Implement KLinkedList; untested

This commit is contained in:
TuxSH 2018-11-01 21:59:06 +01:00 committed by Michael Scire
parent ed982877bd
commit 4078c9a07d
3 changed files with 642 additions and 2 deletions

View file

@ -2,7 +2,7 @@ COMMON_DEFINES := -DBOOST_DISABLE_ASSERTS
COMMON_SOURCES_DIRS := source/core source/interfaces source/interrupts source/kresources\
source/processes source/threading source
COMMON_SETTING := -fPIE -g -nostdlib
COMMON_CFLAGS := -Wall -Werror -O2 -ffunction-sections -fdata-sections -fno-strict-aliasing -fwrapv\
COMMON_CFLAGS := -Wall -Werror -Os -ffunction-sections -fdata-sections -fno-strict-aliasing -fwrapv\
-fno-asynchronous-unwind-tables -fno-unwind-tables -fno-stack-protector
COMMON_CXXFLAGS := -fno-rtti -fno-exceptions -std=gnu++17
COMMON_ASFLAGS :=

View file

@ -0,0 +1,640 @@
#pragma once
#include <iterator>
#include <utility>
#include <algorithm>
#include <initializer_list>
#include <functional>
#include <type_traits>
#include <mesosphere/interfaces/ISlabAllocated.hpp>
namespace mesosphere
{
template<typename T>
class KLinkedList final {
private:
struct List {
Node *last;
Node *first;
size_t size = 0;
};
List list;
struct Node final : public ISlabAllocated<Node> {
//friend class KLinkedList;
Node *prev = nullptr;
Node *next = nullptr;
T data{};
Node() = default;
Node(const Node &other) = default;
Node(Node &&other) = default;
explicit Node(const T &data) : Node(), data{other} {}
explicit Node(const T &&data) : Node(), data{other} {}
template<typename ...Args>
explicit Node(Args&& ...args) : Node(), data{std::forward<Args>(args)...} {}
};
void insert_node_after(Node *pos, Node *nd)
{
// if pos is last & list is empty, ->next writes to first, etc.
pos->next->prev = nd;
nd->prev = pos;
nd->next = pos->next;
pos->next = nd;
++list.size;
}
void insert_node_before(Node *pos, Node *nd)
{
pos->prev->next = nd;
nd->prev = pos->prev;
nd->next = pos;
pos->prev = nd;
++list.size;
}
void remove_node(Node *nd)
{
nd->prev->next = nd->next;
nd->next->prev = nd->prev;
--list.size;
}
public:
template<bool isConst>
class Iterator {
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = typename KLinkedList::value_type;
using difference_type = typename KLinkedList::difference_type;
using pointer = typename std::conditional<
isConst,
typename KLinkedList::const_pointer,
typename KLinkedList::pointer
>::type;
using reference = typename std::conditional<
isConst,
typename KLinkedList::const_reference,
typename KLinkedList::reference
>::type;
bool operator==(const Iterator &other) const
{
return node == other.node;
}
bool operator!=(const Iterator &other) const
{
return !(*this == other);
}
reference operator*()
{
return node->data;
}
pointer operator->()
{
return &node->data;
}
Iterator &operator++()
{
node = node->next;
return *this;
}
Iterator &operator--() {
node = node->prev;
return *this;
}
Iterator &operator++(int) {
const Iterator v{*this};
++(*this);
return v;
}
Iterator &operator--(int) {
const Iterator v{*this};
--(*this);
return v;
}
// allow implicit const->non-const
Iterator(const Iterator<false> &other) : node{other.node} {}
friend class Iterator<true>;
Iterator() = default;
private:
friend class KLinkedList;
KLinkedList::Node *node;
explicit Iterator(KLinkedList::Node *node) : node{node} {}
};
using pointer = T *;
using const_pointer = const T *;
using void_pointer = void *;
using const_void_ptr = const void *;
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using iterator = Iterator<false>;
using const_iterator = Iterator<true>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
KLinkedList() : list{(Node *)&list, (Node *)&list} {};
explicit KLinkedList(size_t count, const T &value) : KLinkedList()
{
for (size_t i = 0; i < count; i++) {
Node *nd = new Node{value};
kassert(nd != nullptr);
insert_node_after(list.last, nd);
}
}
explicit KLinkedList(size_t count) : KLinkedList()
{
for (size_t i = 0; i < count; i++) {
Node *nd = new Node;
kassert(nd != nullptr);
insert_node_after(list.last, nd);
}
}
template<typename InputIt, typename = std::enable_if_t<!std::is_integral_v<InputIt>>>
explicit KLinkedList(InputIt first, InputIt last) : KLinkedList()
{
for (InputIt it = first; it != last; ++it) {
Node *nd = new Node{*it};
kassert(nd != nullptr);
insert_node_after(list.last, nd);
}
}
void swap(KLinkedList &other) noexcept
{
using std::swap; // Enable ADL
swap(list.first, other.list.first);
swap(list.last, other.list.last);
swap(list.size, other.list.size);
}
KLinkedList(KLinkedList &&other) noexcept : KLinkedList()
{
swap(other);
}
KLinkedList(std::initializer_list<T> ilist) : KLinkedList(ilist.begin(), ilist.end()) {}
void clear() noexcept
{
Node *nxt;
for (Node nd = list.first; nd != (Node *)&list; nd = nxt) {
nxt = nd->next;
delete nd;
}
list.size = 0;
}
~KLinkedList()
{
clear();
}
KLinkedList &operator=(KLinkedList other)
{
swap(*this, other);
return *this;
}
KLinkedList &operator=(std::initializer_list<T> ilist)
{
KLinkedList tmp{ilist};
swap(*this, tmp);
return *this;
}
void assign(size_t count, const T &value)
{
KLinkedList tmp{count, value};
swap(*this, tmp);
}
template<typename InputIt, typename = std::enable_if_t<!std::is_integral_v<InputIt>>>
void assign(InputIt first, InputIt last)
{
KLinkedList tmp{first, last};
swap(*this, tmp);
}
void assign(std::initializer_list<T> ilist)
{
KLinkedList tmp{ilist};
swap(*this, tmp);
}
T &front() { return list.first->data; }
const T &front() const { return list.first->data; }
T &back() { return list.last->data; }
const T &back(); const { return list.last->data; }
const_iterator cbegin() const noexcept { return const_iterator{list.first}; }
const_iterator cend() const noexcept { return const_iterator{(Node *)&list}; }
const_iterator begin() const noexcept { return cbegin(); }
const_iterator end() const noexcept { return cend(); }
iterator begin() noexcept { return iterator{list.first}; }
iterator end() noexcept { return iterator{(Node *)&list}; }
const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator{list.last}; }
const_reverse_iterator crend() const noexcept { return const_reverse_iterator{(Node *)&list}; }
const_reverse_iterator rbegin() const noexcept { return crbegin(); }
const_reverse_iterator rend() const noexcept { return crend(); }
reverse_iterator rbegin() const noexcept { return reverse_iterator{list.last}; }
reverse_iterator rend() const noexcept { return reverse_iterator{(Node *)&list}; }
KLinkedList(const KLinkedList &other) : KLinkedList(other.cbegin(), other.cend()) {}
constexpr size_t size() const noexcept { return list.size; }
constexpr bool empty() const noexcept { return list.size == 0; }
iterator insert(const_iterator pos, const T &value)
{
Node *nd = new Node{value};
kassert(nd != nullptr);
insert_node_after(pos.node, nd);
}
iterator insert(const_iterator pos, T &&value)
{
Node *nd = new Node{value};
kassert(nd != nullptr);
insert_node_before(pos.node, nd);
return iterator{nd};
}
iterator insert(const_iterator pos, size_t count, const T &value)
{
iterator ret = pos;
for (size_t i = 0; i < count; i++) {
ret = insert(ret, value);
}
return ret;
}
template<typename InputIt, typename = std::enable_if_t<!std::is_integral_v<InputIt>>>
iterator insert(const_iterator pos, InputIt first, InputIt last)
{
// Note: our list definition allows --begin() to be well defined
Node *f = nullptr;
Node *p = pos.node->prev;
for(InputIt it = first; it != last; ++it) {
Node *nd = new Node{value};
kassert(nd != nullptr);
insert_node_after(p, nd);
p = nd;
f = f == nullptr ? nd : f;
}
return iterator{f};
}
template<typename ...Args>
iterator emplace(const_iterator pos, Args &&...args)
{
Node *nd = new Node{std::forward<Args>(args)...};
kassert(nd != nullptr);
insert_node_before(pos.node, nd);
return iterator{nd};
}
iterator erase(const_iterator pos)
{
iterator ret{pos->next};
remove_node(pos.node);
delete pos.node;
return ret;
}
iterator erase(const_iterator first, const_iterator last)
{
const_iterator next;
for (const_iterator it = first; it != last; it = next) {
next = erase(it);
}
return iterator{next.node};
}
void push_back(const T &value)
{
Node *nd = new Node{value};
kassert(nd != nullptr);
insert_node_after(list.last, nd);
}
void push_back(T &&value)
{
Node *nd = new Node{value};
kassert(nd != nullptr);
insert_node_after(list.last, nd);
}
template< class... Args>
T &emplace_back(Args&&... args)
{
Node *nd = new Node{std::forward<Args>(args)...};
kassert(nd != nullptr);
insert_node_after(list.last, nd);
return nd->data;
}
void pop_back()
{
remove_node(list.last);
delete list.last;
}
void push_front(const T &value)
{
Node *nd = new Node{value};
kassert(nd != nullptr);
insert_node_before(list.first, nd);
}
void push_front(T &&value)
{
Node *nd = new Node{value};
kassert(nd != nullptr);
insert_node_before(list.first, nd);
}
template< class... Args>
T &emplace_front(Args&&... args)
{
Node *nd = new Node{std::forward<Args>(args)...};
kassert(nd != nullptr);
insert_node_before(list.first, nd);
return nd->data;
}
void pop_front()
{
remove_node(list.first);
}
void resize(size_t count)
{
if (count < list.size) {
while (count < list.size) {
pop_back();
}
} else {
for (size_t i = 0; i < count - list.size; i++) {
Node *nd = new Node;
kassert(nd != nullptr);
insert_node_after(list.last, nd);
}
}
}
void resize(size_t count, const T &value)
{
if (count < list.size) {
while (count < list.size) {
pop_back();
}
} else {
for (size_t i = 0; i < count - list.size; i++) {
Node *nd = new Node{value};
kassert(nd != nullptr);
insert_node_after(list.last, nd);
}
}
}
void splice(const_iterator pos, KLinkedList &&other)
{
Node *before = pos.node->prev;
Node *after = pos.node->next;
before->next = other.list.first;
before->next->prev = before;
after->prev = other.list.last;
after->prev->next = after;
list.size += other.list.size;
other.list.size = 0;
other.list.first = other.list.last = (Node *)&other.list;
}
void splice(const_iterator pos, KLinkedList &&other, const_iterator it)
{
other.remove_node(it.node);
insert_node_before(pos.node, it.node);
}
void splice(const_iterator pos, KLinkedList &&other, const_iterator first, const_iterator last)
{
if (*this == other) {
Node *before = pos.node->prev;
Node *after = pos.node->next;
before->next = first.node;
before->next->prev = before;
after->prev = last.node;
after->prev->next = after;
} else {
// Note: the first, last version can't be O(1) because std::distance is O(n)...
const_iterator next;
for (const_iterator it = first; it != last; it = next) {
next = it;
++next;
splice(pos, other, it);
++pos;
}
}
}
size_t remove(const T &value)
{
size_t n = 0;
const_iterator next;
for (const_iterator it = cbegin(); it != cend(); ) {
if (*it == value) {
it = erase(it);
++n;
} else {
++it;
}
}
return n;
}
template<typename UnaryPredicate>
size_t remove_if(UnaryPredicate p)
{
const_iterator next;
for (const_iterator it = cbegin(); it != cend(); ) {
if (p(*it)) {
it = erase(it);
++n;
} else {
++it;
}
}
return n;
}
template<typename Compare>
void merge(KLinkedList &other, Compare p)
{
Node hd{};
Node *cur = &hd;
size_t n = 0;
while (list.size > 0 && other.list.size > 0) {
if (p(list.first, other.list.first)) {
cur->next = list.first;
remove_node(list.first);
} else {
cur->next = other.list.first;
other.remove_node(other.list.first);
}
cur->next->prev = cur;
cur = cur->next;
n++;
}
// Steal the remaining elements
if (list.size > 0) {
cur->next = list.first;
list.first->prev = cur;
n += list.size;
} else if (other.list.size > 0) {
cur->next = other.list.first;
other.list.first->prev = cur;
n += other.list.size;
}
// Reset the other list to put it in a valid state
other.list.first = other.list.last = (Node *)other.list;
other.list.size = 0;
// Finally, normalize the result and assign it to this
list.first = hd.next;
list.last = cur;
list.size = n;
list.first->prev = list.last->next = (Node *)list;
}
void merge(KLinkedList &other)
{
merge(other, std::less{});
}
template<typename Compare>
void merge(KLinkedList &&other, Compare p)
{
KLinkedList &o = other;
merge(o, p);
}
void merge(KLinkedList &&other)
{
merge(other, std::less{});
}
void reverse() noexcept
{
Node hd{};
Node *cur = &hd;
size_t n = 0;
while (list.size > 0) {
cur->next = list.last;
remove_node(list.last);
cur->next->prev = cur;
n++;
cur = cur->next;
}
list.first = hd.next;
list.last = cur;
list.size = n;
list.first->prev = list.last->next = (Node *)list;
}
template<typename BinaryPredicate>
size_t unique(BinaryPredicate p)
{
Node *nxt;
size_t n = 0;
for (Node *nd = list.first; nd != (Node *)list; nd = nxt) {
nxt = nd->next;
for (Node *nd2 = nxt; nd2 != (Node *)list && p(nd->data, nd2->data); nd2 = nxt) {
nxt = nd2->next;
remove_node(nd2);
delete nd2;
++n;
}
}
return n;
}
size_t unique()
{
return unique(std::equal_to);
}
// sort: a PITA to implement and not needed anyway
friend bool operator==(const KLinkedList &lhs, const KLinkedList &rhs)
{
return std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin());
}
friend bool operator!=(const KLinkedList &lhs, const KLinkedList &rhs)
{
return !(lhs == rhs);
}
friend bool operator<(const KLinkedList &lhs, const KLinkedList &rhs)
{
return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend(), std::less{});
}
friend bool operator>(const KLinkedList &lhs, const KLinkedList &rhs)
{
return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend(), std::greater{});
}
friend bool operator<=(const KLinkedList &lhs, const KLinkedList &rhs)
{
return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend(), std::less_equal{});
}
friend bool operator>=(const KLinkedList &lhs, const KLinkedList &rhs)
{
return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend(), std::greater_equal{});
}
friend void swap(KLinkedList &lhs, KLinkedList &rhs)
{
lhs.swap(rhs);
}
};
}

View file

@ -828,7 +828,7 @@ strcpy (char *dst0,
#if defined(PREFER_SIZE_OVER_SPEED) || defined(__OPTIMIZE_SIZE__)
char *s = dst0;
while (*dst0++ = *src0++)
while ((*dst0++ = *src0++))
;
return s;