kern: implement 64-virtual-core interface

This commit is contained in:
Michael Scire 2020-12-01 15:54:31 -08:00 committed by SciresM
parent 3fd59b61bc
commit 28f9b534b6
8 changed files with 224 additions and 96 deletions

View file

@ -0,0 +1,33 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <mesosphere/kern_common.hpp>
namespace ams::kern::board::nintendo::nx::impl::cpu {
/* Virtual to Physical core map. */
constexpr inline const s32 VirtualToPhysicalCoreMap[BITSIZEOF(u64)] = {
0, 1, 2, 3, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 3,
};
}

View file

@ -152,7 +152,8 @@ namespace ams::kern {
ConditionVariableThreadTree *condvar_tree{}; ConditionVariableThreadTree *condvar_tree{};
uintptr_t condvar_key{}; uintptr_t condvar_key{};
KAffinityMask affinity_mask{}; u64 virtual_affinity_mask{};
KAffinityMask physical_affinity_mask{};
u64 thread_id{}; u64 thread_id{};
std::atomic<s64> cpu_time{}; std::atomic<s64> cpu_time{};
KSynchronizationObject *synced_object{}; KSynchronizationObject *synced_object{};
@ -181,12 +182,13 @@ namespace ams::kern {
Result wait_result; Result wait_result;
Result debug_exception_result; Result debug_exception_result;
s32 base_priority{}; s32 base_priority{};
s32 ideal_core_id{}; s32 physical_ideal_core_id{};
s32 virtual_ideal_core_id{};
s32 num_kernel_waiters{}; s32 num_kernel_waiters{};
s32 current_core_id{}; s32 current_core_id{};
s32 core_id{}; s32 core_id{};
KAffinityMask original_affinity_mask{}; KAffinityMask original_physical_affinity_mask{};
s32 original_ideal_core_id{}; s32 original_physical_ideal_core_id{};
s32 num_core_migration_disables{}; s32 num_core_migration_disables{};
ThreadState thread_state{}; ThreadState thread_state{};
std::atomic<bool> termination_requested{}; std::atomic<bool> termination_requested{};
@ -202,21 +204,21 @@ namespace ams::kern {
virtual ~KThread() { /* ... */ } virtual ~KThread() { /* ... */ }
Result Initialize(KThreadFunction func, uintptr_t arg, void *kern_stack_top, KProcessAddress user_stack_top, s32 prio, s32 core, KProcess *owner, ThreadType type); Result Initialize(KThreadFunction func, uintptr_t arg, void *kern_stack_top, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner, ThreadType type);
private: private:
static Result InitializeThread(KThread *thread, KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio, s32 core, KProcess *owner, ThreadType type); static Result InitializeThread(KThread *thread, KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner, ThreadType type);
public: public:
static Result InitializeKernelThread(KThread *thread, KThreadFunction func, uintptr_t arg, s32 prio, s32 core) { static Result InitializeKernelThread(KThread *thread, KThreadFunction func, uintptr_t arg, s32 prio, s32 virt_core) {
return InitializeThread(thread, func, arg, Null<KProcessAddress>, prio, core, nullptr, ThreadType_Kernel); return InitializeThread(thread, func, arg, Null<KProcessAddress>, prio, virt_core, nullptr, ThreadType_Kernel);
} }
static Result InitializeHighPriorityThread(KThread *thread, KThreadFunction func, uintptr_t arg) { static Result InitializeHighPriorityThread(KThread *thread, KThreadFunction func, uintptr_t arg) {
return InitializeThread(thread, func, arg, Null<KProcessAddress>, 0, GetCurrentCoreId(), nullptr, ThreadType_HighPriority); return InitializeThread(thread, func, arg, Null<KProcessAddress>, 0, GetCurrentCoreId(), nullptr, ThreadType_HighPriority);
} }
static Result InitializeUserThread(KThread *thread, KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio, s32 core, KProcess *owner) { static Result InitializeUserThread(KThread *thread, KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner) {
return InitializeThread(thread, func, arg, user_stack_top, prio, core, owner, ThreadType_User); return InitializeThread(thread, func, arg, user_stack_top, prio, virt_core, owner, ThreadType_User);
} }
static void ResumeThreadsSuspendedForInit(); static void ResumeThreadsSuspendedForInit();
@ -323,10 +325,14 @@ namespace ams::kern {
constexpr KThreadContext &GetContext() { return this->thread_context; } constexpr KThreadContext &GetContext() { return this->thread_context; }
constexpr const KThreadContext &GetContext() const { return this->thread_context; } constexpr const KThreadContext &GetContext() const { return this->thread_context; }
constexpr const KAffinityMask &GetAffinityMask() const { return this->affinity_mask; } constexpr const u64 GetVirtualAffinityMask() const { return this->virtual_affinity_mask; }
constexpr const KAffinityMask &GetAffinityMask() const { return this->physical_affinity_mask; }
Result GetCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask); Result GetCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask);
Result SetCoreMask(int32_t ideal_core, u64 affinity_mask); Result SetCoreMask(int32_t ideal_core, u64 affinity_mask);
Result GetPhysicalCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask);
constexpr ThreadState GetState() const { return static_cast<ThreadState>(this->thread_state & ThreadState_Mask); } constexpr ThreadState GetState() const { return static_cast<ThreadState>(this->thread_state & ThreadState_Mask); }
constexpr ThreadState GetRawState() const { return this->thread_state; } constexpr ThreadState GetRawState() const { return this->thread_state; }
NOINLINE void SetState(ThreadState state); NOINLINE void SetState(ThreadState state);
@ -374,7 +380,9 @@ namespace ams::kern {
return this->condvar_tree != nullptr; return this->condvar_tree != nullptr;
} }
constexpr s32 GetIdealCore() const { return this->ideal_core_id; } constexpr s32 GetIdealVirtualCore() const { return this->virtual_ideal_core_id; }
constexpr s32 GetIdealPhysicalCore() const { return this->physical_ideal_core_id; }
constexpr s32 GetActiveCore() const { return this->core_id; } constexpr s32 GetActiveCore() const { return this->core_id; }
constexpr void SetActiveCore(s32 core) { this->core_id = core; } constexpr void SetActiveCore(s32 core) { this->core_id = core; }

View file

@ -28,3 +28,24 @@
#else #else
#error "Unknown architecture for CPU" #error "Unknown architecture for CPU"
#endif #endif
#ifdef ATMOSPHERE_BOARD_NINTENDO_NX
#include <mesosphere/board/nintendo/nx/kern_cpu_map.hpp>
namespace ams::kern::cpu {
using namespace ams::kern::board::nintendo::nx::impl::cpu;
}
#else
#error "Unknown board for CPU Map"
#endif
namespace ams::kern {
static_assert(cpu::NumCores <= static_cast<s32>(BITSIZEOF(u64)));
static_assert(util::size(cpu::VirtualToPhysicalCoreMap) == BITSIZEOF(u64));
}

View file

@ -922,7 +922,7 @@ namespace ams::kern {
mem_reservation.Commit(); mem_reservation.Commit();
/* Note for debug that we're running a new process. */ /* Note for debug that we're running a new process. */
MESOSPHERE_LOG("KProcess::Run() pid=%ld name=%-12s thread=%ld affinity=0x%lx ideal_core=%d active_core=%d\n", this->process_id, this->name, main_thread->GetId(), main_thread->GetAffinityMask().GetAffinityMask(), main_thread->GetIdealCore(), main_thread->GetActiveCore()); MESOSPHERE_LOG("KProcess::Run() pid=%ld name=%-12s thread=%ld affinity=0x%lx ideal_core=%d active_core=%d\n", this->process_id, this->name, main_thread->GetId(), main_thread->GetVirtualAffinityMask(), main_thread->GetIdealVirtualCore(), main_thread->GetActiveCore());
return ResultSuccess(); return ResultSuccess();
} }

View file

@ -38,13 +38,17 @@ namespace ams::kern {
} }
Result KThread::Initialize(KThreadFunction func, uintptr_t arg, void *kern_stack_top, KProcessAddress user_stack_top, s32 prio, s32 core, KProcess *owner, ThreadType type) { Result KThread::Initialize(KThreadFunction func, uintptr_t arg, void *kern_stack_top, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner, ThreadType type) {
/* Assert parameters are valid. */ /* Assert parameters are valid. */
MESOSPHERE_ASSERT_THIS(); MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(kern_stack_top != nullptr); MESOSPHERE_ASSERT(kern_stack_top != nullptr);
MESOSPHERE_ASSERT((type == ThreadType_Main) || (ams::svc::HighestThreadPriority <= prio && prio <= ams::svc::LowestThreadPriority)); MESOSPHERE_ASSERT((type == ThreadType_Main) || (ams::svc::HighestThreadPriority <= prio && prio <= ams::svc::LowestThreadPriority));
MESOSPHERE_ASSERT((owner != nullptr) || (type != ThreadType_User)); MESOSPHERE_ASSERT((owner != nullptr) || (type != ThreadType_User));
MESOSPHERE_ASSERT(0 <= core && core < static_cast<s32>(cpu::NumCores)); MESOSPHERE_ASSERT(0 <= virt_core && virt_core < static_cast<s32>(BITSIZEOF(u64)));
/* Convert the virtual core to a physical core. */
const s32 phys_core = cpu::VirtualToPhysicalCoreMap[virt_core];
MESOSPHERE_ASSERT(0 <= phys_core && phys_core < static_cast<s32>(cpu::NumCores));
/* First, clear the TLS address. */ /* First, clear the TLS address. */
this->tls_address = Null<KProcessAddress>; this->tls_address = Null<KProcessAddress>;
@ -60,7 +64,7 @@ namespace ams::kern {
[[fallthrough]]; [[fallthrough]];
case ThreadType_HighPriority: case ThreadType_HighPriority:
{ {
MESOSPHERE_ASSERT(core == GetCurrentCoreId()); MESOSPHERE_ASSERT(phys_core == GetCurrentCoreId());
} }
[[fallthrough]]; [[fallthrough]];
case ThreadType_Kernel: case ThreadType_Kernel:
@ -71,8 +75,8 @@ namespace ams::kern {
[[fallthrough]]; [[fallthrough]];
case ThreadType_User: case ThreadType_User:
{ {
MESOSPHERE_ASSERT(((owner == nullptr) || (owner->GetCoreMask() | (1ul << core)) == owner->GetCoreMask())); MESOSPHERE_ASSERT(((owner == nullptr) || (owner->GetCoreMask() | (1ul << virt_core)) == owner->GetCoreMask()));
MESOSPHERE_ASSERT(((owner == nullptr) || (owner->GetPriorityMask() | (1ul << prio)) == owner->GetPriorityMask())); MESOSPHERE_ASSERT(((owner == nullptr) || (owner->GetPriorityMask() | (1ul << prio)) == owner->GetPriorityMask()));
} }
break; break;
default: default:
@ -81,8 +85,10 @@ namespace ams::kern {
} }
/* Set the ideal core ID and affinity mask. */ /* Set the ideal core ID and affinity mask. */
this->ideal_core_id = core; this->virtual_ideal_core_id = virt_core;
this->affinity_mask.SetAffinity(core, true); this->physical_ideal_core_id = phys_core;
this->virtual_affinity_mask = (static_cast<u64>(1) << virt_core);
this->physical_affinity_mask.SetAffinity(phys_core, true);
/* Set the thread state. */ /* Set the thread state. */
this->thread_state = (type == ThreadType_Main) ? ThreadState_Runnable : ThreadState_Initialized; this->thread_state = (type == ThreadType_Main) ? ThreadState_Runnable : ThreadState_Initialized;
@ -103,7 +109,7 @@ namespace ams::kern {
this->cancellable = false; this->cancellable = false;
/* Set core ID and wait result. */ /* Set core ID and wait result. */
this->core_id = this->ideal_core_id; this->core_id = phys_core;
this->wait_result = svc::ResultNoSynchronizationObject(); this->wait_result = svc::ResultNoSynchronizationObject();
/* Set the stack top. */ /* Set the stack top. */
@ -141,7 +147,7 @@ namespace ams::kern {
this->num_kernel_waiters = 0; this->num_kernel_waiters = 0;
/* Set our current core id. */ /* Set our current core id. */
this->current_core_id = core; this->current_core_id = phys_core;
/* We haven't released our resource limit hint, and we've spent no time on the cpu. */ /* We haven't released our resource limit hint, and we've spent no time on the cpu. */
this->resource_limit_release_hint = 0; this->resource_limit_release_hint = 0;
@ -390,20 +396,19 @@ namespace ams::kern {
++this->num_core_migration_disables; ++this->num_core_migration_disables;
/* Save our ideal state to restore when we're unpinned. */ /* Save our ideal state to restore when we're unpinned. */
this->original_ideal_core_id = this->ideal_core_id; this->original_physical_ideal_core_id = this->physical_ideal_core_id;
this->original_affinity_mask = this->affinity_mask; this->original_physical_affinity_mask = this->physical_affinity_mask;
/* Bind ourselves to this core. */ /* Bind ourselves to this core. */
const s32 active_core = this->GetActiveCore(); const s32 active_core = this->GetActiveCore();
const s32 current_core = GetCurrentCoreId(); const s32 current_core = GetCurrentCoreId();
this->SetActiveCore(current_core); this->SetActiveCore(current_core);
this->ideal_core_id = current_core; this->physical_ideal_core_id = current_core;
this->physical_affinity_mask.SetAffinityMask(1ul << current_core);
this->affinity_mask.SetAffinityMask(1ul << current_core); if (active_core != current_core || this->physical_affinity_mask.GetAffinityMask() != this->original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(this, this->original_physical_affinity_mask, active_core);
if (active_core != current_core || this->affinity_mask.GetAffinityMask() != this->original_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(this, this->original_affinity_mask, active_core);
} }
} }
@ -438,19 +443,19 @@ namespace ams::kern {
--this->num_core_migration_disables; --this->num_core_migration_disables;
/* Restore our original state. */ /* Restore our original state. */
const KAffinityMask old_mask = this->affinity_mask; const KAffinityMask old_mask = this->physical_affinity_mask;
this->ideal_core_id = this->original_ideal_core_id; this->physical_ideal_core_id = this->original_physical_ideal_core_id;
this->affinity_mask = this->original_affinity_mask; this->physical_affinity_mask = this->original_physical_affinity_mask;
if (this->affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) { if (this->physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore(); const s32 active_core = this->GetActiveCore();
if (!this->affinity_mask.GetAffinity(active_core)) { if (!this->physical_affinity_mask.GetAffinity(active_core)) {
if (this->ideal_core_id >= 0) { if (this->physical_ideal_core_id >= 0) {
this->SetActiveCore(this->ideal_core_id); this->SetActiveCore(this->physical_ideal_core_id);
} else { } else {
this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(this->affinity_mask.GetAffinityMask())); this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(this->physical_affinity_mask.GetAffinityMask()));
} }
} }
KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core); KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core);
@ -492,16 +497,16 @@ namespace ams::kern {
MESOSPHERE_ASSERT(this->num_core_migration_disables >= 0); MESOSPHERE_ASSERT(this->num_core_migration_disables >= 0);
if ((this->num_core_migration_disables++) == 0) { if ((this->num_core_migration_disables++) == 0) {
/* Save our ideal state to restore when we can migrate again. */ /* Save our ideal state to restore when we can migrate again. */
this->original_ideal_core_id = this->ideal_core_id; this->original_physical_ideal_core_id = this->physical_ideal_core_id;
this->original_affinity_mask = this->affinity_mask; this->original_physical_affinity_mask = this->physical_affinity_mask;
/* Bind ourselves to this core. */ /* Bind ourselves to this core. */
const s32 active_core = this->GetActiveCore(); const s32 active_core = this->GetActiveCore();
this->ideal_core_id = active_core; this->physical_ideal_core_id = active_core;
this->affinity_mask.SetAffinityMask(1ul << active_core); this->physical_affinity_mask.SetAffinityMask(1ul << active_core);
if (this->affinity_mask.GetAffinityMask() != this->original_affinity_mask.GetAffinityMask()) { if (this->physical_affinity_mask.GetAffinityMask() != this->original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(this, this->original_affinity_mask, active_core); KScheduler::OnThreadAffinityMaskChanged(this, this->original_physical_affinity_mask, active_core);
} }
} }
} }
@ -513,20 +518,20 @@ namespace ams::kern {
KScopedSchedulerLock sl; KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(this->num_core_migration_disables > 0); MESOSPHERE_ASSERT(this->num_core_migration_disables > 0);
if ((--this->num_core_migration_disables) == 0) { if ((--this->num_core_migration_disables) == 0) {
const KAffinityMask old_mask = this->affinity_mask; const KAffinityMask old_mask = this->physical_affinity_mask;
/* Restore our ideals. */ /* Restore our ideals. */
this->ideal_core_id = this->original_ideal_core_id; this->physical_ideal_core_id = this->original_physical_ideal_core_id;
this->affinity_mask = this->original_affinity_mask; this->physical_affinity_mask = this->original_physical_affinity_mask;
if (this->affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) { if (this->physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore(); const s32 active_core = this->GetActiveCore();
if (!this->affinity_mask.GetAffinity(active_core)) { if (!this->physical_affinity_mask.GetAffinity(active_core)) {
if (this->ideal_core_id >= 0) { if (this->physical_ideal_core_id >= 0) {
this->SetActiveCore(this->ideal_core_id); this->SetActiveCore(this->physical_ideal_core_id);
} else { } else {
this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(this->affinity_mask.GetAffinityMask())); this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(this->physical_affinity_mask.GetAffinityMask()));
} }
} }
KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core); KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core);
@ -535,6 +540,19 @@ namespace ams::kern {
} }
Result KThread::GetCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask) { Result KThread::GetCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask) {
MESOSPHERE_ASSERT_THIS();
{
KScopedSchedulerLock sl;
/* Get the virtual mask. */
*out_ideal_core = this->virtual_ideal_core_id;
*out_affinity_mask = this->virtual_affinity_mask;
}
return ResultSuccess();
}
Result KThread::GetPhysicalCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask) {
MESOSPHERE_ASSERT_THIS(); MESOSPHERE_ASSERT_THIS();
{ {
KScopedSchedulerLock sl; KScopedSchedulerLock sl;
@ -542,63 +560,72 @@ namespace ams::kern {
/* Select between core mask and original core mask. */ /* Select between core mask and original core mask. */
if (this->num_core_migration_disables == 0) { if (this->num_core_migration_disables == 0) {
*out_ideal_core = this->ideal_core_id; *out_ideal_core = this->physical_ideal_core_id;
*out_affinity_mask = this->affinity_mask.GetAffinityMask(); *out_affinity_mask = this->physical_affinity_mask.GetAffinityMask();
} else { } else {
*out_ideal_core = this->original_ideal_core_id; *out_ideal_core = this->original_physical_ideal_core_id;
*out_affinity_mask = this->original_affinity_mask.GetAffinityMask(); *out_affinity_mask = this->original_physical_affinity_mask.GetAffinityMask();
} }
} }
return ResultSuccess(); return ResultSuccess();
} }
Result KThread::SetCoreMask(int32_t ideal_core, u64 affinity_mask) { Result KThread::SetCoreMask(int32_t core_id, u64 v_affinity_mask) {
MESOSPHERE_ASSERT_THIS(); MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(this->parent != nullptr); MESOSPHERE_ASSERT(this->parent != nullptr);
MESOSPHERE_ASSERT(affinity_mask != 0); MESOSPHERE_ASSERT(v_affinity_mask != 0);
KScopedLightLock lk(this->activity_pause_lock); KScopedLightLock lk(this->activity_pause_lock);
/* Set the core mask. */ /* Set the core mask. */
u64 p_affinity_mask = 0;
{ {
KScopedSchedulerLock sl; KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(this->num_core_migration_disables >= 0); MESOSPHERE_ASSERT(this->num_core_migration_disables >= 0);
/* If the core id is no-update magic, preserve the ideal core id. */ /* If the core id is no-update magic, preserve the ideal core id. */
if (ideal_core == ams::svc::IdealCoreNoUpdate) { if (core_id == ams::svc::IdealCoreNoUpdate) {
if (this->num_core_migration_disables == 0) { core_id = this->virtual_ideal_core_id;
ideal_core = this->ideal_core_id; R_UNLESS(((1ul << core_id) & v_affinity_mask) != 0, svc::ResultInvalidCombination());
} else { }
ideal_core = this->original_ideal_core_id;
}
R_UNLESS(((1ul << ideal_core) & affinity_mask) != 0, svc::ResultInvalidCombination()); /* Set the virtual core/affinity mask. */
this->virtual_ideal_core_id = core_id;
this->virtual_affinity_mask = v_affinity_mask;
/* Translate the virtual core to a physical core. */
if (core_id >= 0) {
core_id = cpu::VirtualToPhysicalCoreMap[core_id];
}
/* Translate the virtual affinity mask to a physical one. */
while (v_affinity_mask != 0) {
const u64 next = __builtin_ctzll(v_affinity_mask);
v_affinity_mask &= ~(1ul << next);
p_affinity_mask |= (1ul << cpu::VirtualToPhysicalCoreMap[next]);
} }
/* If we haven't disabled migration, perform an affinity change. */ /* If we haven't disabled migration, perform an affinity change. */
if (this->num_core_migration_disables == 0) { if (this->num_core_migration_disables == 0) {
const KAffinityMask old_mask = this->affinity_mask; const KAffinityMask old_mask = this->physical_affinity_mask;
/* Set our new ideals. */ /* Set our new ideals. */
this->ideal_core_id = ideal_core; this->physical_ideal_core_id = core_id;
this->affinity_mask.SetAffinityMask(affinity_mask); this->physical_affinity_mask.SetAffinityMask(p_affinity_mask);
if (this->affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) { if (this->physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore(); const s32 active_core = this->GetActiveCore();
if (active_core >= 0) { if (active_core >= 0 && !this->physical_affinity_mask.GetAffinity(active_core)) {
if (!this->affinity_mask.GetAffinity(active_core)) { const s32 new_core = this->physical_ideal_core_id >= 0 ? this->physical_ideal_core_id : BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(this->physical_affinity_mask.GetAffinityMask());
this->SetActiveCore(this->ideal_core_id); this->SetActiveCore(new_core);
} else {
this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(this->affinity_mask.GetAffinityMask()));
}
} }
KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core); KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core);
} }
} else { } else {
/* Otherwise, we edit the original affinity for restoration later. */ /* Otherwise, we edit the original affinity for restoration later. */
this->original_ideal_core_id = ideal_core; this->original_physical_ideal_core_id = core_id;
this->original_affinity_mask.SetAffinityMask(affinity_mask); this->original_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
} }
} }
@ -627,7 +654,7 @@ namespace ams::kern {
} }
/* If the thread is currently running, check whether it's no longer allowed under the new mask. */ /* If the thread is currently running, check whether it's no longer allowed under the new mask. */
if (thread_is_current && ((1ul << thread_core) & affinity_mask) == 0) { if (thread_is_current && ((1ul << thread_core) & p_affinity_mask) == 0) {
/* If the thread is pinned, we want to wait until it's not pinned. */ /* If the thread is pinned, we want to wait until it's not pinned. */
if (this->GetStackParameters().is_pinned) { if (this->GetStackParameters().is_pinned) {
/* Verify that the current thread isn't terminating. */ /* Verify that the current thread isn't terminating. */
@ -1127,7 +1154,7 @@ namespace ams::kern {
/* If the thread is runnable, send a termination interrupt to other cores. */ /* If the thread is runnable, send a termination interrupt to other cores. */
if (this->GetState() == ThreadState_Runnable) { if (this->GetState() == ThreadState_Runnable) {
if (const u64 core_mask = this->affinity_mask.GetAffinityMask() & ~(1ul << GetCurrentCoreId()); core_mask != 0) { if (const u64 core_mask = this->physical_affinity_mask.GetAffinityMask() & ~(1ul << GetCurrentCoreId()); core_mask != 0) {
cpu::DataSynchronizationBarrier(); cpu::DataSynchronizationBarrier();
Kernel::GetInterruptManager().SendInterProcessorInterrupt(KInterruptName_ThreadTerminate, core_mask); Kernel::GetInterruptManager().SendInterProcessorInterrupt(KInterruptName_ThreadTerminate, core_mask);
} }

View file

@ -363,7 +363,11 @@ namespace ams::kern::svc {
case ams::svc::DebugThreadParam_IdealCore: case ams::svc::DebugThreadParam_IdealCore:
{ {
/* Get the ideal core. */ /* Get the ideal core. */
*out_32 = thread->GetIdealCore(); s32 core_id;
u64 affinity_mask;
thread->GetPhysicalCoreMask(std::addressof(core_id), std::addressof(affinity_mask));
*out_32 = core_id;
} }
break; break;
case ams::svc::DebugThreadParam_CurrentCore: case ams::svc::DebugThreadParam_CurrentCore:
@ -375,7 +379,11 @@ namespace ams::kern::svc {
case ams::svc::DebugThreadParam_AffinityMask: case ams::svc::DebugThreadParam_AffinityMask:
{ {
/* Get the affinity mask. */ /* Get the affinity mask. */
*out_32 = thread->GetAffinityMask().GetAffinityMask(); s32 core_id;
u64 affinity_mask;
thread->GetPhysicalCoreMask(std::addressof(core_id), std::addressof(affinity_mask));
*out_32 = affinity_mask;
} }
break; break;
default: default:

View file

@ -206,28 +206,35 @@ namespace ams::kern::svc {
case ams::svc::InfoType_ThreadTickCount: case ams::svc::InfoType_ThreadTickCount:
{ {
/* Verify the requested core is valid. */ /* Verify the requested core is valid. */
const bool core_valid = (info_subtype == static_cast<u64>(-1ul)) || (info_subtype < cpu::NumCores); const bool core_valid = (info_subtype == static_cast<u64>(-1ul)) || (info_subtype < util::size(cpu::VirtualToPhysicalCoreMap));
R_UNLESS(core_valid, svc::ResultInvalidCombination()); R_UNLESS(core_valid, svc::ResultInvalidCombination());
/* Get the thread from its handle. */ /* Get the thread from its handle. */
KScopedAutoObject thread = GetCurrentProcess().GetHandleTable().GetObject<KThread>(handle); KScopedAutoObject thread = GetCurrentProcess().GetHandleTable().GetObject<KThread>(handle);
R_UNLESS(thread.IsNotNull(), svc::ResultInvalidHandle()); R_UNLESS(thread.IsNotNull(), svc::ResultInvalidHandle());
/* Get the tick count. */ /* Disable interrupts while we get the tick count. */
s64 tick_count; s64 tick_count;
if (info_subtype == static_cast<u64>(-1ul)) { {
tick_count = thread->GetCpuTime(); KScopedInterruptDisable di;
if (GetCurrentThreadPointer() == thread.GetPointerUnsafe()) {
const s64 cur_tick = KHardwareTimer::GetTick(); if (info_subtype == static_cast<u64>(-1ul)) {
const s64 prev_switch = Kernel::GetScheduler().GetLastContextSwitchTime(); tick_count = thread->GetCpuTime();
tick_count += (cur_tick - prev_switch); if (GetCurrentThreadPointer() == thread.GetPointerUnsafe()) {
} const s64 cur_tick = KHardwareTimer::GetTick();
} else { const s64 prev_switch = Kernel::GetScheduler().GetLastContextSwitchTime();
tick_count = thread->GetCpuTime(static_cast<s32>(info_subtype)); tick_count += (cur_tick - prev_switch);
if (GetCurrentThreadPointer() == thread.GetPointerUnsafe() && static_cast<s32>(info_subtype) == GetCurrentCoreId()) { }
const s64 cur_tick = KHardwareTimer::GetTick(); } else {
const s64 prev_switch = Kernel::GetScheduler().GetLastContextSwitchTime(); const s32 phys_core = cpu::VirtualToPhysicalCoreMap[info_subtype];
tick_count += (cur_tick - prev_switch); MESOSPHERE_ABORT_UNLESS(phys_core < static_cast<s32>(cpu::NumCores));
tick_count = thread->GetCpuTime(phys_core);
if (GetCurrentThreadPointer() == thread.GetPointerUnsafe() && phys_core == GetCurrentCoreId()) {
const s64 cur_tick = KHardwareTimer::GetTick();
const s64 prev_switch = Kernel::GetScheduler().GetLastContextSwitchTime();
tick_count += (cur_tick - prev_switch);
}
} }
} }

View file

@ -22,7 +22,31 @@ namespace ams::kern::svc {
namespace { namespace {
int32_t GetCurrentProcessorNumber() { int32_t GetCurrentProcessorNumber() {
return GetCurrentCoreId(); /* Setup variables to track affinity information. */
s32 current_phys_core;
u64 v_affinity_mask = 0;
/* Forever try to get the affinity. */
while (true) {
/* Update affinity information if we've run out. */
while (v_affinity_mask == 0) {
current_phys_core = GetCurrentCoreId();
v_affinity_mask = GetCurrentThread().GetVirtualAffinityMask();
if ((v_affinity_mask & (1ul << current_phys_core)) != 0) {
return current_phys_core;
}
}
/* Check the next virtual bit. */
do {
const s32 next_virt_core = static_cast<s32>(__builtin_ctzll(v_affinity_mask));
if (current_phys_core == cpu::VirtualToPhysicalCoreMap[next_virt_core]) {
return next_virt_core;
}
v_affinity_mask &= ~(1ul << next_virt_core);
} while (v_affinity_mask != 0);
}
} }
} }