kern: use new AtomicRef, use Atomic<bool>

This commit is contained in:
Michael Scire 2021-10-20 13:29:38 -07:00
parent aed9d3f535
commit 20716cb3de
7 changed files with 334 additions and 160 deletions

View file

@ -39,13 +39,13 @@ namespace ams::kern {
static_assert(ams::svc::HighestThreadPriority <= HighestCoreMigrationAllowedPriority);
struct SchedulingState {
util::Atomic<u8> needs_scheduling{false};
util::Atomic<bool> needs_scheduling{false};
bool interrupt_task_runnable{false};
bool should_count_idle{false};
u64 idle_count{0};
KThread *highest_priority_thread{nullptr};
void *idle_thread_stack{nullptr};
util::Atomic<KThread *> prev_thread{nullptr};
KThread *prev_thread{nullptr};
KInterruptTaskManager *interrupt_task_manager{nullptr};
constexpr SchedulingState() = default;
@ -100,7 +100,7 @@ namespace ams::kern {
}
ALWAYS_INLINE KThread *GetPreviousThread() const {
return m_state.prev_thread.Load<std::memory_order_relaxed>();
return m_state.prev_thread;
}
ALWAYS_INLINE KThread *GetSchedulerCurrentThread() const {

View file

@ -76,18 +76,20 @@ namespace ams::kern {
NON_MOVEABLE(KSlabHeapBase);
private:
size_t m_obj_size{};
util::Atomic<uintptr_t> m_peak{0};
uintptr_t m_peak{};
uintptr_t m_start{};
uintptr_t m_end{};
private:
ALWAYS_INLINE void UpdatePeakImpl(uintptr_t obj) {
const util::AtomicRef<uintptr_t> peak_ref(m_peak);
const uintptr_t alloc_peak = obj + this->GetObjectSize();
uintptr_t cur_peak = m_peak.Load<std::memory_order_relaxed>();
uintptr_t cur_peak = m_peak;
do {
if (alloc_peak <= cur_peak) {
break;
}
} while (!m_peak.CompareExchangeStrong(cur_peak, alloc_peak));
} while (!peak_ref.CompareExchangeStrong(cur_peak, alloc_peak));
}
public:
constexpr KSlabHeapBase() = default;
@ -110,8 +112,7 @@ namespace ams::kern {
const size_t num_obj = (memory_size / obj_size);
m_start = reinterpret_cast<uintptr_t>(memory);
m_end = m_start + num_obj * obj_size;
m_peak.Store<std::memory_order_relaxed>(m_start);
m_peak = m_start;
/* Free the objects. */
u8 *cur = reinterpret_cast<u8 *>(m_end);
@ -175,7 +176,7 @@ namespace ams::kern {
}
ALWAYS_INLINE size_t GetPeakIndex() const {
return this->GetObjectIndex(reinterpret_cast<const void *>(m_peak.Load<std::memory_order_relaxed>()));
return this->GetObjectIndex(reinterpret_cast<const void *>(m_peak));
}
ALWAYS_INLINE uintptr_t GetSlabHeapAddress() const {

View file

@ -225,7 +225,7 @@ namespace ams::kern {
s32 m_original_physical_ideal_core_id{};
s32 m_num_core_migration_disables{};
ThreadState m_thread_state{};
util::Atomic<u8> m_termination_requested{false};
util::Atomic<bool> m_termination_requested{false};
bool m_wait_cancelled{};
bool m_cancellable{};
bool m_signaled{};

View file

@ -246,9 +246,9 @@ namespace ams::kern {
if (cur_process != nullptr) {
/* NOTE: Combining this into AMS_LIKELY(!... && ...) triggers an internal compiler error: Segmentation fault in GCC 9.2.0. */
if (AMS_LIKELY(!cur_thread->IsTerminationRequested()) && AMS_LIKELY(cur_thread->GetActiveCore() == m_core_id)) {
m_state.prev_thread.Store<std::memory_order_relaxed>(cur_thread);
m_state.prev_thread = cur_thread;
} else {
m_state.prev_thread.Store<std::memory_order_relaxed>(nullptr);
m_state.prev_thread =nullptr;
}
}
@ -270,9 +270,12 @@ namespace ams::kern {
void KScheduler::ClearPreviousThread(KThread *thread) {
MESOSPHERE_ASSERT(IsSchedulerLockedByCurrentThread());
for (size_t i = 0; i < cpu::NumCores; ++i) {
/* Get an atomic reference to the core scheduler's previous thread. */
const util::AtomicRef<KThread *> prev_thread(Kernel::GetScheduler(static_cast<s32>(i)).m_state.prev_thread);
/* Atomically clear the previous thread if it's our target. */
KThread *compare = thread;
Kernel::GetScheduler(static_cast<s32>(i)).m_state.prev_thread.CompareExchangeStrong(compare, nullptr);
prev_thread.CompareExchangeStrong(compare, nullptr);
}
}

View file

@ -1184,7 +1184,7 @@ namespace ams::kern {
/* Determine if this is the first termination request. */
const bool first_request = [&] ALWAYS_INLINE_LAMBDA () -> bool {
/* Perform an atomic compare-and-swap from false to true. */
u8 expected = false;
bool expected = false;
return m_termination_requested.CompareExchangeStrong(expected, true);
}();

View file

@ -100,6 +100,121 @@ namespace ams::util {
#undef AMS_UTIL_IMPL_DEFINE_ATOMIC_STORE_EXCLUSIVE_FUNCTION
template<UsableAtomicType T>
constexpr ALWAYS_INLINE T ConvertToTypeForAtomic(AtomicStorage<T> s) {
if constexpr (std::integral<T>) {
return static_cast<T>(s);
} else if constexpr(std::is_pointer<T>::value) {
return reinterpret_cast<T>(s);
} else {
return std::bit_cast<T>(s);
}
}
template<UsableAtomicType T>
constexpr ALWAYS_INLINE AtomicStorage<T> ConvertToStorageForAtomic(T arg) {
if constexpr (std::integral<T>) {
return static_cast<AtomicStorage<T>>(arg);
} else if constexpr(std::is_pointer<T>::value) {
if (std::is_constant_evaluated() && arg == nullptr) {
return 0;
}
return reinterpret_cast<AtomicStorage<T>>(arg);
} else {
return std::bit_cast<AtomicStorage<T>>(arg);
}
}
template<std::memory_order Order, std::unsigned_integral StorageType>
ALWAYS_INLINE StorageType AtomicLoadImpl(volatile StorageType * const p) {
if constexpr (Order != std::memory_order_relaxed) {
return ::ams::util::impl::LoadAcquireForAtomic(p);
} else {
return *p;
}
}
template<std::memory_order Order, std::unsigned_integral StorageType>
ALWAYS_INLINE void AtomicStoreImpl(volatile StorageType * const p, const StorageType s) {
if constexpr (Order != std::memory_order_relaxed) {
::ams::util::impl::StoreReleaseForAtomic(p, s);
} else {
*p = s;
}
}
template<std::memory_order Order, std::unsigned_integral StorageType>
ALWAYS_INLINE StorageType LoadExclusiveForAtomicByMemoryOrder(volatile StorageType * const p) {
if constexpr (Order == std::memory_order_relaxed) {
return ::ams::util::impl::LoadExclusiveForAtomic(p);
} else if constexpr (Order == std::memory_order_consume || Order == std::memory_order_acquire) {
return ::ams::util::impl::LoadAcquireExclusiveForAtomic(p);
} else if constexpr (Order == std::memory_order_release) {
return ::ams::util::impl::LoadExclusiveForAtomic(p);
} else if constexpr (Order == std::memory_order_acq_rel || Order == std::memory_order_seq_cst) {
return ::ams::util::impl::LoadAcquireExclusiveForAtomic(p);
} else {
static_assert(Order != Order, "Invalid memory order");
}
}
template<std::memory_order Order, std::unsigned_integral StorageType>
ALWAYS_INLINE bool StoreExclusiveForAtomicByMemoryOrder(volatile StorageType * const p, const StorageType s) {
if constexpr (Order == std::memory_order_relaxed) {
return ::ams::util::impl::StoreExclusiveForAtomic(p, s);
} else if constexpr (Order == std::memory_order_consume || Order == std::memory_order_acquire) {
return ::ams::util::impl::StoreExclusiveForAtomic(p, s);
} else if constexpr (Order == std::memory_order_release) {
return ::ams::util::impl::StoreReleaseExclusiveForAtomic(p, s);
} else if constexpr (Order == std::memory_order_acq_rel || Order == std::memory_order_seq_cst) {
return ::ams::util::impl::StoreReleaseExclusiveForAtomic(p, s);
} else {
static_assert(Order != Order, "Invalid memory order");
}
}
template<std::memory_order Order, std::unsigned_integral StorageType>
ALWAYS_INLINE StorageType AtomicExchangeImpl(volatile StorageType * const p, const StorageType s) {
StorageType current;
do {
current = ::ams::util::impl::LoadExclusiveForAtomicByMemoryOrder<Order>(p);
} while(AMS_UNLIKELY(!impl::StoreExclusiveForAtomicByMemoryOrder<Order>(p, s)));
return current;
}
template<std::memory_order Order, UsableAtomicType T>
ALWAYS_INLINE bool AtomicCompareExchangeWeakImpl(volatile AtomicStorage<T> * const p, T &expected, T desired) {
const AtomicStorage<T> e = ::ams::util::impl::ConvertToStorageForAtomic(expected);
const AtomicStorage<T> d = ::ams::util::impl::ConvertToStorageForAtomic(desired);
const AtomicStorage<T> current = ::ams::util::impl::LoadExclusiveForAtomicByMemoryOrder<Order>(p);
if (AMS_UNLIKELY(current != e)) {
impl::ClearExclusiveForAtomic();
expected = ::ams::util::impl::ConvertToTypeForAtomic<T>(current);
return false;
}
return AMS_LIKELY(impl::StoreExclusiveForAtomicByMemoryOrder<Order>(p, d));
}
template<std::memory_order Order, UsableAtomicType T>
ALWAYS_INLINE bool AtomicCompareExchangeStrongImpl(volatile AtomicStorage<T> * const p, T &expected, T desired) {
const AtomicStorage<T> e = ::ams::util::impl::ConvertToStorageForAtomic(expected);
const AtomicStorage<T> d = ::ams::util::impl::ConvertToStorageForAtomic(desired);
do {
if (const AtomicStorage<T> current = ::ams::util::impl::LoadExclusiveForAtomicByMemoryOrder<Order>(p); AMS_UNLIKELY(current != e)) {
impl::ClearExclusiveForAtomic();
expected = ::ams::util::impl::ConvertToTypeForAtomic<T>(current);
return false;
}
} while (AMS_UNLIKELY(!impl::StoreExclusiveForAtomicByMemoryOrder<Order>(p, d)));
return true;
}
}
template<impl::UsableAtomicType T>
@ -117,27 +232,11 @@ namespace ams::util {
using DifferenceType = typename std::conditional<IsIntegral, T, typename std::conditional<IsPointer, std::ptrdiff_t, void>::type>::type;
static constexpr ALWAYS_INLINE T ConvertToType(StorageType s) {
if constexpr (std::integral<T>) {
return static_cast<T>(s);
} else if constexpr(std::is_pointer<T>::value) {
return reinterpret_cast<T>(s);
} else {
return std::bit_cast<T>(s);
}
return impl::ConvertToTypeForAtomic<T>(s);
}
static constexpr ALWAYS_INLINE StorageType ConvertToStorage(T arg) {
if constexpr (std::integral<T>) {
return static_cast<StorageType>(arg);
} else if constexpr(std::is_pointer<T>::value) {
if (std::is_constant_evaluated() && arg == nullptr) {
return 0;
}
return reinterpret_cast<StorageType>(arg);
} else {
return std::bit_cast<StorageType>(arg);
}
return impl::ConvertToStorageForAtomic<T>(arg);
}
private:
StorageType m_v;
@ -157,148 +256,31 @@ namespace ams::util {
return desired;
}
ALWAYS_INLINE operator T() const { return this->Load(); }
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE T Load() const {
if constexpr (Order != std::memory_order_relaxed) {
return ConvertToType(impl::LoadAcquireForAtomic(this->GetStoragePointer()));
} else {
return ConvertToType(*this->GetStoragePointer());
}
return ConvertToType(impl::AtomicLoadImpl<Order>(this->GetStoragePointer()));
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE void Store(T arg) {
if constexpr (Order != std::memory_order_relaxed) {
impl::StoreReleaseForAtomic(this->GetStoragePointer(), ConvertToStorage(arg));
} else {
*this->GetStoragePointer() = ConvertToStorage(arg);
}
return impl::AtomicStoreImpl<Order>(this->GetStoragePointer(), ConvertToStorage(arg));
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE T Exchange(T arg) {
volatile StorageType * const p = this->GetStoragePointer();
const StorageType s = ConvertToStorage(arg);
StorageType current;
if constexpr (Order == std::memory_order_relaxed) {
do {
current = impl::LoadExclusiveForAtomic(p);
} while (AMS_UNLIKELY(!impl::StoreExclusiveForAtomic(p, s)));
} else if constexpr (Order == std::memory_order_consume || Order == std::memory_order_acquire) {
do {
current = impl::LoadAcquireExclusiveForAtomic(p);
} while (AMS_UNLIKELY(!impl::StoreExclusiveForAtomic(p, s)));
} else if constexpr (Order == std::memory_order_release) {
do {
current = impl::LoadExclusiveForAtomic(p);
} while (AMS_UNLIKELY(!impl::StoreReleaseExclusiveForAtomic(p, s)));
} else if constexpr (Order == std::memory_order_acq_rel || Order == std::memory_order_seq_cst) {
do {
current = impl::LoadAcquireExclusiveForAtomic(p);
} while (AMS_UNLIKELY(!impl::StoreReleaseExclusiveForAtomic(p, s)));
} else {
static_assert(Order != Order, "Invalid memory order");
}
return current;
return ConvertToType(impl::AtomicExchangeImpl(this->GetStoragePointer(), ConvertToStorage(arg)));
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE bool CompareExchangeWeak(T &expected, T desired) {
volatile StorageType * const p = this->GetStoragePointer();
const StorageType e = ConvertToStorage(expected);
const StorageType d = ConvertToStorage(desired);
if constexpr (Order == std::memory_order_relaxed) {
const StorageType current = impl::LoadExclusiveForAtomic(p);
if (AMS_UNLIKELY(current != e)) {
impl::ClearExclusiveForAtomic();
expected = ConvertToType(current);
return false;
}
return AMS_LIKELY(impl::StoreExclusiveForAtomic(p, d));
} else if constexpr (Order == std::memory_order_consume || Order == std::memory_order_acquire) {
const StorageType current = impl::LoadAcquireExclusiveForAtomic(p);
if (AMS_UNLIKELY(current != e)) {
impl::ClearExclusiveForAtomic();
expected = ConvertToType(current);
return false;
}
return AMS_LIKELY(impl::StoreExclusiveForAtomic(p, d));
} else if constexpr (Order == std::memory_order_release) {
const StorageType current = impl::LoadExclusiveForAtomic(p);
if (AMS_UNLIKELY(current != e)) {
impl::ClearExclusiveForAtomic();
expected = ConvertToType(current);
return false;
}
return AMS_LIKELY(impl::StoreReleaseExclusiveForAtomic(p, d));
} else if constexpr (Order == std::memory_order_acq_rel || Order == std::memory_order_seq_cst) {
const StorageType current = impl::LoadAcquireExclusiveForAtomic(p);
if (AMS_UNLIKELY(current != e)) {
impl::ClearExclusiveForAtomic();
expected = ConvertToType(current);
return false;
}
return AMS_LIKELY(impl::StoreReleaseExclusiveForAtomic(p, d));
} else {
static_assert(Order != Order, "Invalid memory order");
}
return impl::AtomicCompareExchangeWeakImpl<Order, T>(this->GetStoragePointer(), expected, desired);
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE bool CompareExchangeStrong(T &expected, T desired) {
volatile StorageType * const p = this->GetStoragePointer();
const StorageType e = ConvertToStorage(expected);
const StorageType d = ConvertToStorage(desired);
if constexpr (Order == std::memory_order_relaxed) {
StorageType current;
do {
if (current = impl::LoadExclusiveForAtomic(p); current != e) {
impl::ClearExclusiveForAtomic();
expected = ConvertToType(current);
return false;
}
} while (!impl::StoreExclusiveForAtomic(p, d));
} else if constexpr (Order == std::memory_order_consume || Order == std::memory_order_acquire) {
StorageType current;
do {
if (current = impl::LoadAcquireExclusiveForAtomic(p); current != e) {
impl::ClearExclusiveForAtomic();
expected = ConvertToType(current);
return false;
}
} while (!impl::StoreExclusiveForAtomic(p, d));
} else if constexpr (Order == std::memory_order_release) {
StorageType current;
do {
if (current = impl::LoadExclusiveForAtomic(p); current != e) {
impl::ClearExclusiveForAtomic();
expected = ConvertToType(current);
return false;
}
} while (!impl::StoreReleaseExclusiveForAtomic(p, d));
} else if constexpr (Order == std::memory_order_acq_rel || Order == std::memory_order_seq_cst) {
StorageType current;
do {
if (current = impl::LoadAcquireExclusiveForAtomic(p); current != e) {
impl::ClearExclusiveForAtomic();
expected = ConvertToType(current);
return false;
}
} while (!impl::StoreReleaseExclusiveForAtomic(p, d));
} else {
static_assert(Order != Order, "Invalid memory order");
}
return true;
return impl::AtomicCompareExchangeStrongImpl<Order, T>(this->GetStoragePointer(), expected, desired);
}
#define AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(_OPERATION_, _OPERATOR_, _POINTER_ALLOWED_) \
@ -341,5 +323,108 @@ namespace ams::util {
ALWAYS_INLINE T operator--(int) { static_assert(Enable == HasArithmeticFunctions); return this->FetchSub(1); }
};
template<impl::UsableAtomicType T>
class AtomicRef {
NON_MOVEABLE(AtomicRef);
public:
static constexpr size_t RequiredAlignment = std::max<size_t>(sizeof(T), alignof(T));
private:
using StorageType = impl::AtomicStorage<T>;
static_assert(sizeof(StorageType) == sizeof(T));
static_assert(alignof(StorageType) >= alignof(T));
static constexpr bool IsIntegral = std::integral<T>;
static constexpr bool IsPointer = std::is_pointer<T>::value;
static constexpr bool HasArithmeticFunctions = IsIntegral || IsPointer;
using DifferenceType = typename std::conditional<IsIntegral, T, typename std::conditional<IsPointer, std::ptrdiff_t, void>::type>::type;
static constexpr ALWAYS_INLINE T ConvertToType(StorageType s) {
return impl::ConvertToTypeForAtomic<T>(s);
}
static constexpr ALWAYS_INLINE StorageType ConvertToStorage(T arg) {
return impl::ConvertToStorageForAtomic<T>(arg);
}
private:
volatile StorageType * const m_p;
private:
ALWAYS_INLINE volatile StorageType *GetStoragePointer() const { return m_p; }
public:
explicit ALWAYS_INLINE AtomicRef(T &t) : m_p(reinterpret_cast<volatile StorageType *>(std::addressof(t))) { /* ... */ }
ALWAYS_INLINE AtomicRef(const AtomicRef &) noexcept = default;
AtomicRef() = delete;
AtomicRef &operator=(const AtomicRef &) = delete;
ALWAYS_INLINE T operator=(T desired) const { return const_cast<AtomicRef *>(this)->Store(desired); }
ALWAYS_INLINE operator T() const { return this->Load(); }
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE T Load() const {
return ConvertToType(impl::AtomicLoadImpl<Order>(this->GetStoragePointer()));
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE void Store(T arg) const {
return impl::AtomicStoreImpl<Order>(this->GetStoragePointer(), ConvertToStorage(arg));
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE T Exchange(T arg) const {
return ConvertToType(impl::AtomicExchangeImpl(this->GetStoragePointer(), ConvertToStorage(arg)));
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE bool CompareExchangeWeak(T &expected, T desired) const {
return impl::AtomicCompareExchangeWeakImpl<Order, T>(this->GetStoragePointer(), expected, desired);
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE bool CompareExchangeStrong(T &expected, T desired) const {
return impl::AtomicCompareExchangeStrongImpl<Order, T>(this->GetStoragePointer(), expected, desired);
}
#define AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(_OPERATION_, _OPERATOR_, _POINTER_ALLOWED_) \
template<bool Enable = (IsIntegral || (_POINTER_ALLOWED_ && IsPointer)), typename = typename std::enable_if<Enable, void>::type> \
ALWAYS_INLINE T Fetch ## _OPERATION_(DifferenceType arg) const { \
static_assert(Enable == (IsIntegral || (_POINTER_ALLOWED_ && IsPointer))); \
volatile StorageType * const p = this->GetStoragePointer(); \
\
StorageType current; \
do { \
current = impl::LoadAcquireExclusiveForAtomic<StorageType>(p); \
} while (AMS_UNLIKELY(!impl::StoreReleaseExclusiveForAtomic<StorageType>(p, ConvertToStorage(ConvertToType(current) _OPERATOR_ arg)))); \
return ConvertToType(current); \
} \
\
template<bool Enable = (IsIntegral || (_POINTER_ALLOWED_ && IsPointer)), typename = typename std::enable_if<Enable, void>::type> \
ALWAYS_INLINE T operator _OPERATOR_##=(DifferenceType arg) const { \
static_assert(Enable == (IsIntegral || (_POINTER_ALLOWED_ && IsPointer))); \
return this->Fetch ## _OPERATION_(arg) _OPERATOR_ arg; \
}
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(Add, +, true)
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(Sub, -, true)
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(And, &, false)
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(Or, |, false)
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(Xor, ^, false)
#undef AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION
template<bool Enable = HasArithmeticFunctions, typename = typename std::enable_if<Enable, void>::type>
ALWAYS_INLINE T operator++() const { static_assert(Enable == HasArithmeticFunctions); return this->FetchAdd(1) + 1; }
template<bool Enable = HasArithmeticFunctions, typename = typename std::enable_if<Enable, void>::type>
ALWAYS_INLINE T operator++(int) const { static_assert(Enable == HasArithmeticFunctions); return this->FetchAdd(1); }
template<bool Enable = HasArithmeticFunctions, typename = typename std::enable_if<Enable, void>::type>
ALWAYS_INLINE T operator--() const { static_assert(Enable == HasArithmeticFunctions); return this->FetchSub(1) - 1; }
template<bool Enable = HasArithmeticFunctions, typename = typename std::enable_if<Enable, void>::type>
ALWAYS_INLINE T operator--(int) const { static_assert(Enable == HasArithmeticFunctions); return this->FetchSub(1); }
};
}

View file

@ -74,6 +74,8 @@ namespace ams::util {
return (m_v = desired);
}
ALWAYS_INLINE operator T() const { return this->Load(); }
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE T Load() const {
return m_v.load(Order);
@ -84,22 +86,21 @@ namespace ams::util {
return m_v.store(Order);
}
template<std::memory_order Order>
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE T Exchange(T arg) {
return m_v.exchange(arg, Order);
}
template<std::memory_order Order>
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE bool CompareExchangeWeak(T &expected, T desired) {
return m_v.compare_exchange_weak(expected, desired, Order);
}
template<std::memory_order Order>
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE bool CompareExchangeStrong(T &expected, T desired) {
return m_v.compare_exchange_strong(expected, desired, Order);
}
#define AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(_OPERATION_, _OPERATION_LOWER_, _OPERATOR_, _POINTER_ALLOWED_) \
template<bool Enable = (IsIntegral || (_POINTER_ALLOWED_ && IsPointer)), typename = typename std::enable_if<Enable, void>::type> \
ALWAYS_INLINE T Fetch ## _OPERATION_(DifferenceType arg) { \
@ -134,5 +135,89 @@ namespace ams::util {
ALWAYS_INLINE T operator--(int) { static_assert(Enable == HasArithmeticFunctions); return this->FetchSub(1); }
};
template<impl::UsableAtomicType T>
class AtomicRef {
NON_MOVEABLE(AtomicRef);
public:
static constexpr size_t RequiredAlignment = std::atomic_ref<T>::required_alignment;
private:
static constexpr bool IsIntegral = std::integral<T>;
static constexpr bool IsPointer = std::is_pointer<T>::value;
static constexpr bool HasArithmeticFunctions = IsIntegral || IsPointer;
using DifferenceType = typename std::conditional<IsIntegral, T, typename std::conditional<IsPointer, std::ptrdiff_t, void>::type>::type;
private:
static_assert(std::atomic_ref<T>::is_always_lock_free);
private:
std::atomic_ref<T> m_ref;
public:
explicit ALWAYS_INLINE AtomicRef(T &t) : m_ref(t) { /* ... */ }
ALWAYS_INLINE AtomicRef(const AtomicRef &) noexcept = default;
AtomicRef() = delete;
AtomicRef &operator=(const AtomicRef &) = delete;
ALWAYS_INLINE T operator=(T desired) const { return (m_ref = desired); }
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE T Load() const {
return m_ref.load(Order);
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE void Store(T arg) const {
return m_ref.store(arg, Order);
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE T Exchange(T arg) const {
return m_ref.exchange(arg, Order);
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE bool CompareExchangeWeak(T &expected, T desired) const {
return m_ref.compare_exchange_weak(expected, desired, Order);
}
template<std::memory_order Order = std::memory_order_seq_cst>
ALWAYS_INLINE bool CompareExchangeStrong(T &expected, T desired) const {
return m_ref.compare_exchange_strong(expected, desired, Order);
}
#define AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(_OPERATION_, _OPERATION_LOWER_, _OPERATOR_, _POINTER_ALLOWED_) \
template<bool Enable = (IsIntegral || (_POINTER_ALLOWED_ && IsPointer)), typename = typename std::enable_if<Enable, void>::type> \
ALWAYS_INLINE T Fetch ## _OPERATION_(DifferenceType arg) const { \
static_assert(Enable == (IsIntegral || (_POINTER_ALLOWED_ && IsPointer))); \
return m_ref.fetch_##_OPERATION_LOWER_(arg); \
} \
\
template<bool Enable = (IsIntegral || (_POINTER_ALLOWED_ && IsPointer)), typename = typename std::enable_if<Enable, void>::type> \
ALWAYS_INLINE T operator _OPERATOR_##=(DifferenceType arg) const { \
static_assert(Enable == (IsIntegral || (_POINTER_ALLOWED_ && IsPointer))); \
return this->Fetch##_OPERATION_(arg) _OPERATOR_ arg; \
}
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(Add, add, +, true)
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(Sub, sub, -, true)
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(And, and, &, false)
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(Or, or, |, false)
AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION(Xor, xor, ^, false)
#undef AMS_UTIL_IMPL_DEFINE_ATOMIC_FETCH_OPERATE_FUNCTION
template<bool Enable = HasArithmeticFunctions, typename = typename std::enable_if<Enable, void>::type>
ALWAYS_INLINE T operator++() const { static_assert(Enable == HasArithmeticFunctions); return this->FetchAdd(1) + 1; }
template<bool Enable = HasArithmeticFunctions, typename = typename std::enable_if<Enable, void>::type>
ALWAYS_INLINE T operator++(int) const { static_assert(Enable == HasArithmeticFunctions); return this->FetchAdd(1); }
template<bool Enable = HasArithmeticFunctions, typename = typename std::enable_if<Enable, void>::type>
ALWAYS_INLINE T operator--() const { static_assert(Enable == HasArithmeticFunctions); return this->FetchSub(1) - 1; }
template<bool Enable = HasArithmeticFunctions, typename = typename std::enable_if<Enable, void>::type>
ALWAYS_INLINE T operator--(int) const { static_assert(Enable == HasArithmeticFunctions); return this->FetchSub(1); }
};
}