Implement SE secure AES API.

This commit is contained in:
Michael Scire 2018-02-22 16:17:12 -08:00
parent ead0e2ba86
commit 0ef8f1db2e
4 changed files with 182 additions and 11 deletions

View file

@ -66,7 +66,7 @@ static void ghash(void *dst, const void *data, size_t data_size, const void *j_b
memset(x, 0, 0x10); memset(x, 0, 0x10);
/* H = aes_ecb_encrypt(zeroes) */ /* H = aes_ecb_encrypt(zeroes) */
se_aes_ecb_encrypt_block(KEYSLOT_SWITCH_TEMPKEY, h, 0x10, x, 0x10); se_aes_128_ecb_encrypt_block(KEYSLOT_SWITCH_TEMPKEY, h, 0x10, x, 0x10);
size_t total_size = data_size; size_t total_size = data_size;
@ -100,7 +100,7 @@ static void ghash(void *dst, const void *data, size_t data_size, const void *j_b
/* If final output block, XOR with encrypted J block. */ /* If final output block, XOR with encrypted J block. */
if (encrypt) { if (encrypt) {
se_aes_ecb_encrypt_block(KEYSLOT_SWITCH_TEMPKEY, h, 0x10, j_block, 0x10); se_aes_128_ecb_encrypt_block(KEYSLOT_SWITCH_TEMPKEY, h, 0x10, j_block, 0x10);
for (unsigned int i = 0; i < 0x10; i++) { for (unsigned int i = 0; i < 0x10; i++) {
x[i] ^= h[i]; x[i] ^= h[i];
} }

View file

@ -63,6 +63,20 @@ void se_operation_completed(void) {
} }
void se_check_for_error(void) {
if (g_security_engine == NULL) {
panic();
}
if (g_security_engine->INT_STATUS_REG & 0x10000 || g_security_engine->FLAGS_REG & 3 || g_security_engine->ERR_STATUS_REG) {
panic();
}
}
void se_trigger_intrrupt(void) {
/* TODO */
}
void se_verify_flags_cleared(void) { void se_verify_flags_cleared(void) {
if (g_security_engine == NULL || g_security_engine->FLAGS_REG & 3) { if (g_security_engine == NULL || g_security_engine->FLAGS_REG & 3) {
panic(); panic();
@ -168,7 +182,6 @@ void set_rsa_keyslot(unsigned int keyslot, const void *modulus, size_t modulus_
g_se_exp_sizes[keyslot] = exp_size; g_se_exp_sizes[keyslot] = exp_size;
} }
void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size) { void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size) {
if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX || iv_size > 0x10) { if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX || iv_size > 0x10) {
panic(); panic();
@ -180,6 +193,17 @@ void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size) {
} }
} }
void clear_aes_keyslot_iv(unsigned int keyslot) {
if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX) {
panic();
}
for (size_t i = 0; i < (0x10 >> 2); i++) {
g_security_engine->AES_KEYTABLE_ADDR = (keyslot << 4) | 8;
g_security_engine->AES_KEYTABLE_DATA = 0;
}
}
void set_se_ctr(const void *ctr) { void set_se_ctr(const void *ctr) {
if (g_security_engine == NULL) { if (g_security_engine == NULL) {
panic(); panic();
@ -362,12 +386,158 @@ void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const v
se_check_for_error(); se_check_for_error();
} }
void se_check_for_error(void) {
if (g_security_engine == NULL) { /* Secure AES Functionality. */
void se_perform_aes_block_operation(void *dst, size_t dst_size, const void *src, size_t src_size) {
uint8_t block[0x10];
if (g_security_engine == NULL || src_size > sizeof(block) || dst_size > sizeof(block)) {
panic(); panic();
} }
if (g_security_engine->INT_STATUS_REG & 0x10000 || g_security_engine->FLAGS_REG & 3 || g_security_engine->ERR_STATUS_REG) { /* Load src data into block. */
memset(block, 0, sizeof(block));
memcpy(block, src, src_size);
flush_dcache_range(block, block + sizeof(block));
/* Trigger AES operation. */
g_security_engine->BLOCK_COUNT_REG = 0;
trigger_se_blocking_op(1, block, sizeof(block), block, sizeof(block));
/* Copy output data into dst. */
flush_dcache_range(block, block + sizeof(block));
memcpy(dst, block, dst_size);
}
void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *ctr, size_t ctr_size) {
if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX || ctr_size != 0x10) {
panic(); panic();
} }
unsigned int num_blocks = src_size >> 4;
/* Unknown what this write does, but official code writes it for CTR mode. */
g_security_engine->_0x80C = 1;
g_security_engine->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY);
g_security_engine->CRYPTO_REG = (keyslot << 24) | 0x91E;
set_se_ctr(ctr, ctr_size);
/* Handle any aligned blocks. */
size_t aligned_size = (size_t)num_blocks << 4;
if (aligned_size) {
g_security_engine->BLOCK_COUNT_REG = num_blocks - 1;
trigger_se_blocking_op(1, dst, dst_size, src, aligned_size);
}
/* Handle final, unaligned block. */
if (aligned_size < dst_size && aligned_size < src_size) {
size_t last_block_size = dst_size - aligned_size;
if (src_size < dst_size) {
last_block_size = src_size - aligned_size;
}
se_perform_aes_block_operation(dst + aligned_size, last_block_size, src + aligned_size, src - aligned_size);
}
} }
void se_aes_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, unsigned int config_high) {
if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) {
panic();
}
/* Set configuration high (256-bit vs 128-bit) based on parameter. */
g_security_engine->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY) | (config_high << 16);
g_security_engine->CRYPTO_REG = keyslot << 24;
se_perform_aes_block_operation(1, dst, 0x10, src, 0x10);
}
void se_aes_128_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) {
se_aes_ecb_encrypt_block(keyslot, dst, dst_size, src, src_size, 0);
}
void se_aes_256_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) {
se_aes_ecb_encrypt_block(keyslot, dst, dst_size, src, src_size, 0x202);
}
void se_aes_ecb_decrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) {
if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) {
panic();
}
g_security_engine->CONFIG_REG = (ALG_AES_DEC | DST_MEMORY);
g_security_engine->CRYPTO_REG = keyslot << 24;
se_perform_aes_block_operation(1, dst, 0x10, src, 0x10);
}
void shift_left_xor_rb(uint8_t *key) {
uint8_t prev_high_bit = 0;
for (unsigned int i = 0xF; i >= 0; i--) {
uint8_t cur_byte = key[i];
key[i] = (cur_byte << 1) | (prev_high_bit);
prev_high_bit = cur_byte >> 7;
}
if (prev_high_bit) {
key[0xF] ^= 0x87;
}
}
void se_compute_aes_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size, unsigned int config_high) {
if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX) {
panic();
}
/* Generate the derived key, to be XOR'd with final output block. */
uint8_t derived_key[0x10];
memset(derived_key, 0, sizeof(derived_key));
se_aes_128_ecb_encrypt_block(keyslot, derived_key, sizeof(derived_key), derived_key, sizeof(derived_key));
shift_left_xor_rb(derived_key);
if (data_size & 0xF) {
shift_left_xor_rb(derived_key);
}
g_security_engine->CONFIG_REG = (ALG_AES_ENC | DST_HASHREG) | (config_high << 16);
g_security_engine->CRYPTO_REG = (keyslot << 24) | (0x145);
clear_aes_keyslot_iv(keyslot);
unsigned int num_blocks = (data_size + 0xF) >> 4;
/* Handle aligned blocks. */
if (num_blocks > 1) {
g_security_engine->BLOCK_COUNT_REG = num_blocks - 2;
trigger_se_blocking_op(1, NULL, 0, data, data_size);
g_security_engine->CRYPTO_REG |= 0x80;
}
/* Create final block. */
uint8_t last_block[0x10];
memset(last_block, 0, sizeof(last_block));
if (data_size & 0xF) {
memcpy(last_block, data + (data_size & ~0xF), data_size & 0xF);
last_block[data_size & 0xF] = 0x80; /* Last block = data || 100...0 */
} else if (data_size >= 0x10) {
memcpy(last_block, data + data_size - 0x10, 0x10);
}
for (unsigned int i = 0; i < 0x10; i++) {
last_block[i] ^= derived_key[i];
}
/* Perform last operation. */
flush_dcache_range(last_block, last_block + sizeof(last_block));
trigger_se_blocking_op(1, NULL, 0, last_block, sizeof(last_block));
/* Copy output CMAC. */
for (unsigned int i = 0; i < (cmac_size >> 2); i++) {
((uint32_t *)cmac)[i] = read32le(g_security_engine->HASH_OUTPUT, i << 2);
}
}
void se_compute_aes_128_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size) {
se_compute_aes_cmac(keyslot, cmac, cmac_size, data, data_size, 0);
}
void se_compute_aes_256_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size) {
se_compute_aes_cmac(keyslot, cmac, cmac_size, data, data_size, 0x202);
}

View file

@ -64,7 +64,7 @@ typedef struct security_engine {
unsigned int OUT_LL_ADDR_REG; unsigned int OUT_LL_ADDR_REG;
unsigned int _0x28; unsigned int _0x28;
unsigned int _0x2C; unsigned int _0x2C;
unsigned char cmacOutput[0x10]; unsigned char HASH_OUTPUT[0x10];
unsigned char reserved0x40[0x240]; unsigned char reserved0x40[0x240];
unsigned int AES_KEY_READ_DISABLE_REG; unsigned int AES_KEY_READ_DISABLE_REG;
unsigned int AES_KEYSLOT_FLAGS[0x10]; unsigned int AES_KEYSLOT_FLAGS[0x10];
@ -152,10 +152,11 @@ void se_aes_cbc_encrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, ui
void se_aes_cbc_decrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void)); void se_aes_cbc_decrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void));
/* Secure AES API */ /* Secure AES API */
void se_compute_aes_128_cmac(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size); void se_compute_aes_128_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size);
void se_compute_aes_256_cmac(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size); void se_compute_aes_256_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size);
void se_aes_128_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size);
void se_aes_256_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size);
void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *ctr, size_t ctr_size); void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *ctr, size_t ctr_size);
void se_aes_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size);
void se_aes_ecb_decrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size); void se_aes_ecb_decrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size);
/* Hash API */ /* Hash API */

View file

@ -18,7 +18,7 @@ const uint8_t g_seal_key_sources[CRYPTOUSECASE_MAX][0x10] = {
void seal_key_internal(void *dst, const void *src, const uint8_t *seal_key_source) { void seal_key_internal(void *dst, const void *src, const uint8_t *seal_key_source) {
decrypt_data_into_keyslot(KEYSLOT_SWITCH_TEMPKEY, KEYSLOT_SWITCH_SESSIONKEY, seal_key_source, 0x10); decrypt_data_into_keyslot(KEYSLOT_SWITCH_TEMPKEY, KEYSLOT_SWITCH_SESSIONKEY, seal_key_source, 0x10);
se_aes_ecb_encrypt_block(KEYSLOT_SWITCH_TEMPKEY, dst, 0x10, src, 0x10); se_aes_128_ecb_encrypt_block(KEYSLOT_SWITCH_TEMPKEY, dst, 0x10, src, 0x10);
} }
void unseal_key_internal(unsigned int keyslot, const void *src, const uint8_t *seal_key_source) { void unseal_key_internal(unsigned int keyslot, const void *src, const uint8_t *seal_key_source) {