Atmosphere/libraries/libstratosphere/source/fssystem/fssystem_aes_xts_storage.cpp

223 lines
9.5 KiB
C++
Raw Normal View History

2020-04-06 12:44:33 +00:00
/*
* Copyright (c) Atmosphère-NX
2020-04-06 12:44:33 +00:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
AesXtsStorage::AesXtsStorage(IStorage *base, const void *key1, const void *key2, size_t key_size, const void *iv, size_t iv_size, size_t block_size) : base_storage(base), block_size(block_size), mutex() {
2020-04-06 12:44:33 +00:00
AMS_ASSERT(base != nullptr);
AMS_ASSERT(key1 != nullptr);
AMS_ASSERT(key2 != nullptr);
AMS_ASSERT(iv != nullptr);
AMS_ASSERT(key_size == KeySize);
AMS_ASSERT(iv_size == IvSize);
AMS_ASSERT(util::IsAligned(this->block_size, AesBlockSize));
AMS_UNUSED(key_size, iv_size);
2020-04-06 12:44:33 +00:00
std::memcpy(this->key[0], key1, KeySize);
std::memcpy(this->key[1], key2, KeySize);
std::memcpy(this->iv, iv, IvSize);
}
Result AesXtsStorage::Read(s64 offset, void *buffer, size_t size) {
/* Allow zero-size reads. */
R_SUCCEED_IF(size == 0);
/* Ensure buffer is valid. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* We can only read at block aligned offsets. */
R_UNLESS(util::IsAligned(offset, AesBlockSize), fs::ResultInvalidArgument());
R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultInvalidArgument());
/* Read the data. */
R_TRY(this->base_storage->Read(offset, buffer, size));
/* Prepare to decrypt the data, with temporarily increased priority. */
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
/* Setup the counter. */
char ctr[IvSize];
std::memcpy(ctr, this->iv, IvSize);
AddCounter(ctr, IvSize, offset / this->block_size);
/* Handle any unaligned data before the start. */
size_t processed_size = 0;
if ((offset % this->block_size) != 0) {
/* Determine the size of the pre-data read. */
const size_t skip_size = static_cast<size_t>(offset - util::AlignDown(offset, this->block_size));
const size_t data_size = std::min(size, this->block_size - skip_size);
/* Decrypt into a pooled buffer. */
{
PooledBuffer tmp_buf(this->block_size, this->block_size);
AMS_ASSERT(tmp_buf.GetSize() >= this->block_size);
std::memset(tmp_buf.GetBuffer(), 0, skip_size);
std::memcpy(tmp_buf.GetBuffer() + skip_size, buffer, data_size);
const size_t dec_size = crypto::DecryptAes128Xts(tmp_buf.GetBuffer(), this->block_size, this->key[0], this->key[1], KeySize, ctr, IvSize, tmp_buf.GetBuffer(), this->block_size);
R_UNLESS(dec_size == this->block_size, fs::ResultUnexpectedInAesXtsStorageA());
std::memcpy(buffer, tmp_buf.GetBuffer() + skip_size, data_size);
}
AddCounter(ctr, IvSize, 1);
processed_size += data_size;
AMS_ASSERT(processed_size == std::min(size, this->block_size - skip_size));
}
/* Decrypt aligned chunks. */
char *cur = static_cast<char *>(buffer) + processed_size;
size_t remaining = size - processed_size;
while (remaining > 0) {
const size_t cur_size = std::min(this->block_size, remaining);
const size_t dec_size = crypto::DecryptAes128Xts(cur, cur_size, this->key[0], this->key[1], KeySize, ctr, IvSize, cur, cur_size);
R_UNLESS(cur_size == dec_size, fs::ResultUnexpectedInAesXtsStorageA());
remaining -= cur_size;
cur += cur_size;
AddCounter(ctr, IvSize, 1);
}
return ResultSuccess();
}
Result AesXtsStorage::Write(s64 offset, const void *buffer, size_t size) {
/* Allow zero-size writes. */
R_SUCCEED_IF(size == 0);
/* Ensure buffer is valid. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* We can only read at block aligned offsets. */
R_UNLESS(util::IsAligned(offset, AesBlockSize), fs::ResultInvalidArgument());
R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultInvalidArgument());
/* Get a pooled buffer. */
PooledBuffer pooled_buffer;
const bool use_work_buffer = !IsDeviceAddress(buffer);
if (use_work_buffer) {
pooled_buffer.Allocate(size, this->block_size);
}
/* Setup the counter. */
char ctr[IvSize];
std::memcpy(ctr, this->iv, IvSize);
AddCounter(ctr, IvSize, offset / this->block_size);
/* Handle any unaligned data before the start. */
size_t processed_size = 0;
if ((offset % this->block_size) != 0) {
/* Determine the size of the pre-data read. */
const size_t skip_size = static_cast<size_t>(offset - util::AlignDown(offset, this->block_size));
const size_t data_size = std::min(size, this->block_size - skip_size);
/* Create an encryptor. */
/* NOTE: This is completely unnecessary, because crypto::EncryptAes128Xts is used below. */
/* However, Nintendo does it, so we will too. */
crypto::Aes128XtsEncryptor xts;
xts.Initialize(this->key[0], this->key[1], KeySize, ctr, IvSize);
/* Encrypt into a pooled buffer. */
{
/* NOTE: Nintendo allocates a second pooled buffer here despite having one already allocated above. */
PooledBuffer tmp_buf(this->block_size, this->block_size);
AMS_ASSERT(tmp_buf.GetSize() >= this->block_size);
std::memset(tmp_buf.GetBuffer(), 0, skip_size);
std::memcpy(tmp_buf.GetBuffer() + skip_size, buffer, data_size);
const size_t enc_size = crypto::EncryptAes128Xts(tmp_buf.GetBuffer(), this->block_size, this->key[0], this->key[1], KeySize, ctr, IvSize, tmp_buf.GetBuffer(), this->block_size);
R_UNLESS(enc_size == this->block_size, fs::ResultUnexpectedInAesXtsStorageA());
R_TRY(this->base_storage->Write(offset, tmp_buf.GetBuffer() + skip_size, data_size));
}
AddCounter(ctr, IvSize, 1);
processed_size += data_size;
AMS_ASSERT(processed_size == std::min(size, this->block_size - skip_size));
}
/* Encrypt aligned chunks. */
size_t remaining = size - processed_size;
s64 cur_offset = offset + processed_size;
while (remaining > 0) {
/* Determine data we're writing and where. */
const size_t write_size = use_work_buffer ? std::min(pooled_buffer.GetSize(), remaining) : remaining;
/* Encrypt the data, with temporarily increased priority. */
{
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
size_t remaining_write = write_size;
size_t encrypt_offset = 0;
while (remaining_write > 0) {
const size_t cur_size = std::min(remaining_write, this->block_size);
const void *src = static_cast<const char *>(buffer) + processed_size + encrypt_offset;
void *dst = use_work_buffer ? pooled_buffer.GetBuffer() + encrypt_offset : const_cast<void *>(src);
const size_t enc_size = crypto::EncryptAes128Xts(dst, cur_size, this->key[0], this->key[1], KeySize, ctr, IvSize, src, cur_size);
R_UNLESS(enc_size == cur_size, fs::ResultUnexpectedInAesXtsStorageA());
AddCounter(ctr, IvSize, 1);
encrypt_offset += cur_size;
remaining_write -= cur_size;
}
}
/* Write the encrypted data. */
const void *write_buf = use_work_buffer ? pooled_buffer.GetBuffer() : static_cast<const char *>(buffer) + processed_size;
R_TRY(this->base_storage->Write(cur_offset, write_buf, write_size));
/* Advance. */
cur_offset += write_size;
processed_size += write_size;
remaining -= write_size;
}
return ResultSuccess();
}
Result AesXtsStorage::Flush() {
return this->base_storage->Flush();
}
Result AesXtsStorage::SetSize(s64 size) {
R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultUnexpectedInAesXtsStorageA());
return this->base_storage->SetSize(size);
}
Result AesXtsStorage::GetSize(s64 *out) {
return this->base_storage->GetSize(out);
}
Result AesXtsStorage::OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) {
/* Handle the zero size case. */
R_SUCCEED_IF(size == 0);
/* Ensure alignment. */
R_UNLESS(util::IsAligned(offset, AesBlockSize), fs::ResultInvalidArgument());
R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultInvalidArgument());
return this->base_storage->OperateRange(dst, dst_size, op_id, offset, size, src, src_size);
}
}