40;
i2c_send(I2C_5, MAX77812_PHASE211_CPU_I2C_ADDR, MAX77812_REG_EN_CTRL, &val, 1);
}
val = 0x6E;
i2c_send(I2C_5, MAX77812_PHASE211_CPU_I2C_ADDR, MAX77812_REG_M4_VOUT, &val, 1);
break;
default: return;
}
}
static void cluster_pmc_enable_partition(uint32_t part, uint32_t toggle) {
volatile tegra_pmc_t *pmc = pmc_get_regs(); volatile tegra_pmc_t *pmc = pmc_get_regs();
/* Check if the partition has already been turned on. */ /* Check if the partition has already been turned on. */
if (pmc->pwrgate_status & part) if (pmc->pwrgate_status & part) {
return 1; return;
uint32_t i = 5001;
while (pmc->pwrgate_toggle & 0x100)
{
udelay(1);
i--;
if (i < 1)
return 0;
} }
uint32_t i = 5001;
while (pmc->pwrgate_toggle & 0x100) {
udelay(1);
i--;
if (i < 1) {
return;
}
}
/* Turn the partition on. */
pmc->pwrgate_toggle = (toggle | 0x100); pmc->pwrgate_toggle = (toggle | 0x100);
i = 5001; i = 5001;
while (i > 0) while (i > 0) {
{ /* Check if the partition has already been turned on. */
if (pmc->pwrgate_status & part) if (pmc->pwrgate_status & part) {
break; break;
}
udelay(1); udelay(1);
i--; i--;
} }
return 1;
} }
void cluster_boot_cpu0(uint32_t entry) static void cluster_boot_cpu0_erista(uint32_t entry) {
{
volatile tegra_car_t *car = car_get_regs(); volatile tegra_car_t *car = car_get_regs();
/* Set ACTIVE_CLUSER to FAST. */ /* Set ACTIVE_CLUSER to FAST. */
FLOW_CTLR_BPMP_CLUSTER_CONTROL_0 &= 0xFFFFFFFE; FLOW_CTLR_BPMP_CLUSTER_CONTROL_0 &= 0xFFFFFFFE;
_cluster_enable_power(); /* Enable VddCpu. */
cluster_enable_power(0);
if (!(car->pllx_base & 0x40000000)) if (!(car->pllx_base & 0x40000000)) {
{
car->pllx_misc3 &= 0xFFFFFFF7; car->pllx_misc3 &= 0xFFFFFFF7;
udelay(2); udelay(2);
car->pllx_base = 0x80404E02; car->pllx_base = 0x80404E02;
@ -118,13 +144,13 @@ void cluster_boot_cpu0(uint32_t entry)
car->cpu_softrst_ctrl2 &= 0xFFFFF000; car->cpu_softrst_ctrl2 &= 0xFFFFF000;
/* Enable CPU rail. */ /* Enable CPU rail. */
_cluster_pmc_enable_partition(1, 0); cluster_pmc_enable_partition(1, 0);
/* Enable cluster 0 non-CPU. */ /* Enable cluster 0 non-CPU. */
_cluster_pmc_enable_partition(0x8000, 15); cluster_pmc_enable_partition(0x8000, 15);
/* Enable CE0. */ /* Enable CE0. */
_cluster_pmc_enable_partition(0x4000, 14); cluster_pmc_enable_partition(0x4000, 14);
/* Request and wait for RAM repair. */ /* Request and wait for RAM repair. */
FLOW_CTLR_RAM_REPAIR_0 = 1; FLOW_CTLR_RAM_REPAIR_0 = 1;
@ -157,3 +183,81 @@ void cluster_boot_cpu0(uint32_t entry)
/* car->rst_cpug_cmplx_clr = 0x411F000F; */ /* car->rst_cpug_cmplx_clr = 0x411F000F; */
car->rst_cpug_cmplx_clr = 0x41010001; car->rst_cpug_cmplx_clr = 0x41010001;
} }
static void cluster_boot_cpu0_mariko(uint32_t entry) {
volatile tegra_car_t *car = car_get_regs();
/* Set ACTIVE_CLUSER to FAST. */
FLOW_CTLR_BPMP_CLUSTER_CONTROL_0 &= 0xFFFFFFFE;
/* Enable VddCpu. */
cluster_enable_power(fuse_get_regulator());
if (!(car->pllx_base & 0x40000000)) {
car->pllx_misc3 &= 0xFFFFFFF7;
udelay(2);
car->pllx_misc = ((car->pllx_misc & 0xFFFBFFFF) | 0x40000);
car->pllx_base = 0x40404E02;
}
while (!(car->pllx_base & 0x8000000)) {
/* Wait. */
}
/* Set MSELECT clock. */
clk_enable(CARDEVICE_MSELECT);
/* Configure initial CPU clock frequency and enable clock. */
car->cclk_brst_pol = 0x20008888;
car->super_cclk_div = 0x80000000;
car->clk_enb_v_set = 1;
/* Reboot CORESIGHT. */
clkrst_reboot(CARDEVICE_CORESIGHT);
/* Set CAR2PMC_CPU_ACK_WIDTH to 0. */
car->cpu_softrst_ctrl2 &= 0xFFFFF000;
/* Enable CPU rail. */
cluster_pmc_enable_partition(1, 0);
/* Enable cluster 0 non-CPU. */
cluster_pmc_enable_partition(0x8000, 15);
/* Enable CE0. */
cluster_pmc_enable_partition(0x4000, 14);
/* Request and wait for RAM repair. */
FLOW_CTLR_RAM_REPAIR_0 = 1;
while (!(FLOW_CTLR_RAM_REPAIR_0 & 2)) {
/* Wait. */
}
MAKE_EXCP_VEC_REG(0x100) = 0;
/* Set reset vector. */
SB_AA64_RESET_LOW_0 = (entry | 1);
SB_AA64_RESET_HIGH_0 = 0;
/* Non-secure reset vector write disable. */
SB_CSR_0 = 2;
(void)SB_CSR_0;
/* Set CPU_STRICT_TZ_APERTURE_CHECK. */
/* NOTE: This breaks Exosphère. */
/* MAKE_MC_REG(MC_TZ_SECURITY_CTRL) = 1; */
/* Clear MSELECT reset. */
rst_disable(CARDEVICE_MSELECT);
/* Clear CPU{0,1,2,3} POR and CORE, CX0, L2, and DBG reset.*/
car->rst_cpug_cmplx_clr = 0x41010001;
}
void cluster_boot_cpu0(uint32_t entry) {
if (is_soc_mariko()) {
cluster_boot_cpu0_mariko(uint32_t entry);
} else {
cluster_boot_cpu0_erista(uint32_t entry);
}
}

View file

@ -24,12 +24,14 @@
#define I2C1234_BASE 0x7000C000 #define I2C1234_BASE 0x7000C000
#define I2C56_BASE 0x7000D000 #define I2C56_BASE 0x7000D000
#define MAX77621_CPU_I2C_ADDR 0x1B #define MAX77621_CPU_I2C_ADDR 0x1B
#define MAX77621_GPU_I2C_ADDR 0x1C #define MAX77621_GPU_I2C_ADDR 0x1C
#define MAX17050_I2C_ADDR 0x36 #define MAX77812_PHASE31_CPU_I2C_ADDR 0x31
#define MAX77620_PWR_I2C_ADDR 0x3C #define MAX77812_PHASE211_CPU_I2C_ADDR 0x33
#define MAX77620_RTC_I2C_ADDR 0x68 #define MAX17050_I2C_ADDR 0x36
#define BQ24193_I2C_ADDR 0x6B #define MAX77620_PWR_I2C_ADDR 0x3C
#define MAX77620_RTC_I2C_ADDR 0x68
#define BQ24193_I2C_ADDR 0x6B
typedef enum { typedef enum {
I2C_1 = 0, I2C_1 = 0,

View file

@ -0,0 +1,81 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FUSEE_MAX77812_H_
#define FUSEE_MAX77812_H_
#define MAX77812_REG_RESET 0x00
#define MAX77812_REG_INT_SRC 0x01
#define MAX77812_REG_INT_SRC_M 0x02
#define MAX77812_REG_TOPSYS_INT 0x03
#define MAX77812_REG_TOPSYS_INT_M 0x04
#define MAX77812_REG_TOPSYS_STAT 0x05
#define MAX77812_REG_EN_CTRL 0x06
#define MAX77812_REG_STUP_DLY1 0x07
#define MAX77812_REG_STUP_DLY2 0x08
#define MAX77812_REG_STUP_DLY3 0x09
#define MAX77812_REG_SHDN_DLY1 0x0A
#define MAX77812_REG_SHDN_DLY2 0x0B
#define MAX77812_REG_SHDN_DLY3 0x0C
#define MAX77812_REG_SHDN_DLY4 0x0D
#define MAX77812_REG_WDTRSTB_DEB 0x0E
#define MAX77812_REG_GPI_FUNC 0x0F
#define MAX77812_REG_GPI_DEB1 0x10
#define MAX77812_REG_GPI_DEB2 0x11
#define MAX77812_REG_GPI_PD_CTRL 0x12
#define MAX77812_REG_PROT_CFG 0x13
#define MAX77812_REG_I2C_CFG 0x15
#define MAX77812_REG_BUCK_INT 0x20
#define MAX77812_REG_BUCK_INT_M 0x21
#define MAX77812_REG_BUCK_STAT 0x22
#define MAX77812_REG_M1_VOUT 0x23
#define MAX77812_REG_M2_VOUT 0x24
#define MAX77812_REG_M3_VOUT 0x25
#define MAX77812_REG_M4_VOUT 0x26
#define MAX77812_REG_M1_VOUT_D 0x27
#define MAX77812_REG_M2_VOUT_D 0x28
#define MAX77812_REG_M3_VOUT_D 0x29
#define MAX77812_REG_M4_VOUT_D 0x2A
#define MAX77812_REG_M1_VOUT_S 0x2B
#define MAX77812_REG_M2_VOUT_S 0x2C
#define MAX77812_REG_M3_VOUT_S 0x2D
#define MAX77812_REG_M4_VOUT_S 0x2E
#define MAX77812_REG_M1_CGF 0x2F
#define MAX77812_REG_M2_CGF 0x30
#define MAX77812_REG_M3_CGF 0x31
#define MAX77812_REG_M4_CGF 0x32
#define MAX77812_REG_GLB_CFG1 0x33
#define MAX77812_REG_GLB_CFG2 0x34
#define MAX77812_REG_GLB_CFG3 0x35
#define MAX77812_REG_EN_CTRL_MASK(n) BIT(n)
#define MAX77812_START_SLEW_RATE_MASK 0x07
#define MAX77812_SHDN_SLEW_RATE_MASK 0x70
#define MAX77812_RAMPDOWN_SLEW_RATE_MASK 0x07
#define MAX77812_RAMPUP_SLEW_RATE_MASK 0x70
#define MAX77812_VOUT_MASK 0xFF
#define MAX77812_VOUT_N_VOLTAGE 0xFF
#define MAX77812_VOUT_VMIN 250000
#define MAX77812_VOUT_VMAX 1525000
#define MAX77812_VOUT_STEP 5000
#define MAX77812_REGULATOR_ID_M1 0
#define MAX77812_REGULATOR_ID_M2 1
#define MAX77812_REGULATOR_ID_M3 2
#define MAX77812_REGULATOR_ID_M4 3
#endif

View file

@ -108,6 +108,11 @@ static const uint8_t dev_pkc_modulus[0x100] = {
0xD5, 0x52, 0xDA, 0xEC, 0x41, 0xA4, 0xAD, 0x7B, 0x36, 0x86, 0x18, 0xB4, 0x5B, 0xD1, 0x30, 0xBB 0xD5, 0x52, 0xDA, 0xEC, 0x41, 0xA4, 0xAD, 0x7B, 0x36, 0x86, 0x18, 0xB4, 0x5B, 0xD1, 0x30, 0xBB
}; };
/* Determine the current SoC for Mariko specific code. */
static bool is_soc_mariko() {
return (fuse_get_soc_type() == 1);
}
static int emummc_ini_handler(void *user, const char *section, const char *name, const char *value) { static int emummc_ini_handler(void *user, const char *section, const char *name, const char *value) {
emummc_config_t *emummc_cfg = (emummc_config_t *)user; emummc_config_t *emummc_cfg = (emummc_config_t *)user;
if (strcmp(section, "emummc") == 0) { if (strcmp(section, "emummc") == 0) {
@ -602,15 +607,14 @@ static void nxboot_set_bootreason(void *bootreason_base) {
/* Set PMIC value. */ /* Set PMIC value. */
boot_reason.boot_reason_value = ((rtc_intr << 0x08) | power_key_intr); boot_reason.boot_reason_value = ((rtc_intr << 0x08) | power_key_intr);
/* TODO: Find out what these mean. */
if (power_key_intr & 0x80) if (power_key_intr & 0x80)
boot_reason.boot_reason_state = 0x01; boot_reason.boot_reason_state = 0x01; /* BootReason_AcOk */
else if (power_key_intr & 0x08) else if (power_key_intr & 0x08)
boot_reason.boot_reason_state = 0x02; boot_reason.boot_reason_state = 0x02; /* BootReason_OnKey */
else if (rtc_intr & 0x02) else if (rtc_intr & 0x02)
boot_reason.boot_reason_state = 0x03; boot_reason.boot_reason_state = 0x03; /* BootReason_RtcAlarm1 */
else if (rtc_intr & 0x04) else if (rtc_intr & 0x04)
boot_reason.boot_reason_state = 0x04; boot_reason.boot_reason_state = 0x04; /* BootReason_RtcAlarm2 */
/* Set in memory. */ /* Set in memory. */
memcpy(bootreason_base, &boot_reason, sizeof(boot_reason)); memcpy(bootreason_base, &boot_reason, sizeof(boot_reason));
@ -643,6 +647,7 @@ static void nxboot_move_bootconfig() {
fclose(bcfile); fclose(bcfile);
/* Select the actual BootConfig size and destination address. */ /* Select the actual BootConfig size and destination address. */
/* NOTE: Mariko relies on BPMP's inability to data abort and tries to copy 0x1000 bytes instead. */
bootconfig_addr = 0x4003F800; bootconfig_addr = 0x4003F800;
bootconfig_size = 0x800; bootconfig_size = 0x800;
@ -686,6 +691,11 @@ uint32_t nxboot_main(void) {
void *exosphere_memaddr; void *exosphere_memaddr;
exo_emummc_config_t exo_emummc_cfg; exo_emummc_config_t exo_emummc_cfg;
/* Set the start time (Mariko only). */
if (is_soc_mariko()) {
MAILBOX_NX_BOOTLOADER_START_TIME = get_time();
}
/* Configure emummc or mount the real NAND. */ /* Configure emummc or mount the real NAND. */
if (!nxboot_configure_emummc(&exo_emummc_cfg)) { if (!nxboot_configure_emummc(&exo_emummc_cfg)) {
emummc = NULL; emummc = NULL;
@ -774,102 +784,105 @@ uint32_t nxboot_main(void) {
else else
print(SCREEN_LOG_LEVEL_INFO, "[NXBOOT] Detected target firmware %ld!\n", target_firmware); print(SCREEN_LOG_LEVEL_INFO, "[NXBOOT] Detected target firmware %ld!\n", target_firmware);
/* Read the TSEC firmware from a file, otherwise from PK1L. */ /* Handle TSEC and Sept (Erista only). */
if (loader_ctx->tsecfw_path[0] != '\0') { if (!is_soc_mariko()) {
tsec_fw_size = get_file_size(loader_ctx->tsecfw_path); /* Read the TSEC firmware from a file, otherwise from PK1L. */
if ((tsec_fw_size != 0) && (tsec_fw_size != 0xF00 && tsec_fw_size != 0x2900 && tsec_fw_size != 0x3000 && tsec_fw_size != 0x3300)) { if (loader_ctx->tsecfw_path[0] != '\0') {
fatal_error("[NXBOOT] TSEC firmware from %s has a wrong size!\n", loader_ctx->tsecfw_path); tsec_fw_size = get_file_size(loader_ctx->tsecfw_path);
} else if (tsec_fw_size == 0) { if ((tsec_fw_size != 0) && (tsec_fw_size != 0xF00 && tsec_fw_size != 0x2900 && tsec_fw_size != 0x3000 && tsec_fw_size != 0x3300)) {
fatal_error("[NXBOOT] Could not read the TSEC firmware from %s!\n", loader_ctx->tsecfw_path); fatal_error("[NXBOOT] TSEC firmware from %s has a wrong size!\n", loader_ctx->tsecfw_path);
} } else if (tsec_fw_size == 0) {
fatal_error("[NXBOOT] Could not read the TSEC firmware from %s!\n", loader_ctx->tsecfw_path);
/* Allocate memory for the TSEC firmware. */
tsec_fw = memalign(0x100, tsec_fw_size);
if (tsec_fw == NULL) {
fatal_error("[NXBOOT] Out of memory!\n");
}
if (read_from_file(tsec_fw, tsec_fw_size, loader_ctx->tsecfw_path) != tsec_fw_size) {
fatal_error("[NXBOOT] Could not read the TSEC firmware from %s!\n", loader_ctx->tsecfw_path);
}
if (tsec_fw_size == 0x3000) {
if (fuse_get_hardware_state() != 0) {
sept_secondary_enc = sept_secondary_00_enc;
sept_secondary_enc_size = sept_secondary_00_enc_size;
} else {
sept_secondary_enc = sept_secondary_dev_00_enc;
sept_secondary_enc_size = sept_secondary_dev_00_enc_size;
} }
} else if (tsec_fw_size == 0x3300) {
if (fuse_get_hardware_state() != 0) { /* Allocate memory for the TSEC firmware. */
sept_secondary_enc = sept_secondary_01_enc; tsec_fw = memalign(0x100, tsec_fw_size);
sept_secondary_enc_size = sept_secondary_01_enc_size;
if (tsec_fw == NULL) {
fatal_error("[NXBOOT] Out of memory!\n");
}
if (read_from_file(tsec_fw, tsec_fw_size, loader_ctx->tsecfw_path) != tsec_fw_size) {
fatal_error("[NXBOOT] Could not read the TSEC firmware from %s!\n", loader_ctx->tsecfw_path);
}
if (tsec_fw_size == 0x3000) {
if (fuse_get_hardware_state() != 0) {
sept_secondary_enc = sept_secondary_00_enc;
sept_secondary_enc_size = sept_secondary_00_enc_size;
} else {
sept_secondary_enc = sept_secondary_dev_00_enc;
sept_secondary_enc_size = sept_secondary_dev_00_enc_size;
}
} else if (tsec_fw_size == 0x3300) {
if (fuse_get_hardware_state() != 0) {
sept_secondary_enc = sept_secondary_01_enc;
sept_secondary_enc_size = sept_secondary_01_enc_size;
} else {
sept_secondary_enc = sept_secondary_dev_01_enc;
sept_secondary_enc_size = sept_secondary_dev_01_enc_size;
}
} else { } else {
sept_secondary_enc = sept_secondary_dev_01_enc; fatal_error("[NXBOOT] Unable to identify sept revision to run.");
sept_secondary_enc_size = sept_secondary_dev_01_enc_size;
} }
} else { } else {
fatal_error("[NXBOOT] Unable to identify sept revision to run."); if (!package1_get_tsec_fw(&tsec_fw, package1loader, package1loader_size)) {
} fatal_error("[NXBOOT] Failed to read the TSEC firmware from Package1loader!\n");
} else {
if (!package1_get_tsec_fw(&tsec_fw, package1loader, package1loader_size)) {
fatal_error("[NXBOOT] Failed to read the TSEC firmware from Package1loader!\n");
}
if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_8_1_0) {
if (fuse_get_hardware_state() != 0) {
sept_secondary_enc = sept_secondary_01_enc;
sept_secondary_enc_size = sept_secondary_01_enc_size;
} else {
sept_secondary_enc = sept_secondary_dev_01_enc;
sept_secondary_enc_size = sept_secondary_dev_01_enc_size;
} }
tsec_fw_size = 0x3300; if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_8_1_0) {
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_7_0_0) { if (fuse_get_hardware_state() != 0) {
if (fuse_get_hardware_state() != 0) { sept_secondary_enc = sept_secondary_01_enc;
sept_secondary_enc = sept_secondary_00_enc; sept_secondary_enc_size = sept_secondary_01_enc_size;
sept_secondary_enc_size = sept_secondary_00_enc_size; } else {
sept_secondary_enc = sept_secondary_dev_01_enc;
sept_secondary_enc_size = sept_secondary_dev_01_enc_size;
}
tsec_fw_size = 0x3300;
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_7_0_0) {
if (fuse_get_hardware_state() != 0) {
sept_secondary_enc = sept_secondary_00_enc;
sept_secondary_enc_size = sept_secondary_00_enc_size;
} else {
sept_secondary_enc = sept_secondary_dev_00_enc;
sept_secondary_enc_size = sept_secondary_dev_00_enc_size;
}
tsec_fw_size = 0x3000;
} else if (target_firmware == ATMOSPHERE_TARGET_FIRMWARE_6_2_0) {
tsec_fw_size = 0x2900;
} else { } else {
sept_secondary_enc = sept_secondary_dev_00_enc; tsec_fw_size = 0xF00;
sept_secondary_enc_size = sept_secondary_dev_00_enc_size;
} }
tsec_fw_size = 0x3000; }
print(SCREEN_LOG_LEVEL_INFO, "[NXBOOT] Loaded firmware from eMMC...\n");
/* Get the TSEC keys. */
uint8_t tsec_key[0x10] = {0};
uint8_t tsec_root_keys[0x20][0x10] = {0};
if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_7_0_0) {
/* Detect whether we need to run sept-secondary in order to derive keys. */
if (!get_and_clear_has_run_sept()) {
reboot_to_sept(tsec_fw, tsec_fw_size, sept_secondary_enc, sept_secondary_enc_size);
} else {
if (mkey_detect_revision(fuse_get_hardware_state() != 0) != 0) {
fatal_error("[NXBOOT] Sept derived incorrect keys!\n");
}
}
get_and_clear_has_run_sept();
} else if (target_firmware == ATMOSPHERE_TARGET_FIRMWARE_6_2_0) { } else if (target_firmware == ATMOSPHERE_TARGET_FIRMWARE_6_2_0) {
tsec_fw_size = 0x2900; uint8_t tsec_keys[0x20] = {0};
} else {
tsec_fw_size = 0xF00;
}
}
print(SCREEN_LOG_LEVEL_INFO, "[NXBOOT] Loaded firmware from eMMC...\n"); /* Emulate the TSEC payload on 6.2.0+. */
smmu_emulate_tsec((void *)tsec_keys, package1loader, package1loader_size, package1loader);
/* Get the TSEC keys. */ /* Copy back the keys. */
uint8_t tsec_key[0x10] = {0}; memcpy((void *)tsec_key, (void *)tsec_keys, 0x10);
uint8_t tsec_root_keys[0x20][0x10] = {0}; memcpy((void *)tsec_root_keys, (void *)tsec_keys + 0x10, 0x10);
if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_7_0_0) {
/* Detect whether we need to run sept-secondary in order to derive keys. */
if (!get_and_clear_has_run_sept()) {
reboot_to_sept(tsec_fw, tsec_fw_size, sept_secondary_enc, sept_secondary_enc_size);
} else { } else {
if (mkey_detect_revision(fuse_get_hardware_state() != 0) != 0) { /* Run the TSEC payload and get the key. */
fatal_error("[NXBOOT] Sept derived incorrect keys!\n"); if (tsec_get_key(tsec_key, 1, tsec_fw, tsec_fw_size) != 0) {
fatal_error("[NXBOOT] Failed to get TSEC key!\n");
} }
} }
get_and_clear_has_run_sept();
} else if (target_firmware == ATMOSPHERE_TARGET_FIRMWARE_6_2_0) {
uint8_t tsec_keys[0x20] = {0};
/* Emulate the TSEC payload on 6.2.0+. */
smmu_emulate_tsec((void *)tsec_keys, package1loader, package1loader_size, package1loader);
/* Copy back the keys. */
memcpy((void *)tsec_key, (void *)tsec_keys, 0x10);
memcpy((void *)tsec_root_keys, (void *)tsec_keys + 0x10, 0x10);
} else {
/* Run the TSEC payload and get the key. */
if (tsec_get_key(tsec_key, 1, tsec_fw, tsec_fw_size) != 0) {
fatal_error("[NXBOOT] Failed to get TSEC key!\n");
}
} }
/* Display splash screen. */ /* Display splash screen. */
@ -909,12 +922,14 @@ uint32_t nxboot_main(void) {
/* Setup boot configuration for Exosphère. */ /* Setup boot configuration for Exosphère. */
nxboot_configure_exosphere(target_firmware, keygen_type, &exo_emummc_cfg); nxboot_configure_exosphere(target_firmware, keygen_type, &exo_emummc_cfg);
/* Initialize Boot Reason on older firmware versions. */ /* Initialize BootReason on older firmware versions (Erista only). */
if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_4_0_0) { if (!is_soc_mariko()) {
print(SCREEN_LOG_LEVEL_INFO, "[NXBOOT] Initializing Boot Reason...\n"); if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_4_0_0) {
nxboot_set_bootreason((void *)MAILBOX_NX_BOOTLOADER_BOOT_REASON_BASE); print(SCREEN_LOG_LEVEL_INFO, "[NXBOOT] Initializing BootReason...\n");
} else { nxboot_set_bootreason((void *)MAILBOX_NX_BOOTLOADER_BOOT_REASON_BASE);
memset((void *)MAILBOX_NX_BOOTLOADER_BOOT_REASON_BASE, 0, 0x200); } else {
memset((void *)MAILBOX_NX_BOOTLOADER_BOOT_REASON_BASE, 0, 0x200);
}
} }
/* Read the warmboot firmware from a file, otherwise from Atmosphere's implementation. */ /* Read the warmboot firmware from a file, otherwise from Atmosphere's implementation. */
@ -933,8 +948,8 @@ uint32_t nxboot_main(void) {
if (read_from_file(warmboot_fw, warmboot_fw_size, loader_ctx->warmboot_path) != warmboot_fw_size) { if (read_from_file(warmboot_fw, warmboot_fw_size, loader_ctx->warmboot_path) != warmboot_fw_size) {
fatal_error("[NXBOOT] Could not read the warmboot firmware from %s!\n", loader_ctx->warmboot_path); fatal_error("[NXBOOT] Could not read the warmboot firmware from %s!\n", loader_ctx->warmboot_path);
} }
} else { } else if (!is_soc_mariko()) {
/* Use Atmosphere's warmboot firmware implementation. */ /* Use Atmosphere's warmboot firmware implementation (Erista only). */
warmboot_fw_size = warmboot_bin_size; warmboot_fw_size = warmboot_bin_size;
warmboot_fw = malloc(warmboot_fw_size); warmboot_fw = malloc(warmboot_fw_size);
@ -949,8 +964,8 @@ uint32_t nxboot_main(void) {
} }
} }
/* Patch warmboot firmware for atmosphere. */ /* Patch warmboot firmware for atmosphere (Erista only). */
if (warmboot_fw != NULL && warmboot_fw_size >= sizeof(warmboot_ams_header_t)) { if (!is_soc_mariko() && (warmboot_fw != NULL) && (warmboot_fw_size >= sizeof(warmboot_ams_header_t))) {
warmboot_ams_header_t *ams_header = (warmboot_ams_header_t *)warmboot_fw; warmboot_ams_header_t *ams_header = (warmboot_ams_header_t *)warmboot_fw;
if (ams_header->ams_metadata.magic == WARMBOOT_MAGIC) { if (ams_header->ams_metadata.magic == WARMBOOT_MAGIC) {
/* Set target firmware */ /* Set target firmware */
@ -970,8 +985,24 @@ uint32_t nxboot_main(void) {
/* Copy the warmboot firmware and set the address in PMC if necessary. */ /* Copy the warmboot firmware and set the address in PMC if necessary. */
if (warmboot_fw && (warmboot_fw_size > 0)) { if (warmboot_fw && (warmboot_fw_size > 0)) {
memcpy(warmboot_memaddr, warmboot_fw, warmboot_fw_size); memcpy(warmboot_memaddr, warmboot_fw, warmboot_fw_size);
if (MAILBOX_EXOSPHERE_CONFIGURATION->target_firmware < ATMOSPHERE_TARGET_FIRMWARE_4_0_0) if (!is_soc_mariko() && (MAILBOX_EXOSPHERE_CONFIGURATION->target_firmware < ATMOSPHERE_TARGET_FIRMWARE_4_0_0)) {
pmc->scratch1 = (uint32_t)warmboot_memaddr; pmc->scratch1 = (uint32_t)warmboot_memaddr;
}
}
/* Handle warmboot security check. */
if (is_soc_mariko()) {
/* TODO */
} else {
/* Set 3.0.0/3.0.1/3.0.2 warmboot security check. */
if (MAILBOX_EXOSPHERE_CONFIGURATION->target_firmware == ATMOSPHERE_TARGET_FIRMWARE_3_0_0) {
const package1loader_header_t *package1loader_header = (const package1loader_header_t *)package1loader;
if (!strcmp(package1loader_header->build_timestamp, "20170519101410")) {
pmc->secure_scratch32 = 0xE3; /* Warmboot 3.0.0 security check.*/
} else if (!strcmp(package1loader_header->build_timestamp, "20170710161758")) {
pmc->secure_scratch32 = 0x104; /* Warmboot 3.0.1/3.0.2 security check. */
}
}
} }
/* Configure mesosphere. */ /* Configure mesosphere. */
@ -991,15 +1022,11 @@ uint32_t nxboot_main(void) {
mesosphere_size = sd_meso_size; mesosphere_size = sd_meso_size;
} else if (is_experimental) { } else if (is_experimental) {
mesosphere_size = mesosphere_bin_size; mesosphere_size = mesosphere_bin_size;
mesosphere = malloc(mesosphere_size);
mesosphere = malloc(mesosphere_size);
if (mesosphere == NULL) { if (mesosphere == NULL) {
fatal_error("[NXBOOT] Out of memory!\n"); fatal_error("[NXBOOT] Out of memory!\n");
} }
memcpy(mesosphere, mesosphere_bin, mesosphere_size); memcpy(mesosphere, mesosphere_bin, mesosphere_size);
if (mesosphere_size == 0) { if (mesosphere_size == 0) {
fatal_error("[NXBOOT] Could not read embedded mesosphere!\n"); fatal_error("[NXBOOT] Could not read embedded mesosphere!\n");
} }
@ -1036,7 +1063,6 @@ uint32_t nxboot_main(void) {
/* The maximum is actually a bit less than that. */ /* The maximum is actually a bit less than that. */
fatal_error(u8"[NXBOOT] Exosphère from %s is too big!\n", loader_ctx->exosphere_path); fatal_error(u8"[NXBOOT] Exosphère from %s is too big!\n", loader_ctx->exosphere_path);
} }
if (read_from_file(exosphere_memaddr, exosphere_size, loader_ctx->exosphere_path) != exosphere_size) { if (read_from_file(exosphere_memaddr, exosphere_size, loader_ctx->exosphere_path) != exosphere_size) {
fatal_error(u8"[NXBOOT] Could not read Exosphère from %s!\n", loader_ctx->exosphere_path); fatal_error(u8"[NXBOOT] Could not read Exosphère from %s!\n", loader_ctx->exosphere_path);
} }
@ -1044,8 +1070,8 @@ uint32_t nxboot_main(void) {
memcpy(exosphere_memaddr, exosphere_bin, exosphere_bin_size); memcpy(exosphere_memaddr, exosphere_bin, exosphere_bin_size);
} }
/* Copy the exosphere mariko fatal program to a good location. */ /* Copy the Mariko's Exosphère fatal program to a good location. */
{ if (is_soc_mariko()) {
void * const mariko_fatal_dst = (void *)0x80020000; void * const mariko_fatal_dst = (void *)0x80020000;
memset(mariko_fatal_dst, 0, 0x20000); memset(mariko_fatal_dst, 0, 0x20000);
@ -1066,15 +1092,6 @@ uint32_t nxboot_main(void) {
print(SCREEN_LOG_LEVEL_INFO, "[NXBOOT] Moving BootConfig...\n"); print(SCREEN_LOG_LEVEL_INFO, "[NXBOOT] Moving BootConfig...\n");
nxboot_move_bootconfig(); nxboot_move_bootconfig();
/* Set 3.0.0/3.0.1/3.0.2 warmboot security check. */
if (MAILBOX_EXOSPHERE_CONFIGURATION->target_firmware == ATMOSPHERE_TARGET_FIRMWARE_3_0_0) {
const package1loader_header_t *package1loader_header = (const package1loader_header_t *)package1loader;
if (!strcmp(package1loader_header->build_timestamp, "20170519101410"))
pmc->secure_scratch32 = 0xE3; /* Warmboot 3.0.0 security check.*/
else if (!strcmp(package1loader_header->build_timestamp, "20170710161758"))
pmc->secure_scratch32 = 0x104; /* Warmboot 3.0.1/3.0.2 security check. */
}
/* Clean up. */ /* Clean up. */
free(package1loader); free(package1loader);
if (loader_ctx->tsecfw_path[0] != '\0') { if (loader_ctx->tsecfw_path[0] != '\0') {
@ -1090,11 +1107,13 @@ uint32_t nxboot_main(void) {
/* Wait for the splash screen to have been displayed for as long as it should be. */ /* Wait for the splash screen to have been displayed for as long as it should be. */
splash_screen_wait_delay(); splash_screen_wait_delay();
/* Set reset for USBD, USB2, AHBDMA, and APBDMA. */ /* Set reset for USBD, USB2, AHBDMA, and APBDMA on Erista. */
rst_enable(CARDEVICE_USBD); if (!is_soc_mariko()) {
rst_enable(CARDEVICE_USB2); rst_enable(CARDEVICE_USBD);
rst_enable(CARDEVICE_AHBDMA); rst_enable(CARDEVICE_USB2);
rst_enable(CARDEVICE_APBDMA); rst_enable(CARDEVICE_AHBDMA);
rst_enable(CARDEVICE_APBDMA);
}
/* Return the memory address for booting CPU0. */ /* Return the memory address for booting CPU0. */
return (uint32_t)exosphere_memaddr; return (uint32_t)exosphere_memaddr;

View file

@ -36,6 +36,8 @@ typedef struct {
#define MAILBOX_NX_BOOTLOADER_BASE 0x40000000 #define MAILBOX_NX_BOOTLOADER_BASE 0x40000000
#define MAKE_MAILBOX_NX_BOOTLOADER_REG(n) MAKE_REG32(MAILBOX_NX_BOOTLOADER_BASE + n) #define MAKE_MAILBOX_NX_BOOTLOADER_REG(n) MAKE_REG32(MAILBOX_NX_BOOTLOADER_BASE + n)
#define MAILBOX_NX_BOOTLOADER_START_TIME MAKE_MAILBOX_NX_BOOTLOADER_REG(0x00)
#define MAILBOX_NX_BOOTLOADER_END_TIME MAKE_MAILBOX_NX_BOOTLOADER_REG(0x04)
#define MAILBOX_NX_BOOTLOADER_BOOT_REASON_BASE MAKE_MAILBOX_NX_BOOTLOADER_REG(0x10) #define MAILBOX_NX_BOOTLOADER_BOOT_REASON_BASE MAKE_MAILBOX_NX_BOOTLOADER_REG(0x10)
#define MAILBOX_NX_BOOTLOADER_SETUP_STATE MAKE_MAILBOX_NX_BOOTLOADER_REG(0xF8) #define MAILBOX_NX_BOOTLOADER_SETUP_STATE MAKE_MAILBOX_NX_BOOTLOADER_REG(0xF8)
#define MAILBOX_NX_BOOTLOADER_IS_SECMON_AWAKE MAKE_MAILBOX_NX_BOOTLOADER_REG(0xFC) #define MAILBOX_NX_BOOTLOADER_IS_SECMON_AWAKE MAKE_MAILBOX_NX_BOOTLOADER_REG(0xFC)

View file

@ -20,6 +20,7 @@
#include "di.h" #include "di.h"
#include "exocfg.h" #include "exocfg.h"
#include "flow.h" #include "flow.h"
#include "fuse.h"
#include "mc.h" #include "mc.h"
#include "nxboot.h" #include "nxboot.h"
#include "se.h" #include "se.h"
@ -27,6 +28,11 @@
#include "timers.h" #include "timers.h"
#include "sysreg.h" #include "sysreg.h"
/* Determine the current SoC for Mariko specific code. */
static bool is_soc_mariko() {
return (fuse_get_soc_type() == 1);
}
void nxboot_finish(uint32_t boot_memaddr) { void nxboot_finish(uint32_t boot_memaddr) {
/* Boot up Exosphère. */ /* Boot up Exosphère. */
MAILBOX_NX_BOOTLOADER_IS_SECMON_AWAKE = 0; MAILBOX_NX_BOOTLOADER_IS_SECMON_AWAKE = 0;
@ -35,20 +41,25 @@ void nxboot_finish(uint32_t boot_memaddr) {
/* Terminate the display. */ /* Terminate the display. */
display_end(); display_end();
/* Check if SMMU emulation has been used. */ if (is_soc_mariko()) {
uint32_t smmu_magic = *(uint32_t *)(SMMU_AARCH64_PAYLOAD_ADDR + 0xFC);
if (smmu_magic == 0xDEADC0DE) {
/* Clear the magic. */
*(uint32_t *)(SMMU_AARCH64_PAYLOAD_ADDR + 0xFC) = 0;
/* Pass the boot address to the already running payload. */
*(uint32_t *)(SMMU_AARCH64_PAYLOAD_ADDR + 0xF0) = boot_memaddr;
/* Wait a while. */
mdelay(500);
} else {
/* Boot CPU0. */ /* Boot CPU0. */
cluster_boot_cpu0(boot_memaddr); cluster_boot_cpu0(boot_memaddr);
} else {
/* Check if SMMU emulation has been used. */
uint32_t smmu_magic = *(uint32_t *)(SMMU_AARCH64_PAYLOAD_ADDR + 0xFC);
if (smmu_magic == 0xDEADC0DE) {
/* Clear the magic. */
*(uint32_t *)(SMMU_AARCH64_PAYLOAD_ADDR + 0xFC) = 0;
/* Pass the boot address to the already running payload. */
*(uint32_t *)(SMMU_AARCH64_PAYLOAD_ADDR + 0xF0) = boot_memaddr;
/* Wait a while. */
mdelay(500);
} else {
/* Boot CPU0. */
cluster_boot_cpu0(boot_memaddr);
}
} }
/* Wait for Exosphère to wake up. */ /* Wait for Exosphère to wake up. */
@ -59,6 +70,11 @@ void nxboot_finish(uint32_t boot_memaddr) {
/* Signal Exosphère. */ /* Signal Exosphère. */
MAILBOX_NX_BOOTLOADER_SETUP_STATE = NX_BOOTLOADER_STATE_FINISHED_4X; MAILBOX_NX_BOOTLOADER_SETUP_STATE = NX_BOOTLOADER_STATE_FINISHED_4X;
/* Set the end time (Mariko only).*/
if (is_soc_mariko()) {
MAILBOX_NX_BOOTLOADER_END_TIME = get_time();
}
/* Halt ourselves in waitevent state. */ /* Halt ourselves in waitevent state. */
while (1) { while (1) {
FLOW_CTLR_HALT_COP_EVENTS_0 = 0x50000000; FLOW_CTLR_HALT_COP_EVENTS_0 = 0x50000000;

View file

@ -15,8 +15,8 @@
*/ */
#include "car.h" #include "car.h"
#include "utils.h"
#include "timers.h" #include "timers.h"
#include "utils.h"
static inline uint32_t get_clk_source_reg(CarDevice dev) { static inline uint32_t get_clk_source_reg(CarDevice dev) {
switch (dev) { switch (dev) {
@ -35,6 +35,7 @@ static inline uint32_t get_clk_source_reg(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0x1D4; case CARDEVICE_CORESIGHT: return 0x1D4;
case CARDEVICE_MSELECT: return 0x3B4;
case CARDEVICE_ACTMON: return 0x3E8; case CARDEVICE_ACTMON: return 0x3E8;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -58,6 +59,7 @@ static inline uint32_t get_clk_source_val(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0; case CARDEVICE_CORESIGHT: return 0;
case CARDEVICE_MSELECT: return 0;
case CARDEVICE_ACTMON: return 6; case CARDEVICE_ACTMON: return 6;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -81,6 +83,7 @@ static inline uint32_t get_clk_source_div(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 4; case CARDEVICE_CORESIGHT: return 4;
case CARDEVICE_MSELECT: return 6;
case CARDEVICE_ACTMON: return 0; case CARDEVICE_ACTMON: return 0;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();

View file

@ -51,6 +51,7 @@ typedef enum {
CARDEVICE_USB2 = ((1 << 5) | 0x1A), CARDEVICE_USB2 = ((1 << 5) | 0x1A),
CARDEVICE_CORESIGHT = ((2 << 5) | 0x9), CARDEVICE_CORESIGHT = ((2 << 5) | 0x9),
CARDEVICE_TSEC = ((2 << 5) | 0x13), CARDEVICE_TSEC = ((2 << 5) | 0x13),
CARDEVICE_MSELECT = ((3 << 5) | 0x8),
CARDEVICE_ACTMON = ((3 << 5) | 0x17), CARDEVICE_ACTMON = ((3 << 5) | 0x17),
CARDEVICE_TZRAM = ((3 << 5) | 0x1E), CARDEVICE_TZRAM = ((3 << 5) | 0x1E),
CARDEVICE_SE = ((3 << 5) | 0x1F), CARDEVICE_SE = ((3 << 5) | 0x1F),

View file

@ -24,12 +24,14 @@
#define I2C1234_BASE 0x7000C000 #define I2C1234_BASE 0x7000C000
#define I2C56_BASE 0x7000D000 #define I2C56_BASE 0x7000D000
#define MAX77621_CPU_I2C_ADDR 0x1B #define MAX77621_CPU_I2C_ADDR 0x1B
#define MAX77621_GPU_I2C_ADDR 0x1C #define MAX77621_GPU_I2C_ADDR 0x1C
#define MAX17050_I2C_ADDR 0x36 #define MAX77812_PHASE31_CPU_I2C_ADDR 0x31
#define MAX77620_PWR_I2C_ADDR 0x3C #define MAX77812_PHASE211_CPU_I2C_ADDR 0x33
#define MAX77620_RTC_I2C_ADDR 0x68 #define MAX17050_I2C_ADDR 0x36
#define BQ24193_I2C_ADDR 0x6B #define MAX77620_PWR_I2C_ADDR 0x3C
#define MAX77620_RTC_I2C_ADDR 0x68
#define BQ24193_I2C_ADDR 0x6B
typedef enum { typedef enum {
I2C_1 = 0, I2C_1 = 0,

View file

@ -35,6 +35,7 @@ static inline uint32_t get_clk_source_reg(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0x1D4; case CARDEVICE_CORESIGHT: return 0x1D4;
case CARDEVICE_MSELECT: return 0x3B4;
case CARDEVICE_ACTMON: return 0x3E8; case CARDEVICE_ACTMON: return 0x3E8;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -58,6 +59,7 @@ static inline uint32_t get_clk_source_val(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 0; case CARDEVICE_CORESIGHT: return 0;
case CARDEVICE_MSELECT: return 0;
case CARDEVICE_ACTMON: return 6; case CARDEVICE_ACTMON: return 6;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();
@ -81,6 +83,7 @@ static inline uint32_t get_clk_source_div(CarDevice dev) {
case CARDEVICE_KFUSE: return 0; case CARDEVICE_KFUSE: return 0;
case CARDEVICE_CL_DVFS: return 0; case CARDEVICE_CL_DVFS: return 0;
case CARDEVICE_CORESIGHT: return 4; case CARDEVICE_CORESIGHT: return 4;
case CARDEVICE_MSELECT: return 6;
case CARDEVICE_ACTMON: return 0; case CARDEVICE_ACTMON: return 0;
case CARDEVICE_BPMP: return 0; case CARDEVICE_BPMP: return 0;
default: generic_panic(); default: generic_panic();

View file

@ -51,6 +51,7 @@ typedef enum {
CARDEVICE_USB2 = ((1 << 5) | 0x1A), CARDEVICE_USB2 = ((1 << 5) | 0x1A),
CARDEVICE_CORESIGHT = ((2 << 5) | 0x9), CARDEVICE_CORESIGHT = ((2 << 5) | 0x9),
CARDEVICE_TSEC = ((2 << 5) | 0x13), CARDEVICE_TSEC = ((2 << 5) | 0x13),
CARDEVICE_MSELECT = ((3 << 5) | 0x8),
CARDEVICE_ACTMON = ((3 << 5) | 0x17), CARDEVICE_ACTMON = ((3 << 5) | 0x17),
CARDEVICE_TZRAM = ((3 << 5) | 0x1E), CARDEVICE_TZRAM = ((3 << 5) | 0x1E),
CARDEVICE_SE = ((3 << 5) | 0x1F), CARDEVICE_SE = ((3 << 5) | 0x1F),

View file

@ -22,79 +22,101 @@
#include "sysreg.h" #include "sysreg.h"
#include "i2c.h" #include "i2c.h"
#include "car.h" #include "car.h"
#include "fuse.h"
#include "mc.h" #include "mc.h"
#include "timers.h" #include "timers.h"
#include "pmc.h" #include "pmc.h"
#include "max77620.h" #include "max77620.h"
#include "max77812.h"
void _cluster_enable_power() /* Determine the current SoC for Mariko specific code. */
{ static bool is_soc_mariko() {
/* Reboot I2C5. */ return (fuse_get_soc_type() == 1);
clkrst_reboot(CARDEVICE_I2C5);
i2c_init(I2C_5);
uint8_t val = 0;
i2c_query(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_AME_GPIO, &val, 1);
val &= 0xDF;
i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_AME_GPIO, &val, 1);
val = 0x09;
i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_GPIO5, &val, 1);
/* Enable power. */
val = 0x20;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x02, &val, 1);
val = 0x8D;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x03, &val, 1);
val = 0xB7;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x00, &val, 1);
val = 0xB7;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x01, &val, 1);
} }
int _cluster_pmc_enable_partition(uint32_t part, uint32_t toggle) static void cluster_enable_power(uint32_t regulator) {
{ switch (regulator) {
case 0: /* Regulator_Max77621 */
uint8_t val = 0;
i2c_query(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_AME_GPIO, &val, 1);
val &= 0xDF;
i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_AME_GPIO, &val, 1);
val = 0x09;
i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_GPIO5, &val, 1);
val = 0x20;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x02, &val, 1);
val = 0x8D;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x03, &val, 1);
val = 0xB7;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x00, &val, 1);
val = 0xB7;
i2c_send(I2C_5, MAX77621_CPU_I2C_ADDR, 0x01, &val, 1);
break;
case 1: /* Regulator_Max77812PhaseConfiguration31 */
uint8_t val = 0;
i2c_query(I2C_5, MAX77812_PHASE31_CPU_I2C_ADDR, MAX77812_REG_EN_CTRL, &val, 1);
if (val) {
val |= 0x40;
i2c_send(I2C_5, MAX77812_PHASE31_CPU_I2C_ADDR, MAX77812_REG_EN_CTRL, &val, 1);
}
val = 0x6E;
i2c_send(I2C_5, MAX77812_PHASE31_CPU_I2C_ADDR, MAX77812_REG_M4_VOUT, &val, 1);
break;
case 2: /* Regulator_Max77812PhaseConfiguration211 */
uint8_t val = 0;
i2c_query(I2C_5, MAX77812_PHASE211_CPU_I2C_ADDR, MAX77812_REG_EN_CTRL, &val, 1);
if (val) {
val |= 0x40;
i2c_send(I2C_5, MAX77812_PHASE211_CPU_I2C_ADDR, MAX77812_REG_EN_CTRL, &val, 1);
}
val = 0x6E;
i2c_send(I2C_5, MAX77812_PHASE211_CPU_I2C_ADDR, MAX77812_REG_M4_VOUT, &val, 1);
break;
default: return;
}
}
static void cluster_pmc_enable_partition(uint32_t part, uint32_t toggle) {
volatile tegra_pmc_t *pmc = pmc_get_regs(); volatile tegra_pmc_t *pmc = pmc_get_regs();
/* Check if the partition has already been turned on. */ /* Check if the partition has already been turned on. */
if (pmc->pwrgate_status & part) if (pmc->pwrgate_status & part) {
return 1; return;
uint32_t i = 5001;
while (pmc->pwrgate_toggle & 0x100)
{
udelay(1);
i--;
if (i < 1)
return 0;
} }
uint32_t i = 5001;
while (pmc->pwrgate_toggle & 0x100) {
udelay(1);
i--;
if (i < 1) {
return;
}
}
/* Turn the partition on. */
pmc->pwrgate_toggle = (toggle | 0x100); pmc->pwrgate_toggle = (toggle | 0x100);
i = 5001; i = 5001;
while (i > 0) while (i > 0) {
{ /* Check if the partition has already been turned on. */
if (pmc->pwrgate_status & part) if (pmc->pwrgate_status & part) {
break; break;
}
udelay(1); udelay(1);
i--; i--;
} }
return 1;
} }
void cluster_boot_cpu0(uint32_t entry) static void cluster_boot_cpu0_erista(uint32_t entry) {
{
volatile tegra_car_t *car = car_get_regs(); volatile tegra_car_t *car = car_get_regs();
/* Set ACTIVE_CLUSER to FAST. */ /* Set ACTIVE_CLUSER to FAST. */
FLOW_CTLR_BPMP_CLUSTER_CONTROL_0 &= 0xFFFFFFFE; FLOW_CTLR_BPMP_CLUSTER_CONTROL_0 &= 0xFFFFFFFE;
_cluster_enable_power(); /* Enable VddCpu. */
cluster_enable_power(0);
if (!(car->pllx_base & 0x40000000)) if (!(car->pllx_base & 0x40000000)) {
{
car->pllx_misc3 &= 0xFFFFFFF7; car->pllx_misc3 &= 0xFFFFFFF7;
udelay(2); udelay(2);
car->pllx_base = 0x80404E02; car->pllx_base = 0x80404E02;
@ -122,13 +144,13 @@ void cluster_boot_cpu0(uint32_t entry)
car->cpu_softrst_ctrl2 &= 0xFFFFF000; car->cpu_softrst_ctrl2 &= 0xFFFFF000;
/* Enable CPU rail. */ /* Enable CPU rail. */
_cluster_pmc_enable_partition(1, 0); cluster_pmc_enable_partition(1, 0);
/* Enable cluster 0 non-CPU. */ /* Enable cluster 0 non-CPU. */
_cluster_pmc_enable_partition(0x8000, 15); cluster_pmc_enable_partition(0x8000, 15);
/* Enable CE0. */ /* Enable CE0. */
_cluster_pmc_enable_partition(0x4000, 14); cluster_pmc_enable_partition(0x4000, 14);
/* Request and wait for RAM repair. */ /* Request and wait for RAM repair. */
FLOW_CTLR_RAM_REPAIR_0 = 1; FLOW_CTLR_RAM_REPAIR_0 = 1;
@ -138,11 +160,6 @@ void cluster_boot_cpu0(uint32_t entry)
MAKE_EXCP_VEC_REG(0x100) = 0; MAKE_EXCP_VEC_REG(0x100) = 0;
/* Check for reset vector lock. */
if (SB_CSR_0 & 2) {
generic_panic();
}
/* Set reset vector. */ /* Set reset vector. */
SB_AA64_RESET_LOW_0 = (entry | 1); SB_AA64_RESET_LOW_0 = (entry | 1);
SB_AA64_RESET_HIGH_0 = 0; SB_AA64_RESET_HIGH_0 = 0;
@ -151,16 +168,6 @@ void cluster_boot_cpu0(uint32_t entry)
SB_CSR_0 = 2; SB_CSR_0 = 2;
(void)SB_CSR_0; (void)SB_CSR_0;
/* Validate reset vector lock + RESET_LOW/HIGH values. */
if (!(SB_CSR_0 & 2)) {
generic_panic();
}
/* TODO: Should we even bother taking as a parameter? */
if (SB_AA64_RESET_LOW_0 != (0x4003D000 | 1) || SB_AA64_RESET_HIGH_0 != 0) {
generic_panic();
}
/* Set CPU_STRICT_TZ_APERTURE_CHECK. */ /* Set CPU_STRICT_TZ_APERTURE_CHECK. */
/* NOTE: [4.0.0+] This was added, but it breaks Exosphère. */ /* NOTE: [4.0.0+] This was added, but it breaks Exosphère. */
/* MAKE_MC_REG(MC_TZ_SECURITY_CTRL) = 1; */ /* MAKE_MC_REG(MC_TZ_SECURITY_CTRL) = 1; */
@ -176,3 +183,81 @@ void cluster_boot_cpu0(uint32_t entry)
/* car->rst_cpug_cmplx_clr = 0x411F000F; */ /* car->rst_cpug_cmplx_clr = 0x411F000F; */
car->rst_cpug_cmplx_clr = 0x41010001; car->rst_cpug_cmplx_clr = 0x41010001;
} }
static void cluster_boot_cpu0_mariko(uint32_t entry) {
volatile tegra_car_t *car = car_get_regs();
/* Set ACTIVE_CLUSER to FAST. */
FLOW_CTLR_BPMP_CLUSTER_CONTROL_0 &= 0xFFFFFFFE;
/* Enable VddCpu. */
cluster_enable_power(fuse_get_regulator());
if (!(car->pllx_base & 0x40000000)) {
car->pllx_misc3 &= 0xFFFFFFF7;
udelay(2);
car->pllx_misc = ((car->pllx_misc & 0xFFFBFFFF) | 0x40000);
car->pllx_base = 0x40404E02;
}
while (!(car->pllx_base & 0x8000000)) {
/* Wait. */
}
/* Set MSELECT clock. */
clk_enable(CARDEVICE_MSELECT);
/* Configure initial CPU clock frequency and enable clock. */
car->cclk_brst_pol = 0x20008888;
car->super_cclk_div = 0x80000000;
car->clk_enb_v_set = 1;
/* Reboot CORESIGHT. */
clkrst_reboot(CARDEVICE_CORESIGHT);
/* Set CAR2PMC_CPU_ACK_WIDTH to 0. */
car->cpu_softrst_ctrl2 &= 0xFFFFF000;
/* Enable CPU rail. */
cluster_pmc_enable_partition(1, 0);
/* Enable cluster 0 non-CPU. */
cluster_pmc_enable_partition(0x8000, 15);
/* Enable CE0. */
cluster_pmc_enable_partition(0x4000, 14);
/* Request and wait for RAM repair. */
FLOW_CTLR_RAM_REPAIR_0 = 1;
while (!(FLOW_CTLR_RAM_REPAIR_0 & 2)) {
/* Wait. */
}
MAKE_EXCP_VEC_REG(0x100) = 0;
/* Set reset vector. */
SB_AA64_RESET_LOW_0 = (entry | 1);
SB_AA64_RESET_HIGH_0 = 0;
/* Non-secure reset vector write disable. */
SB_CSR_0 = 2;
(void)SB_CSR_0;
/* Set CPU_STRICT_TZ_APERTURE_CHECK. */
/* NOTE: This breaks Exosphère. */
/* MAKE_MC_REG(MC_TZ_SECURITY_CTRL) = 1; */
/* Clear MSELECT reset. */
rst_disable(CARDEVICE_MSELECT);
/* Clear CPU{0,1,2,3} POR and CORE, CX0, L2, and DBG reset.*/
car->rst_cpug_cmplx_clr = 0x41010001;
}
void cluster_boot_cpu0(uint32_t entry) {
if (is_soc_mariko()) {
cluster_boot_cpu0_mariko(uint32_t entry);
} else {
cluster_boot_cpu0_erista(uint32_t entry);
}
}

View file

@ -24,12 +24,14 @@
#define I2C1234_BASE 0x7000C000 #define I2C1234_BASE 0x7000C000
#define I2C56_BASE 0x7000D000 #define I2C56_BASE 0x7000D000
#define MAX77621_CPU_I2C_ADDR 0x1B #define MAX77621_CPU_I2C_ADDR 0x1B
#define MAX77621_GPU_I2C_ADDR 0x1C #define MAX77621_GPU_I2C_ADDR 0x1C
#define MAX17050_I2C_ADDR 0x36 #define MAX77812_PHASE31_CPU_I2C_ADDR 0x31
#define MAX77620_PWR_I2C_ADDR 0x3C #define MAX77812_PHASE211_CPU_I2C_ADDR 0x33
#define MAX77620_RTC_I2C_ADDR 0x68 #define MAX17050_I2C_ADDR 0x36
#define BQ24193_I2C_ADDR 0x6B #define MAX77620_PWR_I2C_ADDR 0x3C
#define MAX77620_RTC_I2C_ADDR 0x68
#define BQ24193_I2C_ADDR 0x6B
typedef enum { typedef enum {
I2C_1 = 0, I2C_1 = 0,

View file

@ -0,0 +1,81 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FUSEE_MAX77812_H_
#define FUSEE_MAX77812_H_
#define MAX77812_REG_RESET 0x00
#define MAX77812_REG_INT_SRC 0x01
#define MAX77812_REG_INT_SRC_M 0x02
#define MAX77812_REG_TOPSYS_INT 0x03
#define MAX77812_REG_TOPSYS_INT_M 0x04
#define MAX77812_REG_TOPSYS_STAT 0x05
#define MAX77812_REG_EN_CTRL 0x06
#define MAX77812_REG_STUP_DLY1 0x07
#define MAX77812_REG_STUP_DLY2 0x08
#define MAX77812_REG_STUP_DLY3 0x09
#define MAX77812_REG_SHDN_DLY1 0x0A
#define MAX77812_REG_SHDN_DLY2 0x0B
#define MAX77812_REG_SHDN_DLY3 0x0C
#define MAX77812_REG_SHDN_DLY4 0x0D
#define MAX77812_REG_WDTRSTB_DEB 0x0E
#define MAX77812_REG_GPI_FUNC 0x0F
#define MAX77812_REG_GPI_DEB1 0x10
#define MAX77812_REG_GPI_DEB2 0x11
#define MAX77812_REG_GPI_PD_CTRL 0x12
#define MAX77812_REG_PROT_CFG 0x13
#define MAX77812_REG_I2C_CFG 0x15
#define MAX77812_REG_BUCK_INT 0x20
#define MAX77812_REG_BUCK_INT_M 0x21
#define MAX77812_REG_BUCK_STAT 0x22
#define MAX77812_REG_M1_VOUT 0x23
#define MAX77812_REG_M2_VOUT 0x24
#define MAX77812_REG_M3_VOUT 0x25
#define MAX77812_REG_M4_VOUT 0x26
#define MAX77812_REG_M1_VOUT_D 0x27
#define MAX77812_REG_M2_VOUT_D 0x28
#define MAX77812_REG_M3_VOUT_D 0x29
#define MAX77812_REG_M4_VOUT_D 0x2A
#define MAX77812_REG_M1_VOUT_S 0x2B
#define MAX77812_REG_M2_VOUT_S 0x2C
#define MAX77812_REG_M3_VOUT_S 0x2D
#define MAX77812_REG_M4_VOUT_S 0x2E
#define MAX77812_REG_M1_CGF 0x2F
#define MAX77812_REG_M2_CGF 0x30
#define MAX77812_REG_M3_CGF 0x31
#define MAX77812_REG_M4_CGF 0x32
#define MAX77812_REG_GLB_CFG1 0x33
#define MAX77812_REG_GLB_CFG2 0x34
#define MAX77812_REG_GLB_CFG3 0x35
#define MAX77812_REG_EN_CTRL_MASK(n) BIT(n)
#define MAX77812_START_SLEW_RATE_MASK 0x07
#define MAX77812_SHDN_SLEW_RATE_MASK 0x70
#define MAX77812_RAMPDOWN_SLEW_RATE_MASK 0x07
#define MAX77812_RAMPUP_SLEW_RATE_MASK 0x70
#define MAX77812_VOUT_MASK 0xFF
#define MAX77812_VOUT_N_VOLTAGE 0xFF
#define MAX77812_VOUT_VMIN 250000
#define MAX77812_VOUT_VMAX 1525000
#define MAX77812_VOUT_STEP 5000
#define MAX77812_REGULATOR_ID_M1 0
#define MAX77812_REGULATOR_ID_M2 1
#define MAX77812_REGULATOR_ID_M3 2
#define MAX77812_REGULATOR_ID_M4 3
#endif