Atmosphere/mesosphere/source/threading/KScheduler.cpp

345 lines
12 KiB
C++
Raw Normal View History

2018-10-31 20:47:31 +00:00
#include <algorithm>
#include <atomic>
#include <mesosphere/threading/KScheduler.hpp>
#include <mesosphere/core/KCoreContext.hpp>
namespace mesosphere
{
namespace {
struct MlqTraitsFactory {
constexpr KThread::SchedulerValueTraits operator()(size_t i) const
{
return KThread::SchedulerValueTraits{(uint)i};
}
};
}
using MlqT = KScheduler::Global::MlqType;
bool KScheduler::Global::reselectionRequired = false;
std::array<MlqT, MAX_CORES> KScheduler::Global::scheduledMlqs =
detail::MakeArrayWithFactorySequenceOf<MlqT, MlqTraitsFactory, MAX_CORES>(
&KThread::GetPriorityOf
);
std::array<MlqT, MAX_CORES> KScheduler::Global::suggestedMlqs =
detail::MakeArrayWithFactorySequenceOf<MlqT, MlqTraitsFactory, MAX_CORES>(
&KThread::GetPriorityOf
);
void KScheduler::Global::SetThreadRunning(KThread &thread)
{
ApplyReschedulingOperation([](MlqT &mlq, KThread &t){ mlq.add(t); }, thread);
}
void KScheduler::Global::SetThreadPaused(KThread &thread)
{
ApplyReschedulingOperation([](MlqT &mlq, KThread &t){ mlq.remove(t); }, thread);
}
void KScheduler::Global::AdjustThreadPriorityChanged(KThread &thread, uint oldPrio, bool isCurrentThread)
{
ApplyReschedulingOperation(
[oldPrio, isCurrentThread](MlqT &mlq, KThread &t){
mlq.adjust(t, oldPrio, isCurrentThread);
}, thread);
}
void KScheduler::Global::AdjustThreadAffinityChanged(KThread &thread, int oldCoreId, u64 oldAffinityMask)
{
int newCoreId = thread.GetCurrentCoreId();
u64 newAffinityMask = thread.GetAffinityMask();
ApplyReschedulingOperationImpl([](MlqT &mlq, KThread &t){ mlq.remove(t); }, thread, oldCoreId, oldAffinityMask);
ApplyReschedulingOperationImpl([](MlqT &mlq, KThread &t){ mlq.add(t); }, thread, newCoreId, newAffinityMask);
thread.IncrementSchedulerOperationCount();
reselectionRequired = true;
}
void KScheduler::Global::TransferThreadToCore(KThread &thread, int coreId)
{
int currentCoreId = thread.GetCurrentCoreId();
if (currentCoreId != coreId) {
if (currentCoreId != -1) {
scheduledMlqs[currentCoreId].transferToBack(thread, suggestedMlqs[currentCoreId]);
}
if (coreId != -1) {
suggestedMlqs[coreId].transferToFront(thread, scheduledMlqs[coreId]);
}
}
thread.SetCurrentCoreId(coreId);
}
void KScheduler::Global::AskForReselectionOrMarkRedundant(KThread *currentThread, KThread *winner)
{
if (currentThread == winner) {
// Nintendo (not us) has a nullderef bug on currentThread->owner, but which is never triggered.
currentThread->SetRedundantSchedulerOperation();
} else {
reselectionRequired = true;
}
}
KThread *KScheduler::Global::PickOneSuggestedThread(const std::array<KThread *, MAX_CORES> &curThreads,
uint coreId, bool compareTime, bool allowSecondPass, uint maxPrio, uint minPrio) {
if (minPrio < maxPrio) {
return nullptr;
}
auto hasWorseTime = [coreId, minPrio, compareTime](const KThread &t) {
if (!compareTime || scheduledMlqs[coreId].size(minPrio) <= 1 || t.GetPriority() < minPrio) {
return false;
} else {
// Condition means the thread *it would have been scheduled again after the thread
return t.GetLastScheduledTime() > scheduledMlqs[coreId].front(minPrio).GetLastScheduledTime();
}
};
std::array<uint, MAX_CORES> secondPassCores;
size_t numSecondPassCores = 0;
auto it = std::find_if(
suggestedMlqs[coreId].begin(maxPrio),
suggestedMlqs[coreId].end(minPrio),
[&hasWorseTime, &secondPassCores, &numSecondPassCores, &curThreads](const KThread &t) {
int srcCoreId = t.GetCurrentCoreId();
//bool worseTime = compareTime && hasWorseTime(t);
// break if hasWorse time too
if (srcCoreId >= 0) {
bool srcHasEphemeralKernThread = scheduledMlqs[srcCoreId].highestPrioritySet() < minRegularPriority;
bool isSrcCurT = &t == curThreads[srcCoreId];
if (isSrcCurT) {
secondPassCores[numSecondPassCores++] = (uint)srcCoreId;
}
// Note, if checkTime official kernel breaks if srcHasEphemeralKernThread
// I believe this is a bug
if(srcHasEphemeralKernThread || isSrcCurT) {
return false;
}
}
return true;
}
);
if (it != suggestedMlqs[coreId].end(minPrio) && (!compareTime || !hasWorseTime(*it))) {
return &*it;
} else if (allowSecondPass) {
// Allow to re-pick a selected thread about to be current, if it doesn't make the core idle
auto srcCoreIdPtr = std::find_if(
secondPassCores.cbegin(),
secondPassCores.cbegin() + numSecondPassCores,
[](uint id) {
return scheduledMlqs[id].highestPrioritySet() >= minRegularPriority && scheduledMlqs[id].size() > 1;
}
);
return srcCoreIdPtr == secondPassCores.cbegin() + numSecondPassCores ? nullptr : &scheduledMlqs[*srcCoreIdPtr].front();
} else {
return nullptr;
}
}
void KScheduler::Global::YieldThread(KThread &currentThread)
{
// Note: caller should use critical section, etc.
kassert(currentThread.GetCurrentCoreId() >= 0);
uint coreId = (uint)currentThread.GetCurrentCoreId();
uint priority = currentThread.GetPriority();
// Yield the thread
scheduledMlqs[coreId].yield(currentThread);
currentThread.IncrementSchedulerOperationCount();
KThread *winner = &scheduledMlqs[coreId].front(priority);
AskForReselectionOrMarkRedundant(&currentThread, winner);
}
void KScheduler::Global::YieldThreadAndBalanceLoad(KThread &currentThread)
{
// Note: caller should check if !currentThread.IsSchedulerOperationRedundant and use critical section, etc.
kassert(currentThread.GetCurrentCoreId() >= 0);
uint coreId = (uint)currentThread.GetCurrentCoreId();
uint priority = currentThread.GetPriority();
std::array<KThread *, MAX_CORES> curThreads;
for (uint i = 0; i < MAX_CORES; i++) {
curThreads[i] = scheduledMlqs[i].empty() ? nullptr : &scheduledMlqs[i].front();
}
// Yield the thread
scheduledMlqs[coreId].yield(currentThread);
currentThread.IncrementSchedulerOperationCount();
KThread *winner = PickOneSuggestedThread(curThreads, coreId, true, false, 0, priority);
if (winner != nullptr) {
TransferThreadToCore(*winner, coreId);
winner->IncrementSchedulerOperationCount();
currentThread.SetRedundantSchedulerOperation();
} else {
winner = &scheduledMlqs[coreId].front(priority);
}
AskForReselectionOrMarkRedundant(&currentThread, winner);
}
void KScheduler::Global::YieldThreadAndWaitForLoadBalancing(KThread &currentThread)
{
// Note: caller should check if !currentThread.IsSchedulerOperationRedundant and use critical section, etc.
KThread *winner = nullptr;
kassert(currentThread.GetCurrentCoreId() >= 0);
uint coreId = (uint)currentThread.GetCurrentCoreId();
// Remove the thread from its scheduled mlq, put it on the corresponding "suggested" one instead
TransferThreadToCore(currentThread, -1);
currentThread.IncrementSchedulerOperationCount();
// If the core is idle, perform load balancing, excluding the threads that have just used this function...
if (scheduledMlqs[coreId].empty()) {
// Here, "curThreads" is calculated after the ""yield"", unlike yield -1
std::array<KThread *, MAX_CORES> curThreads;
for (uint i = 0; i < MAX_CORES; i++) {
curThreads[i] = scheduledMlqs[i].empty() ? nullptr : &scheduledMlqs[i].front();
}
KThread *winner = PickOneSuggestedThread(curThreads, coreId, false);
if (winner != nullptr) {
TransferThreadToCore(*winner, coreId);
winner->IncrementSchedulerOperationCount();
} else {
winner = &currentThread;
}
}
AskForReselectionOrMarkRedundant(&currentThread, winner);
}
void KScheduler::Global::YieldPreemptThread(KThread &currentKernelHandlerThread, uint coreId, uint maxPrio)
{
if (!scheduledMlqs[coreId].empty(maxPrio)) {
// Yield the first thread in the level queue
scheduledMlqs[coreId].front(maxPrio).IncrementSchedulerOperationCount();
scheduledMlqs[coreId].yield(maxPrio);
if (scheduledMlqs[coreId].size() > 1) {
scheduledMlqs[coreId].front(maxPrio).IncrementSchedulerOperationCount();
}
}
// Here, "curThreads" is calculated after the forced yield, unlike yield -1
std::array<KThread *, MAX_CORES> curThreads;
for (uint i = 0; i < MAX_CORES; i++) {
curThreads[i] = scheduledMlqs[i].empty() ? nullptr : &scheduledMlqs[i].front();
}
KThread *winner = PickOneSuggestedThread(curThreads, coreId, true, false, maxPrio, maxPrio);
if (winner != nullptr) {
TransferThreadToCore(*winner, coreId);
winner->IncrementSchedulerOperationCount();
}
for (uint i = 0; i < MAX_CORES; i++) {
curThreads[i] = scheduledMlqs[i].empty() ? nullptr : &scheduledMlqs[i].front();
}
// Find first thread which is not the kernel handler thread.
auto itFirst = std::find_if(
scheduledMlqs[coreId].begin(),
scheduledMlqs[coreId].end(),
[&currentKernelHandlerThread, coreId](const KThread &t) {
return &t != &currentKernelHandlerThread;
}
);
if (itFirst != scheduledMlqs[coreId].end()) {
// If under the threshold, do load balancing again
winner = PickOneSuggestedThread(curThreads, coreId, true, false, maxPrio, itFirst->GetPriority() - 1);
if (winner != nullptr) {
TransferThreadToCore(*winner, coreId);
winner->IncrementSchedulerOperationCount();
}
}
reselectionRequired = true;
}
void KScheduler::Global::SelectThreads()
{
auto updateThread = [](KThread *thread, KScheduler &sched) {
if (thread != sched.selectedThread) {
if (thread != nullptr) {
thread->IncrementSchedulerOperationCount();
thread->UpdateLastScheduledTime();
thread->SetProcessLastThreadAndIdleSelectionCount(sched.idleSelectionCount);
} else {
++sched.idleSelectionCount;
}
sched.selectedThread = thread;
sched.isContextSwitchNeeded = true;
}
std::atomic_thread_fence(std::memory_order_seq_cst);
};
// This maintain the "current thread is on front of queue" invariant
std::array<KThread *, MAX_CORES> curThreads;
for (uint i = 0; i < MAX_CORES; i++) {
KScheduler &sched = *KCoreContext::GetInstance(i).GetScheduler();
curThreads[i] = scheduledMlqs[i].empty() ? nullptr : &scheduledMlqs[i].front();
updateThread(curThreads[i], sched);
}
// Do some load-balancing. Allow second pass.
std::array<KThread *, MAX_CORES> curThreads2 = curThreads;
for (uint i = 0; i < MAX_CORES; i++) {
if (scheduledMlqs[i].empty()) {
KThread *winner = PickOneSuggestedThread(curThreads2, i, false, true);
if (winner != nullptr) {
curThreads2[i] = winner;
TransferThreadToCore(*winner, i);
winner->IncrementSchedulerOperationCount();
}
}
}
// See which to-be-current threads have changed & update accordingly
for (uint i = 0; i < MAX_CORES; i++) {
KScheduler &sched = *KCoreContext::GetInstance(i).GetScheduler();
if (curThreads2[i] != curThreads[i]) {
updateThread(curThreads2[i], sched);
}
}
reselectionRequired = false;
}
KCriticalSection KScheduler::criticalSection{};
void KScheduler::YieldCurrentThread()
{
KCoreContext &cctx = KCoreContext::GetCurrentInstance();
cctx.GetScheduler()->DoYieldOperation(Global::YieldThread, *cctx.GetCurrentThread());
}
void KScheduler::YieldCurrentThreadAndBalanceLoad()
{
KCoreContext &cctx = KCoreContext::GetCurrentInstance();
cctx.GetScheduler()->DoYieldOperation(Global::YieldThreadAndBalanceLoad, *cctx.GetCurrentThread());
}
void KScheduler::YieldCurrentThreadAndWaitForLoadBalancing()
{
KCoreContext &cctx = KCoreContext::GetCurrentInstance();
cctx.GetScheduler()->DoYieldOperation(Global::YieldThreadAndWaitForLoadBalancing, *cctx.GetCurrentThread());
}
}