Atmosphere/libraries/libstratosphere/source/util/util_tinymt.cpp

187 lines
6.1 KiB
C++
Raw Normal View History

2019-12-09 23:50:47 -08:00
/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::util {
namespace {
constexpr inline u32 XorByShifted27(u32 value) {
return value ^ (value >> 27);
}
constexpr inline u32 XorByShifted30(u32 value) {
return value ^ (value >> 30);
}
}
void TinyMT::GenerateInitialValuePlus(TinyMT::State *state, int index, u32 value) {
u32 &state0 = state->data[(index + 0) % NumStateWords];
u32 &state1 = state->data[(index + 1) % NumStateWords];
u32 &state2 = state->data[(index + 2) % NumStateWords];
u32 &state3 = state->data[(index + 3) % NumStateWords];
const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus;
const u32 y = x + index + value;
state0 = y;
state1 += x;
state2 += y;
}
void TinyMT::GenerateInitialValueXor(TinyMT::State *state, int index) {
u32 &state0 = state->data[(index + 0) % NumStateWords];
u32 &state1 = state->data[(index + 1) % NumStateWords];
u32 &state2 = state->data[(index + 2) % NumStateWords];
u32 &state3 = state->data[(index + 3) % NumStateWords];
const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor;
const u32 y = x - index;
state0 = y;
state1 ^= x;
state2 ^= y;
}
void TinyMT::Initialize(u32 seed) {
this->state.data[0] = seed;
this->state.data[1] = ParamMat1;
this->state.data[2] = ParamMat2;
this->state.data[3] = ParamTmat;
for (int i = 1; i < MinimumInitIterations; i++) {
const u32 mixed = XorByShifted30(this->state.data[(i - 1) % NumStateWords]);
this->state.data[i % NumStateWords] ^= mixed * ParamMult + i;
}
this->FinalizeInitialization();
}
void TinyMT::Initialize(const u32 *seed, int seed_count) {
this->state.data[0] = 0;
this->state.data[1] = ParamMat1;
this->state.data[2] = ParamMat2;
this->state.data[3] = ParamTmat;
{
const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1;
2019-12-09 23:50:47 -08:00
GenerateInitialValuePlus(&this->state, 0, seed_count);
for (int i = 0; i < num_init_iterations; i++) {
GenerateInitialValuePlus(&this->state, (i + 1) % NumStateWords, (i < seed_count) ? seed[i] : 0);
}
for (int i = 0; i < static_cast<int>(NumStateWords); i++) {
GenerateInitialValueXor(&this->state, (i + 1 + num_init_iterations) % NumStateWords);
}
}
this->FinalizeInitialization();
}
void TinyMT::FinalizeInitialization() {
const u32 state0 = this->state.data[0] & TopBitmask;
const u32 state1 = this->state.data[1];
const u32 state2 = this->state.data[2];
const u32 state3 = this->state.data[3];
if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) {
this->state.data[0] = 'T';
this->state.data[1] = 'I';
this->state.data[2] = 'N';
this->state.data[3] = 'Y';
}
for (int i = 0; i < NumDiscardedInitOutputs; i++) {
this->GenerateRandomU32();
}
}
void TinyMT::GetState(TinyMT::State *out) const {
std::memcpy(out->data, this->state.data, sizeof(this->state));
}
void TinyMT::SetState(const TinyMT::State *state) {
std::memcpy(this->state.data, state->data, sizeof(this->state));
}
void TinyMT::GenerateRandomBytes(void *dst, size_t size) {
const uintptr_t start = reinterpret_cast<uintptr_t>(dst);
const uintptr_t end = start + size;
const uintptr_t aligned_start = util::AlignUp(start, 4);
const uintptr_t aligned_end = util::AlignDown(end, 4);
/* Make sure we're aligned. */
if (start < aligned_start) {
const u32 rnd = this->GenerateRandomU32();
std::memcpy(dst, &rnd, aligned_start - start);
}
/* Write as many aligned u32s as we can. */
{
u32 * cur_dst = reinterpret_cast<u32 *>(aligned_start);
u32 * const end_dst = reinterpret_cast<u32 *>(aligned_end);
while (cur_dst < end_dst) {
*(cur_dst++) = this->GenerateRandomU32();
}
}
/* Handle any leftover unaligned data. */
if (aligned_end < end) {
const u32 rnd = this->GenerateRandomU32();
std::memcpy(reinterpret_cast<void *>(aligned_end), &rnd, end - aligned_end);
}
}
u32 TinyMT::GenerateRandomU32() {
/* Advance state. */
const u32 x0 = (this->state.data[0] & TopBitmask) ^ this->state.data[1] ^ this->state.data[2];
const u32 y0 = this->state.data[3];
const u32 x1 = x0 ^ (x0 << 1);
const u32 y1 = y0 ^ (y0 >> 1) ^ x1;
const u32 state0 = this->state.data[1];
u32 state1 = this->state.data[2];
u32 state2 = x1 ^ (y1 << 10);
const u32 state3 = y1;
if ((y1 & 1) != 0) {
state1 ^= ParamMat1;
state2 ^= ParamMat2;
}
this->state.data[0] = state0;
this->state.data[1] = state1;
this->state.data[2] = state2;
this->state.data[3] = state3;
/* Temper. */
const u32 t1 = state0 + (state2 >> 8);
u32 t0 = state3 ^ t1;
if ((t1 & 1) != 0) {
t0 ^= ParamTmat;
}
return t0;
}
}